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Abstract. When an outdoor mobile robot traverses different types of
ground surfaces, different types of vibrations are induced in the body
of the robot. These vibrations can be used to learn a discrimination
between different surfaces and to classify the current terrain. Recently, we
presented a method that uses Support Vector Machines for classification,
and we showed results on data collected with a hand-pulled cart. In this
paper, we show that our approach also works well on an outdoor robot.
Furthermore, we more closely investigate in which direction the vibration
should be measured. Finally, we present a simple but effective method to
improve the classification by combining measurements taken in multiple
directions.

1 Introduction

In outdoor environments, a mobile robot should be able to adapt its driving style
to the ground surface. Some surfaces like asphalt are flat and not slippery, and
thus the robot can safely traverse them at high speeds. Other surfaces, like sand
or gravel, are dangerous because they are slippery and/or bumpy. To prevent
accidents or damages to the hardware, the robot has to traverse these surfaces
carefully at low speed. Such hazards that originate from the ground surface itself
can be called non-geometric hazards [1]. A system which can determine the type
of the current or forthcoming ground surface therefore greatly contributes to the
safety of a robot.

Tagnemma and Dubowsky first suggested to detect non-geometric hazards
by vibrations that are induced in the robot while traversing the terrain [2]. The
vibrations are different for different terrain types, and characteristic vibration
signals can be learned for each terrain type. Based on the learned model, the
terrain class of a newly collected vibration signal is estimated. Such a method
can be used as a stand-alone classifier or to supplement other sensors.

Commonly, accelerometers are used to measure vibrations. The accelero-
meters can be placed at the wheels or the axes of the robot, as well as on
the robot’s body. Mostly, the acceleration is measured in up-down (z) direc-
tion. However, this paper shows that it could be better to use the acceleration
measured in front-back (z) or left-right (y) direction.

Brooks and Tagnemma presented vibration-based terrain classification for
low-speed planetary rovers [3]. They use Principal Component Analysis (PCA)
to reduce the dimensionality of the vibration data and Linear Discriminant
Analysis (LDA) for classification. Sadhukhan and Moore proposed an approach



that is based on Probabilistic Neural Networks [4,5]. They used an RWI ATRV-
JR robot driving up to 0.8 m/s. In [6], we presented an approach that uses
Support Vector Machines (SVM) for classification. Stavens et al. suggested a
method for vehicles driving up to 35 mph [7]. However, they focus on determining
the roughness of the terrain to adapt the speed of the vehicle, instead of grouping
the terrain into classes.

In [6], we presented experiments on data collected by a hand-pulled cart. This
cart has relatively hard rubber wheels which lead to clear vibration signals. The
big, air-filled wheels of common outdoor robots, however, are likely to dampen
the vibrations. Therefore, this paper presents experiments that use our method
on vibration data collected by an RWI ATRV-JR outdoor robot. We also more
closely investigate the influence of different robot velocities on the classification.
Additionally, we evaluate in which direction the acceleration signals should be
measured. Finally, we propose a simple method to improve classification if the
robot is able to measure accelerations in multiple directions.

2 Terrain Classification Method

This section summarizes our terrain classification approach presented in [6] and
suggests a simple way to improve classification by using multiple directions of
vibrations.

2.1 Basic Method

Our terrain classification approach has two phases: training and classification.
Training is computationally intensive and therefore an offline step. Classification
is very fast and can be done online. In the training phase, we learn characteristic
vibration signals for known terrain types. For this purpose, the robot traverses
different surfaces and collects vibration signals. To collect the vibrations, we use
an accelerometer that works at 100 Hz. In the next step, we split the acceleration
signals into segments, where each segment corresponds to 1 s of robot travel. In
our case, this leads to 1x100-sized vectors. We then label each vector with the
terrain type it corresponds to. Fig. 1 shows example acceleration vectors for
some terrain types. Except for grass, they appear very similar to a human.

Next, we transform the raw acceleration signals to the frequency domain. In
[6], we compared different transformations. Despite the fact that a 128-point Fast
Fourier Transform (FFT) led to worse results than other tranformations on the
cart data, we found the FFT to work best for the ATRV-JR data. After applying
the FFT to each vector, we normalize each feature (= frequency component) to
mean 0 and standard deviation 1. The normalization prevents features with high
magnitude from dominating the training.

Next, we train a Support Vector Machine (SVM) [8,9] on the feature vectors.
As kernel function we use a Radial Basis Function (RBF) k(x,y) = exp(—|z —
y||?/20?%)), where z and y are two feature vectors. We tune the width o of
the RBF kernel together with the soft margin parameter C' (which regularizes
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Fig. 1. Some example acceleration vectors for asphalt, gravel, grass and clay.

the trade-off between maximizing the margin between two classes and mini-
mizing the training error) of the SVM by a grid search. The grid is defined
by log, o € {6/4,...,46} and log, C € {-2,..,14}, were & is set such that
exp(—D/26?) = 0.1. D denotes the length of the feature vectors. Each candidate
parameter vector (o, C) on the grid is evaluated by 5-fold cross-validation. The
grid parameters are standard ones that are often used in other applications, too.
As SVM implementation, we use LIBSVM [10].

In the classification phase, the robot traverses unknown terrain and collects
vibration signals. Once per second, it creates a 1x100 test vector from the accel-
eration values taken during the last second and transforms the vector using the
FFT. Additionally, the robot normalizes the feature vector using the same pa-
rameters used during training. Then, the trained SVM classifies the test vector
and returns the estimated terrain type.

2.2 Combining Different Directions of Vibrations

In vibration-based terrain classification methods, vibration is commonly repre-
sented by the acceleration measured in up-down (z) direction. The reason is that
bumps in the terrain are likely to have their major effect in up-down direction.
However, the accelerations measured in other directions, e.g. front-back (x) or
left-right (y), can also be used to capture the vibration. Our experiments pre-
sented in Section 3 show that these accelerations may even be more suitable for
classification than the data measured in z direction.

In addition, many acceleration sensors are able to measure accelerations along
three axes simultaneously. For robots equipped with such a sensor, we propose a
simple but effective method to improve classification. For each terrain segment,
we collect the acceleration signals along all three axes, in our case front-back (),
left-right (y), and up-down (z). Then, we transform the signals individually by



Fig. 2. a) Our RWI ATRV-JR outdoor robot “Arthur”. b) The terrain types we used
in our experiments: 1) indoor floor, 2) asphalt, 3) gravel, 4) grass, 5) paving, 6) clay.

the FFT. Next, we concatenate the transformed feature vectors and normalize
the features. We then train the SVM on these feature vectors.

In the classification phase, we perform the same steps to get a test vector
containing information about all three directions of accelerations. Finally, we
classify the test vector using the SVM.

3 Experimental Results

To get experimental data, we used our RWI ATRV-JR outdoor robot (Fig. 2 a).
We mounted an Xsens MTi sensor on an aluminium plate on top of the robot.
The sensor measures the acceleration in x, y and z direction simultaneously at
100 Hz.

In total, we collected 10225 terrain vectors, some of them in mid-July and
some in the beginning of December. Each terrain vector corresponds to 1 s of
robot travel. The terrain vectors differ in the type of terrain and in the velocity of
the robot. As terrain types, we used indoor floor, asphalt, gravel, grass, paving,
clay (a boule court), and the situation in which the robot did not move (Fig.
2 b). The velocity of the robot was one of 0.2 m/s, 0.4 m/s or 0.6 m/s. Tab. 1
shows an overview of the dataset.

For evaluation, we used 10-fold cross validation, i.e. for each experiment, we
split the data into 10 parts and evaluated 10 sub-experiments (= folds). In each
fold, we used 9 parts for training and the 10th part for testing. The final result
is the mean over the results of the individual folds.

Fig. 3 a) and Tab. 2 show the results of a first set of experiments, for which
we used the three terrain classes grass, clay and gravel. We expected that higher
speeds of the robot would lead to stronger vibrations and therefore to clearer
vibration signals. However, the 3-class experiments did not confirm this expec-
tation. Data collected at 0.2 and 0.6 m/s could be classified similarly well and



Table 1. Number of samples per class in our dataset

class 0.2m/s 04m/s 0.6 m/s | total
indoor floor 282 549 581 1412
asphalt 499 513 600 1612
gravel 311 323 392 1026
grass 482 572 631 1685
paving 314 573 567 1454
clay 423 579 605 1607
no motion 199 615 615 1429
total 2510 3724 3991 10225

a) 3—class experiments b) 7-class experiments
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Fig. 3. Experimental results using a) 3 terrain classes, b) 7 terrain classes.

data collected at 0.4 m/s only slightly worse. However, in experiments on all
velocities mixed together in one dataset, the classification rates decrease.

The experiments show that the vibration measured in y direction leads to
better results than the vibration measured in = or z direction. The y data leads to
classification rates of about 98.5% for robot speeds of 0.2 and 0.6 m/s, to 97.54%
for 0.4 m/s and to 94.78% on mixed velocities. When combining the data from
all three directions, the results get even better. For all individual velocities, the
classification rate is higher than 99%. On the mixed dataset, 97.52% of the test
vectors are classified correctly.

Fig. 3 b) and Tab. 3 present the results of experiments involving all seven
terrain classes. In these experiments, the results for data collected at 0.2 m/s
are significantly worse than for data collected at 0.4 or 0.6 m/s. Again, vibration
data measured in y direction are classified better than data of the other direc-
tions. Additionally, x data yields to better results than z data. The classification
rates for the y data are 84.04% at 0.2 m/s, 90.91% at 0.4 m/s and 90.26% at



Table 2. Classification rates (%) of the 3-class experiments

measurement direction | 0.2 m/s 0.4 m/s 0.6 m/s mixed
x 97.53  96.39  97.71 90.63

J 98.67  97.54  98.26 94.78

z 97.84 95.00 97.09 90.84

x,y, z combined 99.20 99.18 99.30 97.52

Table 3. Classification rates (%) of the 7-class experiments

measurement direction | 0.2 m/s 0.4 m/s 0.6 m/s mixed
x 82.28 89.31 88.19 83.78

Yy 84.04 9091  90.26  86.40

z 81.47 87.02 85.33 80.80

x,y, z combined 93.22 95.55 95.38 93.61

0.6 m/s. When using combined data from all velocities, the classification rates
again increase significantly to between 93.2% and 95.5% for the individual ve-
locities. On the mixed dataset, 93.61% of the test vectors are classified correctly,
which is an improvement of over 7% over the y direction alone.

Tab. 4 shows the confusion matrix of the 7-class experiment on mixed veloc-
ities and using the combination of the x, y and z measurement directions. An
entry (i, 7) of the confusion matrix shows how often (in %) test vectors belonging
to class i were classified as class j. According to the confusion matrix, the classes
“no motion” and grass are unproblematic, because they are confused with other
classes in very few cases. Indoor floor is wrongly classified as asphalt for about
3% of the test vectors and vice versa. Gravel and paving seem to be relatively
similar. They are confused with each other in about 7-12% of the cases. For clay,
there is no clear trend towards misclassifiying it as a particular class.

On a 3 GHz Pentium 4 PC with 1 GB of RAM, classifying one terrain vector
takes less than 1 ms. The time for training depends on the dataset. For example,
training in the 3-class experiment on y data collected at 0.2 m/s takes about
7 min 4 s. This dataset contains 1216 feature vectors. Another example is the
7-class dataset with combined acceleration directions and mixed speeds. This
dataset contains 10225 feature vectors, and training takes about 14 h 24 min.

4 Conclusion

This paper showed that our vibration-based terrain classification method pre-
sented in [6] works well on a common outdoor robot. Additionally, we presented a
technique to improve the classification by using vibrations measured in different
directions.

A comparison between data measured in front-back (x), left-right (y) and
up-down (z) direction showed that the y data leads to significantly better classi-
fication rates than the z data. However, it is not clear if this result is specific for



Table 4. Confusion matrix (%) of the 7-class experiment with mixed velocities and
combined measurement directions

no motion indoor asphalt gravel grass paving clay
no motion 99.79 0 0 0 0.21 0 0
indoor 0 94.05 290 043 014 014 234
asphalt 0 3.29 93.18 037 019 112 1.86
gravel 0 0 0 84.80 3.12 11.89 0.20
grass 0 0 0 1.18 98.34 0.36 0.19
paving 0 0 096 6.88 0.21 90.44 151
clay 0 1.43 0.50 093 1.00 1.49 94.65

our robot or if this result can be generalized for robots of other types. Neverthe-
less, the result shows that it is worth trying some other measurement directions
before relying on the up-down vibration. Our experiments showed that if the
robot is able to measure the acceleration in multiple directions simultaneously,
including all available information into the feature vector significantly improves
the classification rate.

For future work, we plan online learning, where the new information of the

test phase is integrated into the model. The robot should also be able to notice
if it traverses some terrain that it has never traversed before.
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