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Abstract: In this paper, we present a geometrical localization method based on
a combination of global image features. Our method represents each image by
two feature vectors. The first feature vector is a Weighted Gradient Orientation
Histogram (WGOH). The second feature vector is a Weighted Grid Integral
Invariant (WGII) feature vector based on Integral Invariants. For localization,
we use a particle filter which updates the weights of the particles based on image
similarities calculated from the two feature vectors. We evaluate our approach on
outdoor images of two different areas and under varying illumination and compare
it to a SIFT-based approach. The comparison shows that the SIFT approach is
slightly more exact than our method, but our method is more than four times
faster than the SIFT approach and allows a localization frequency of more than
2 Hz.
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1. INTRODUCTION

Outdoor localization of mobile robots is a difficult
task for many reasons. Some range sensors, like
2D laser range finders, are not well suited for out-
door localization because of the cluttered environ-
ment. GPS signals often are not available because
the GPS satellites are occluded by buildings or
trees. Due to these problems, vision has become
the most widely used sensor in outdoor localiza-
tion. A serious problem for vision are illumination
changes, because illumination in outdoor environ-
ments is highly dependent on the weather (sunny,
cloudy, ...) and on the time of day.

An algorithm which can deal with changing illu-
mination to a relatively high extent is the Scale
Invariant Feature Transform (SIFT) developed by
Lowe (Lowe, 2004). SIFT computes descriptors
for local interest points within the image. These
local features are more dependent on structure

than on illumination and are very distinctive.
However, as the number of features per image
is large (about 420 for our 320 × 240 pixel im-
ages on average), matching images is very time-
consuming. Approaches that use SIFT for indoor
localization are, for example, (Se et al., 2001),
(Tamimi and Zell, 2005). Outdoor localization
using SIFT was presented in (Barfoot, 2005).
There also exist methods that replace the gra-
dient histogram features of the SIFT approach,
for example by Local Integral Invariants (Tamimi
et al., 2006). Bradley et al. use a technique in-
spired by SIFT for topological outdoor localiza-
tion, the so-called Weighted Gradient Orientation
Histograms (WGOH) (Bradley et al., 2005).

Another group of vision-based localization meth-
ods are the appearance-based methods, which
compute global features for images. Well-known
methods for indoor localization are based on PCA
(Artac et al., 2002), (Jogan et al., 2003), (Jogan



et al., 2002) or on Integral Invariant features
(Wolf et al., 2005). The main advantage of global
methods over local techniques is that image sim-
ilarities can be computed much faster. However,
in general, global methods are more sensitive to
illumination changes than local methods. There
are also methods that combine global and lo-
cal techniques (Artač and Leonardis, 2004). An
overview of global and local features for mobile
robot localization can be found in (Tamimi, 2006).

The new method presented in this paper repre-
sents every image by two global feature vectors.
The first feature vector is the WGOH also used
by Bradley et al.. The second feature vector is a
new one based on Integral Invariants. Similar to
Bradley et al., we subdivide the image into a grid
of subimages. On each subimage, we compute an
8-bin histogram of Integral Invariants, weighted
by the distance of each point to the center of
the subimage. We call these new features the
Weighted Grid Integral Invariants (WGII).

In the training phase, we collect images at known
positions. For each image, we extract the two
feature vectors, which we store together with
the image position. In the localization phase,
the robot moves around in the same area and
takes new images. To localize the robot, we use
a particle filter which updates the weights of
the particles according to the image similarities
calculated from the feature vectors of the current
test image and the training images.

In experiments on outdoor images, we compare
our method to a SIFT-based approach. The re-
sults show that in general, the SIFT approach
is slightly more exact. On the other hand, our
method is more than 4 times faster than SIFT.

The rest of the paper is organized as follows.
Section 2 describes the WGII and WGOH features
in more detail and Section 3 explains the particle
filter. Section 4 presents the experimental results
and Section 5 concludes the paper.

2. IMAGE FEATURE EXTRACTION

This section describes the WGII and WGOH fea-
tures we use to represent an image. Additionally,
we shortly explain the SIFT technique we compare
our method to.

2.1 WGOH

The Weighted Gradient Orientation Histograms
for outdoor localization were presented by Bradley
et al. (Bradley et al., 2005). The WGOHs were
inspired by SIFT features (Lowe, 2004) and are
similar to features presented by Kosecka and Li

(Kosecka and Li, 2004). Bradley et al. first split
the image into a 4×4 grid of subimages. On each
subimage, they calculate an 8-bin histogram of
gradient orientations, weighted by the magnitude
of the gradient at each point and by the distance
to the center of the subimage. In our implementa-
tion of WGOHs, we use a 2D gaussian for weight-
ing, where the mean corresponds to the center of
the subimage and the standard deviations corre-
spond to 0.5 times the width and the height of the
subimage, respectively. We took these parameters
from SIFT, where a gaussian with half the width
of the descriptor window is used for weighting.
The 16 histograms are concatenated to a 1×128
feature vector, which is normalized subsequently.
To reduce the dependency on particular regions or
some strong gradients, the elements of the feature
vector are thresholded to 0.2, and the feature
vector is renormalized.

We use the WGOH features in our method, be-
cause Bradley et al. obtain good result using these
features for topological localization in outdoor en-
vironments. The features are also relatively robust
to illumination changes in Bradley’s experiments.

2.2 WGII

Global Integral Invariant features are features
which are invariant to euclidean motion, i.e. rota-
tion and translation, and to some extent robust to
illumination changes. The key idea is to apply all
possible translations (t0, t1) and rotations r to the
image and to calculate the features by averaging
over all the transformed versions of the image. For
an image I with N0 × N1 pixels,
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computes the Global Integral Invariant feature
F (I) of image I. Here, R is the number of different
rotation angles, g is an element of the group of
euclidean motions, gI is the image I transformed
by g, and f is a kernel function. The kernel func-
tion involves the local neighborhood of a pixel
in the calculation. For example, the monomial
kernel multiplies the intensities of two neighbor-
hood pixels that lie on circles with certain radius
around the center pixel and that have a certain
phase shift. In our method, we use the relational
kernel, which is invariant to strict illumination
changes. For two pixel coordinates p1 = (x1, y1)
and p2 = (x2, y2), the relational kernel is given by

f(I) = rel (I(x1, y1) − I(x2, y2)) , (2)



with the ramp function

rel(γ) =











1 if γ < −ε,
ε − γ

2ε
if − ε ≤ γ ≤ ε,

0 if ε < γ.

(3)

To create a more distinctive feature for an im-
age, one can compute a histogram of the Integral
Invariants evaluated at each pixel instead of rep-
resenting the image by a single number. It is also
possible to use more than one kernel and to form a
multidimensional histogram as feature for an im-
age. A more detailed description of Global Integral
Invariants can be found in (Siggelkow, 2002).

Experimentally, we found that ordinary Global In-
tegral Invariant features are not distictive enough
for outdoor localization, even when using 3 kernels
to form multidimensional histograms. Thus, we
adopt the technique of Bradley et al. to calculate
individual histograms on a grid of subimages. We
also calculate weighted histograms such that In-
tegral Invariant features for pixels near the center
of a subimage get a higher weight than pixels near
the borders of subimages, because the pixels near
the borders are more likely to fall into another
subimage under image translations or rotations.

Thus, we first compute the Integral Invariants
for each pixel of the image. We then split the
image into a 4×4 grid of subimages. We use a 4×4
grid, because coarser grids led to decreased perfor-
mance in our experiments, and finer grids did not
further improve performance. On each subimage,
we calculate a weighted 8-bin histogram of Inte-
gral Invariant features. For weighting, we use a 2D
gaussian with mean at the center of the subimage
and with standard deviations equal to 0.25 times
the width and the height of the subimage, respec-
tively. Then we concatenate the 16 histograms
and normalize the resulting vector to get the final
1×128 WGII feature vector for the image.

In the relational kernel, we use the pixel coordi-
nates p1 = (10, 0) and p2 = (0, 20). We set the
parameter ε to 0.098 and the number of rotation
angles to R = 10. We chose these kernel parame-
ters, because experimentally, they led to the best
results.

2.3 Image Matching

To calculate the similarity between two images Q

and D, we compare their feature histograms q and
d using normalized histogram intersection

⋂

norm

(q,d) =

∑

k∈{0,1,...,m−1} min(qk, dk)
∑

k∈{0,1,...,m−1} qk

, (4)

where m is the number of histogram bins.

2.4 SIFT

For comparison to our method, we use a local-
ization approach based on SIFT (Lowe, 2004). In
this approach, the most similar training image to
a test image is the one which contains the highest
number of local features that can be matched to
the local features of the test image.

To speed up the SIFT-based localization, we use
an additional step that reduces the number of
features of each image. The idea is to delete
“noisy” SIFT-features, which are likely not to
appear in more than one image. In the training
phase, we match each training image to the two
neighboring training images. We only keep the
features that can be matched to a feature of at
least one of the two neighboring images. In the
localization phase, we only keep the features of the
test image that can be matched to a feature of the
previous test image. Depending on the dataset,
this technique removes about 50 to 80% of the
features, and matching images is accelerated by a
mean factor of about 5 without loss of accuracy.

3. PARTICLE FILTER

For localization, we use a particle filter (Thrun et
al., 2000). We update the weights of the particles
based on image similarities calculated from the
WGOH and WGII features, and accordingly based
on SIFT in the method we use for comparison.

Particle filters represent the belief Bel(x) of the
robot about its position by a set of m particles.
In our case, each particle consists of a pose (x, y)
together with a non-negative importance factor,
which determines the weight or importance of
the particle. The estimated pose of the robot is
given by the weighted mean of the particles. For
global robot localization, the inital particles are
randomly distributed over the robot’s universe.
All importance factors are set to 1

m
. The particles

are updated for each test image using 3 steps:

(1) Draw m random particles x
(i)
t−1 from Bel(xt−1)

according to the importance factors pt−1 at
time t − 1.

(2) Update the sample x
(i)
t−1 to sample x

(j)
t ac-

cording to an action ut−1. As we do not use
a motion model, for example from odometry,
we randomly update the particle according
to a gaussian distribution centered at the
position of the particle and with a standard
deviation of 4 m. Additionally, we move each
particle a short distance d in the direction
to the nearest training image, where d cor-
responds to 0.2 times the distance of the
particle to the nearest training image.



Fig. 1. Our RWI ATRV-JR robot “Arthur”.

(3) Weight the sample x
(j)
t by the likelihood of

the sample x
(j)
t given the measurement yt.

To assign new weights, we first search the
nearest training image to each particle. In
the case of SIFT, we perform a standard
SIFT match between the test image and the
chosen training image, and the score of the
match becomes the new weight of the parti-
cle. In our new method, we match the test
image to a training image by comparing the
WGII and WGOH feature vectors individu-
ally, using normalized histogram intersection.
We set the new weight of the corresponding
particle to the product of the WGII and
WGOH matches. We additionally multiply
the new weight by a factor that decreases
with the distance of the particle to its nearest
training image. In our new method, we then
potentiate the new weight by 20, because the
differences between the matching scores are
all low (but anyhow distinctive at that low
level). This way the difference between the
matches becomes clearer.

After the third step, we normalize the importance
factors and calculate the estimated position. Be-
fore repeating the three steps for the next test
image, we replace the worst 5% of the particles
by randomly generated new ones. This way the
robot can recover its position if the position was
lost or if the robot was kidnapped.

To speed up the calculation of the weights, we save
for each particle the matching result to the test
image. If another particle has the same nearest
training image, we do not have to recalculate the
match, but can use the saved value. In the case of
SIFT, this method speeds up the estimation of a
new position by a factor of about 5. For our new
method, we only get a slight speedup.

4. EXPERIMENTAL RESULTS

In our experiments, we use images collected by
our RWI ATRV-JR outdoor robot (Fig. 1). We

moved the robot around using a constant velocity
of about 0.6 m/s. Once per second, we took a
320×240 pixel grayscale image with the left cam-
era of the robot’s stereo camera system. The robot
is also equipped with a Differential GPS (DGPS)
system, which we used to get the position of each
image. However, due to occlusion by trees and
buildings, the GPS path sometimes significantly
deviated from the real position or contained gaps.
As we always moved the robot on a smooth tra-
jectory, we corrected some wrong or missing GPS
values manually by linearly interpolating between
the positions before and after the error or gap.

We collected two datasets that differ in the type
of environment. Dataset 1 consists of six rounds
around a big building. Each of the rounds is
about 260 m long and is represented by about 400
images. We collected three of the rounds under
sunny conditions, but there are also some short
sections (about 5 to 10 s long) during which
the sun was covered by clouds. We collected the
other three rounds about six weeks later on a
cloudy day. The images of dataset 1 contain many
artifical objects like buildings, streets and cars.
Additionally, there are some dynamic objects like
cars and people passing by.

We acquired dataset 2 in a different area mostly
containing vegetation like grass, bushes and trees.
We recorded two rounds in the early afternoon, in
which the sun was shining brightly. In the evening,
we collected the third and fourth round. The sun
was covered by clouds and it was starting to get
dark. Each round of dataset 2 is about 220 m long
and consists of about 350 images. Fig. 3 a) and b)
show the GPS ground truth data of dataset 1 and
2. Fig. 2 shows example images of dataset 1 and
2 under different illumination.

For evaluation, we calculated the error of all pos-
sible training/test combinations of rounds using
m = 300 particles. Additionally, we repeated each
experiment n times, where n is the number of
test images. For each of these experiments, we
used a different test image as starting image for
the localization. Then we calculated the mean
error of all experiments that are similar, e.g. all
experiments in which we used the sunny images
of dataset 1 for training and the cloudy images
for testing.

The columns WGOH, WGII2 and WGII1 of
Tab. 1 show the localization errors when repre-
senting images by a single feature vector, i.e. by
WGOH, by WGII with a two-dimensional his-
togram calculated from two kernels and by WGII
with one kernel. The table shows that WGOH
features produce large errors on dataset 2 under
changing illumination. The WGII features cal-
culated using two kernel functions perform well
on these images, but have problems on images



Table 1. Mean localization errors ± standard deviation (m)

dataset training im. test im. WGOH WGII2 WGII1 WGII + WGOH SIFT

sunny sunny 3.04 ± 1.06 3.53 ± 1.22 4.17 ± 1.18 3.15 ± 1.20 2.15 ± 0.29dataset 1
cloudy cloudy 1.85 ± 0.29 2.18 ± 0.71 2.37 ± 0.38 1.60 ± 0.26 2.06 ± 0.56
sunny sunny 1.65 ± 0.16 1.48 ± 0.11 1.82 ± 0.13 1.09 ± 0.06 1.78 ± 0.05dataset 2
cloudy cloudy 2.38 ± 0.89 3.79 ± 0.51 3.95 ± 0.72 2.07 ± 0.76 2.10 ± 0.14

sunny cloudy 3.69 ± 0.62 5.97 ± 1.68 9.38 ± 1.70 3.95 ± 0.54 3.27 ± 0.27dataset 1
cloudy sunny 3.64 ± 0.85 6.10 ± 1.96 8.12 ± 2.10 3.85 ± 0.79 2.52 ± 0.17
sunny cloudy 9.44 ± 6.25 3.82 ± 0.44 5.13 ± 0.55 3.64 ± 0.80 2.88 ± 0.20dataset 2
cloudy sunny 6.28 ± 1.65 3.65 ± 0.01 5.18 ± 0.80 3.45 ± 0.32 2.74 ± 0.24

Fig. 2. Example images. a) Dataset 1, sunny. b)
Dataset 1, cloudy. c) Dataset 2, sunny. d)
Dataset 2, cloudy.

of dataset 1 under changing illumination. The
results for the WGII features computed from one
kernel show a similar characteristic, except that
the errors are larger.

Column WGII + WGOH of Tab. 1 shows the re-
sults for the combined method. Here, we use WGII
features computed using one kernel, because the
errors are only about 0.2 m larger than when
using WGII features computed from two kernels,
and WGII1 is about twice as fast as WGII2. In
all cases, the error of the combined method is
lower or only slightly worse than the error of the
better one of the single features. Especially in the
difficult cases, i.e. the experiments with changing
illumination, the combined method is much more
robust than using only a single feature vector.

Fig. 3 presents a comparison between our new
method and the SIFT approach. The errors of
both approaches decrease rapidly during the first
few iterations of the particle filter. In the experi-
ments with constant illumination, the mean errors
of WGII + WGOH and SIFT are relatively sim-
ilar. In experiments using changing illumination
conditions, the errors of both methods increase,
where the increase for the WGII + WGOH fea-
tures is more significant than for SIFT. Thus,
SIFT seems to be more robust against illumina-
tion changes, but our method also performs well.

The main advantage of our method over the
SIFT approach is its speed, illustrated by Fig. 4.
Localization of one image using SIFT takes 1.696
s on our robot, which is equipped with a 1.8
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accelerated SIFT
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computation times (localization of one image)
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WGII feature extraction
WGOH feature extraction
SIFT feature extraction
SIFT feature reduction
particle filter step

Fig. 4. Time for localization of one test image.

Ghz Pentium M Processor and 1 GB of RAM.
This time is composed of 0.821 s for SIFT feature
extraction, 0.104 s to reduce the number of SIFT
features and 0.771 s for a particle filter step. In
contrast, average localization of one test image
using our WGII + WGOH method is possible in
0.394 s, where computation of the WGII feature
vector takes 0.274 s, computation of the WGOH
feature vector takes 0.028 s, and one particle filter
step takes 0.093 s.

These numbers show that there is a trade-off be-
tween accuracy and speed. The mean localization
error of our method is about 1.14 times the error
for the SIFT approach on average (and maximally
about 1.5 times the error of SIFT). On the other
hand, localization using our approach is more than
4 times faster than using SIFT.

5. CONCLUSION

We presented a new method for vision-based lo-
calization for outdoor mobile robots. We repre-
sent images by two global 1×128 image feature
vectors, the new Weighted Grid Integral Invari-
ant (WGII) vector, which is based on Integral
Invariants, and a Weighted Gradient Orientation
Histogram (WGOH). We use these feature vectors
to update the weights of a particle filter.

A comparison to a SIFT-based approach showed
that the error created by our method is about 1.14
times the error of the SIFT approach on average.
However, localization of one test image using our
method is possible in about 0.4 s, which is more
than four times faster than the SIFT approach.

For the future, we plan a combination between
our method and SIFT, which selects the method
based on how sure the robot is about its position.



0 20 40 60 80 100

0

20

40

60

80

a) robot path, dataset 1

easting (m)

no
rth

in
g 

(m
)

 

 
sunny rounds
cloudy rounds

0 20 40 60 80 100

0

20

40

60

80

b) robot path, dataset 2

easting (m)

no
rth

in
g 

(m
)

 

 
sunny rounds
cloudy rounds

0 20 40 60 80 100
0

5

10

15

image number

er
ro

r (
m

)

c) dataset 1, similar illumination conditions

 

 
WGII + WGOH
SIFT

0 20 40 60 80 100
0

5

10

15

image number

er
ro

r (
m

)

d) dataset 2, similar illumination conditions

 

 
WGII + WGOH
SIFT

0 20 40 60 80 100
0

5

10

15

image number

er
ro

r (
m

)

e) dataset 1, different illumination conditions

 

 
WGII + WGOH
SIFT

0 20 40 60 80 100
0

5

10

15

image number

er
ro

r (
m

)

f) dataset 2, different illumination conditions

 

 
WGII + WGOH
SIFT

Fig. 3. a-b) GPS data. c-f) Mean errors for particle filter experiments. There is no significant change
after image 100. The mean initial error is about 36 m for dataset 1 and about 26 m for dataset 2.
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