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Abstract— Vision-based robot localization in outdoor envi-
ronments is difficult because of changing illumination condi-
tions. Another problem is the rough and cluttered environment
which makes it hard to use visual features that are not rotation
invariant. A popular method that is rotation invariant and
relatively robust to changing illumination is the Scale Invariant
Feature Transform (SIFT). However, due to the computationally
intensive feature extraction and image matching, localization
using SIFT is slow. On the other hand, techniques which use
global image features are in general less robust and exact than
SIFT, but are often much faster due to fast image matching.
In this paper, we present a hybrid localization approach that
switches between local and global image features. For most
images, the hybrid approach uses fast global features. Only in
difficult situations, e.g. containing strong illumination changes,
the hybrid approach switches to local features. To decide which
features to use for an image, we analyze the particle cloud of the
particle filter that we use for position estimation. Experiments
on outdoor images taken under varying illumination conditions
show that the position estimates of the hybrid approach are
about as exact as the estimates of SIFT alone. However, the
average localization time using the hybrid approach is more
than 3.5 times faster than using SIFT.

I. INTRODUCTION

Vision-based localization in outdoor environments is a
difficult task. In contrast to indoor environments, where illu-
mination is often constant due to artificial lights, illumination
in outdoor areas is highly dependent on the weather, season
or time of day. Additionally, outdoor environments often are
rough and cluttered which makes it hard to use visual features
that are not rotation invariant. The most popular approach
that is rotation invariant and relatively robust to illumination
changes is the Scale Invariant Feature Transform (SIFT)
developed by Lowe [1]. SIFT computes descriptors for local
interest points in the image. These interest points are more
dependent on structure than on illumination. However, as the
number of interest points per image is usually large (about
420 for our 320×240 pixel images on average), extracting the
features and matching two images is very slow. Approaches
that use SIFT for indoor localization are for example [2], [3].
Outdoor localization using SIFT was presented, for example,
in [4].

Another group of vision-based localization algorithms uses
global image features. Usually, a single global feature vector
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represents an image. Well-known methods for robot local-
ization are based on PCA [5]–[7] or on Integral Invariants
[8]. Bradley et al. presented an approach that uses weighted
gradient orientation histograms (WGOHs) [9]. In general,
global features are more sensitive to illumination changes
than local features. On the other hand, the global methods
are faster, because matching two images by comparing two
vectors is very efficient. An overview over local and global
techniques for vision-based robot localization can be found
in [10].

Artač et al. suggested a method that uses both global and
local image features [11]. In the first step, they use global
features to fastly select a small set of training images that are
similar to the test image. In the second step, they calculate
the position estimate by computing the local features (SIFT)
only for the selected images and matching only these images
to the test image. Another possibility to speed up a local
approach like SIFT is to use a particle filter that can adapt
the number of particles and with it the number of image
matches. In difficult situations, the particle filter increases
the number of particles, and in easy situations, it reduces
the number of particles. A common method to determine
the number of particles is KLD-sampling [12]. Heinemann
et al. project the current sensor data onto the map, based
on the position estimate [13]. They choose the number of
particles based on the distance between the map data and
the projected sensor data. However, the disadvantage of all
these methods is that the local features of the test image must
always be extracted.

In this paper, we propose a different hybrid approach that
uses both global and local image features. The approach is
inspired by the observation that in many situations, position
estimates based on global features are comparable to position
estimates based on local features. Only in difficult situations,
the robustness of the local features leads to more reliable
estimates. Thus, our approach tries to use local features only
for difficult images, and global features for all other images.
We use a particle filter for position estimation, and we base
the decision whether to use local or global features for a
certain image on the particle cloud. If the particle cloud
indicates a reliable position estimate, we use global features.
If the current position estimate seems to be uncertain, we
use SIFT. The advantage over the methods mentioned above
is that we do not have to extract the local features for each
test image, but only for a few of them.

Experimental results on images of two different outdoor
areas show that the localization errors of our hybrid approach
are about the same as the errors of a SIFT approach.



However, the hybrid approach is more than 3.5 times faster
than the SIFT approach and localization is possible two times
per second on average.

The rest of the paper is organized as follows. Sections II
and III describe the global and local image features we use
in our hybrid approach. Section IV explains the particle filter
and how it decides which features to use. Section V presents
the experimental results, and Section VI concludes the paper
and suggests future work.

II. GLOBAL IMAGE FEATURES

This section describes the global image features that we
use in our hybrid method. We do not represent each image
by a single global feature vector, but by two different ones,
which makes the global method more robust. The first global
feature vector consists of Weighted Gradient Orientation
Histograms (WGOHs). For the second feature vector, we
calculate weighted histograms of integral invariants, which
we call Weighted Grid Integral Invariant (WGII) features.

A. WGOH

The Weighted Gradient Orientation Histograms were used
by Bradley et al. for topological outdoor localization [9] and
are similar to features used by Kosecka and Li for indoor
localization [14]. The WGOHs are inspired by SIFT, as they
also use weighted histograms of image gradient orientations.
In contrast to SIFT, the histograms are not computed around
local interest points, but on a grid of subimages. Bradley
et al. obtained good results using WGOHs under different
illumination conditions. This robustness is the reason why
we also use WGOHs.

The extraction of WGOH features for an image works
as follows. First, the image is split into a 4×4 grid of
subimages. Then, an 8-bin gradient orientation histogram is
calculated on each subimage, weighted by the magnitude
of the gradient at each pixel. Additionally, pixels near the
center of a subimage are assigned a higher weight than pixels
near the borders, because under image translation or rotation,
pixels near the centers are more likely to fall into the same
subimage than pixels near the borders. In our implementation
of WGOHs, we use 2D gaussians for weighting, centered at
the centers of the subimages and with standard deviations
equal to 0.5 times the width and the height of the subimage,
respectively. To get the final 1×128 feature vector for an
image, the histograms of the 16 subimages are concatenated.

B. WGII

Recently, we proposed a localization method based on
Weighted Grid Integral Invariants (WGII) [15]. Therefore,
this section only gives a short summary. A more detailed
description of global integral invariants and the relational
kernel can also be found in [16].

Global integral invariant features are invariant to euclidean
motion, i.e. rotation and translation, and to some extent
robust to illumination changes. The key idea is to apply
all possible translations and rotations to the image and to

calculate the features by averaging over all the transformed
versions of the image.

To calculate the integral invariant features for a pixel, a
kernel function is used that involves the local neighborhood
of the pixel. This kernel function for example multiplies the
intensities of two neighborhood pixels lying on circles with
different radii around the pixel (monomial kernel). The final
integral invariant feature is the mean of q kernel evalua-
tions, for which the two neighborhood pixels are rotated
by different angles around the pixel. For our purposes, the
relational kernel works well, because it is robust to uniform
illumination changes.

An image can be represented by a histogram of the
integral invariants at the pixels. However, we experimentally
found that global integral invariant feature histograms are
not distinctive enough for our outdoor images. Thus, we
modified the approach based on some ideas used for the
WGOH features. First, we compute the integral invariant
feature value for each pixel of the image. Then, we split the
image into a 4×4 grid of subimages. On each subimage, we
calculate a weighted 8-bin histogram of integral invariants.
Similar to the WGOHs, we also assign a higher weight to
pixels near the centers of subimages. For weighting, we use
2D gaussians centered at the centers of the subimages and
with standard deviations equal to 0.25 times the width and
the height of the subimages, respectively. After that, we
concatenate the histograms to create the final 1×128 WGII
feature vector.

To calculate the integral invariants, we use a relational
kernel with pixel coordinates p1 = (10,0) and p2 = (0,20),
set the parameter ε = 0.098 and use q = 10 rotations. We
chose these parameters, because experimentally, they led to
the best results.

C. Image Matching

For each image, we extract the WGOH and the WGII
feature vector. To calculate the similarity between a test
image Q and a training image D, we first compare their
WGOH and WGII feature vectors individually. For both
comparisons, we use normalized histogram intersection. If q
and d are 1×m-sized feature vectors of the test and training
images,

⋂
norm

(q,d) =
∑k∈{0,1,...,m−1} min(qk,dk)

∑k∈{0,1,...,m−1} qk
, (1)

gives the similarity between the images. After having com-
puted the image similarities sW GOH and sW GII individually,
we multiply sW GOH and sW GII to get the final image similar-
ity.

III. LOCAL IMAGE FEATURES

As local method in our hybrid localization approach we
use SIFT [1]. In this approach, the most similar training
image to a test image is the one which contains the highest
number of local features that can be matched to the features
of the test image, divided by the total number of features.
As each feature of the test image must be compared to each



feature of the training image, matching images is very time-
consuming.

To reduce the time for matching, we reduce the number
of SIFT features of the training and the test image. The idea
is to delete “noisy” features, which are likely not to appear
in more than one image. To reduce the number of features
of the training images, we match each training image to the
two nearest training images (based on the GPS positions of
the images). We only keep the local features of the training
image that can be matched to a feature of at least one of
the two neighboring images. In the test phase, we match the
current test image to the test image that was taken directly
before. We again only keep the features that can also be
found in the preceeding image. This method removes about
50 to 80% of the features, and accelerates image matching
by a factor of 5 on average, without loss of accuracy.

IV. HYBRID APPROACH

To estimate the current position of the robot, we use a
particle filter [17]. The particle filter updates the weights of
its particles based on image similarities which are calculated
using either the global or the local features described in the
previous sections. We decide which features to use for a
test image based on the particle cloud. If the particle cloud
indicates that the current estimate is reliable, we use the
fast global features. If the particle cloud indicates that the
current estimate is uncertain, we use the local features. In
the following, we describe the particle filter in more detail
as well as the method that decides which features to use.

A. Position Estimation using the Particle Filter

Particle filters represent the belief of the robot about its
position by a set of m particles. In our case, each particle
consists of a position (x,y) and a non-negative weight or
importance factor w. The weighted mean of all particles is
the position estimate of the robot. For global robot localiza-
tion, where the starting position of the robot is unknown,
the particle filter starts with m particles that are randomly
distributed over the robot’s universe. The initial weight of
each particle is 1

m . The weights and the positions of the
particles are updated for a new test image at time step t
as follows:

1) Randomly draw m particles from the particle cloud
according to the particle weights at time t −1.

2) Update the position of each particle according to a
motion model. As we do not use a motion model
from odometry, we randomly update the position of
a particle according to a 2D gaussian centered at
the particle and with standard deviations of 4 m.
Additionally, we move each particle a short distance
d towards the position of its nearest training image,
where d is 0.2 times the distance between the particle
and its nearest training image.

3) Compute new weights for the particles based on the
similarity between the current test image and the
training images. For each particle, we first search the
nearest training image. Then, we match this training

image to the test image using either SIFT or global
features to get the new weight of the particle. Ad-
ditionally, we multiply the weight of a particle by a
factor that decreases with the distance of the particle
to the nearest training image. In the case of the global
method, we also potentiate the weight by 20, because
the differences between the matching scores are low
(but still distinctive at that low level). Finally, we
normalize the weights.

At this point, we calculate the estimated position of the
robot. Then we decide if we use local or global image
features for the next image. Section IV-B explains this
decision in more detail. As a last step, we replace the worst
5% of the particles by new particles with random positions
and weight w = 1

m , and renormalize the weights. The random
insertion insures that the robot can fastly recover its position
if the position was lost or the robot was kidnapped.

To speed up the calculation of the weights, we save for
each particle the matching result to the test image. If another
particle has the same nearest training image, we can use the
saved value. In the case of SIFT, this method speeds up the
estimation of a new position by a factor of about 5. For the
global features, we only get a slight speedup.

B. Feature Selection

In general, localization based on SIFT features is relatively
accurate and robust, but takes about 1.7 s per image on our
robot. Position estimates based on our global features are
only slightly worse in most cases, but can be computed in
about 0.4 s. However, there are situations in which the error
created by the global features is much larger than the error
created by SIFT. Thus, the goal of the hybrid approach is to
use global features in as many situations as possible and to
use SIFT features only when necessary.

The particle cloud represents a probability distribution
for the position of the robot. Thus, analyzing the particle
cloud provides a way to evaluate the quality of the current
estimate. The robot is relatively certain about its position if
most of the particles are concentrated around a single spot.
This corresponds to a single high peak in the probability
distribution. If the particles are relatively wide-spread, the
position estimate is not reliable. If there is more than one
high peak in the probability distribution, i.e. the particles
are divided into groups which concentrate around different
spots, the position estimate is also uncertain, because it is
not clear which of the peaks corresponds to the true position.
Moreover, the weighted mean of the particles will be located
somewhere between the peaks.

We found that the standard deviations in x and y direction
can characterize these situations well. The standard deviation
σx in x direction is given by

σx =

√
m

∑
i=1

(xi − µx)2wi, (2)

where m is the number of particles, xi is the x-position of
the i-th particle, µx is the weighted mean of the x-positions



Fig. 1. Our RWI ATRV-JR outdoor robot “Arthur”.

of the particles and wi is the weight of the i-th particle. The
calculation of σy is analogous to (2).

The algorithm that decides which features we use in a
particle filter step works as follows. In the initial step, we
always use SIFT features, because the position of the robot
is completely unknown. At the end of each step, we calculate
the standard deviations σx and σy of the particle cloud. Now,
there a two possible cases, depending on whether we used
SIFT or global features for the current step:

1) If we used SIFT features, we switch to global features
for the next image if both σx and σy are below a
threshold dSIFT . If σx > dSIFT or σy > dSIFT , we keep
on using SIFT.

2) If we used global features, we switch to SIFT for the
next image if at least one of σx and σy is above a
threshold dglobal. If σx < dglobal and σy < dglobal, we
keep on using global features.

The remaining question is the choice of the thresholds
dSIFT and dglobal. The larger dglobal and dSIFT , the more
steps will use global features. The smaller dglobal and dSIFT ,
the more steps will use SIFT. Good thresholds result in a
small number of SIFT steps while also creating a low error.
Our particle filter randomly updates the position of a particle
according to a 2D gaussian with standard deviations of 4 m.
Thus, if the particles were all perfectly located at a single
spot before the update (indicating a very certain estimate),
they will be distributed according to a 2D gaussian with
standard deviations of 4 m after the update. But as we move
each particle towards its nearest training image and particles
near the mean of the cloud will possibly get high weights,
the final standard deviation is likely to be < 4 m. In our
experiments, about 50% of the particle clouds have standard
deviations < 2.5 m. To accept not only very good but also
good estimates, we set dglobal = 5.5 m. To support a fast
switch from local to global features, we set dSIFT even higher
to 7.0 m. For other motion models of the particle filter, dglobal

and dSIFT must be chosen differently.

V. EXPERIMENTAL RESULTS

In our experiments, we used an RWI ATRV-JR outdoor
robot (Fig. 1). The robot is equipped with a stereo camera,
of which we only used the left camera. The robot took one
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Fig. 2. GPS data. a) Dataset 1. b) Dataset 2.

320×240 pixel gray-scale image per second while we moved
it around with a constant velocity of about 0.6 m/s.

To get ground truth information about the positions of the
images, we used a differential GPS (DGPS). Under ideal
conditions, the position error of the DGPS is below 0.5
m. However, due to distorted GPS signals, the GPS path
sometimes significantly deviated from the true path of the
robot. Another problem are missing GPS signals due to
occlusion by trees and buildings, which results in gaps in
the GPS path. As we always used a constant velocity, we
filled gaps in the GPS path by linearly interpolating between
the positions before and after the gap. We also manually
corrected wrong GPS values that significantly deviated from
the true path.

The mentioned problems show that the ground truth infor-
mation itself is not very exact. Thus, the experimental errors
may also be inexact. However, as we mainly use the errors
to compare different approaches instead of focussing on the
absolute errors, the ground truth information is sufficient,
because every approach uses the same ground truth data.

We collected image datasets in two different environments.
Dataset 1 consists of six rounds around a big building. Each
round is about 260 m long and consists of about 400 images.
We took the first three rounds on a sunny day. However, there
are some short sections (5 to 10 s long) during which the
sun was covered by clouds. Six weeks later, we collected
the other three rounds on a cloudy day. The images mainly
show artificial objects like streets, buildings and cars, but
also some bushes and trees. Additionally, the images show
some dynamic objects like cars and people passing by.

Dataset 2 consists of four rounds on a meadow. The images
mainly show vegetation like grass, trees and bushes. Each
round is about 220 m long and consists of about 350 images.
We collected the first two rounds in the early afternoon,
in which the sun was shining brightly. In the evening, we
took the images of the third and fourth round. The sun was
completely covered by clouds and it was starting to get dark.
Fig. 2 shows the GPS ground truth data for dataset 1 and 2.
Fig. 3 shows example images under different illumination.

For evaluation, we calculated the mean error of all possible
training/test combinations of rounds using m = 300 particles.
Additionally, we repeated each experiment n times, where n
is the number of test images. For each of these experiments,
we used a different test image as starting image for the local-
ization. Then we calculated the mean error of all experiments
that are similar, e.g. all experiments in which we used the



Fig. 3. Example images. a) Dataset 1, sunny. b) Dataset 1, cloudy. c)
Dataset 2, sunny. d) Dataset 2, cloudy.

TABLE I

MEAN LOCALIZATION ERRORS ± STANDARD DEVIATION (M)

set training test WGII + WGOH SIFT Hybrid

sunny sunny 3.15 ± 1.20 2.15 ± 0.29 2.03 ± 0.22
1

cloudy cloudy 1.60 ± 0.26 2.06 ± 0.56 1.59 ± 0.27

sunny sunny 1.09 ± 0.06 1.78 ± 0.05 1.09 ± 0.05
2

cloudy cloudy 2.07 ± 0.76 2.10 ± 0.14 1.80 ± 0.35

sunny cloudy 3.95 ± 0.54 3.27 ± 0.27 3.17 ± 0.32
1

cloudy sunny 3.85 ± 0.79 2.52 ± 0.17 3.07 ± 0.36

sunny cloudy 3.64 ± 0.80 2.88 ± 0.20 2.92 ± 0.23
2

cloudy sunny 3.45 ± 0.32 2.74 ± 0.24 2.78 ± 0.22

sunny images of dataset 1 for training and the cloudy images
for testing.

Tab. I compares the localization errors of the global
and local methods to the errors of the hybrid approach.
The hybrid method uses the thresholds σglobal = 5.5 m and
σSIFT = 7.0 m. Only in one case (dataset 1, cloudy vs.
sunny), the error of the hybrid approach is significantly larger
than the error of the SIFT approach. In all other cases, the
error of the hybrid approach is similar to or smaller than the
error of SIFT. On average, the localization error of the hybrid
approach is 0.13 m smaller than the error of the SIFT ap-
proach. When only regarding the experiments with changing
illumination, the average error of the hybrid approach is 0.13
m larger than the error of the SIFT approach. Fig. 4 a) to
d) compare the localization errors of the three methods over
time. The plots are mean curves for similar experiments. For
all methods, the error decreases rapidly after a few images.

The experiments show that the localization accuracy of
our hybrid approach is similar to the accuracy of the SIFT
approach. However, the advantage of the hybrid approach
over SIFT is the much lower average localization time per
image. On our robot’s PC (1.8 GHz Pentium M, 1 GB RAM),
the SIFT approach needs about 1.70 s for one image and the
global method needs about 0.39 s. Thus, the maximal speed-
up of the hybrid method compared to SIFT would be 4.36.
In this case, the global features would be used for all images.
Tab. II and Fig. 5 compare the hybrid approach to the local

TABLE II

LOCALIZATION OF ONE IMAGE USING THE HYBRID METHOD

dataset SIFT steps (%) time (s) speed-up

1, constant illumination 2.57 0.43 3.92
2, constant illumination 1.72 0.42 4.02
1, changing illumination 6.37 0.48 3.52
2, changing illumination 8.36 0.51 3.34

average 4.75 0.46 3.70

0 0.5 1 1.5 2

SIFT
WGII + WGOH

Hybrid

computation time (s)

Fig. 5. Average localization time per image.

and global approaches. As expected, the percentage of SIFT
steps is higher for experiments with changing illumination
than for experiments with constant illumination. On average,
SIFT is used for less than 5% of the images. This results in
an average localization time per image of 0.46 s. The 2.9
ms for the decision which features to use in the next step
are included. The average speed-up of the hybrid method
compared to SIFT is 3.70.

Fig. 4 e) shows the mean error curves for different
numbers of particles. There is only a very small difference
between 300 and 500 particles. The difference between the
errors for 300 and 100 particles is about 0.15 m on average.
The difference is more significant when using SIFT (0.81 m)
or the global features (0.42 m) alone. However, 100 particles
are too few to reliably cover environments of our size or
larger ones.

Finally, Fig. 4 f) shows the influence of the thresholds
dlocal and dSIFT on the localization error and the computation
time. The figure shows that there is a trade-off between
accuracy and speed: Lower thresholds lead to smaller errors,
but also to a higher percentage of SIFT steps and hence to
reduced speed. On the other hand, higher thresholds lead to
higher speed, but also to larger localization errors.

VI. CONCLUSION

We presented a new hybrid method for vision-based
outdoor localization that combines local and global image
features. Before each new test image, the method selects
whether to use the local or the global image features for
the test image. The selection is based on the particle cloud
that represents the belief of the robot about its position. In
situations in which the robot is relatively certain about its
position, it uses the fast global features. In situations in which
the robot is uncertain about its position, it uses the slow, but
more exact and robust local image features.

Experiments on images of outdoor environments show that
the localization errors of the hybrid method are about the
same as the errors of a pure SIFT approach. However, the
hybrid method is more than 3.5 times faster than the SIFT
method.
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Fig. 4. a) - d) Mean errors for particle filter experiments. There is no significant change after image 100. The mean initial error is about 36 m for dataset
1 and about 26 m for dataset 2. e) Mean errors for different numbers of particles. f) Influence of the thresholds dglobal and dSIFT on the localization error
and the computation time. The thresholds are given as pair (dglobal ,dSIFT ). Both values are incremented by 1 for each step on the x-axis.

Of course the local and global image features we used in
this paper (SIFT and WGII + WGOH) are only examples of
features that can be used in the hybrid approach. In future
work, we will examine if other combinations of features are
more exact and/or faster. Another issue is the method that
decides whether to use the global or the local image features
for the next image. We will try to find other techniques that
further minimize both the localization error and the number
of steps that use local features.
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