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Abstract—In this paper, we implement a new method for
classification of biological signals in general, and use it in
the animal behavior classification as an example. The forced
swimming test of rats or mice is a frequently used behavioral
test to evaluate the efficacy of drugs in rats or mice. Frequently
used features for that evaluation are obtained through observing
three states: immobility, struggling/climbing and swimming in
activity profiles. We consider that those activity profiles (signals)
inherently contain undesired and interference noise that should
be removed before feature extraction and classification. We
use a Finite Impulse Response (FIR) filter to filter out that
additive noise from the activity profile. The parameters of
the FIR filter are obtained via maximizing the accuracy of
a classifier that tries to make a discrimination between two
classes of the activity profiles (e.g. drug vs. control). We use
the kernel Fisher discriminant criterion as a criterion for the
discrimination, the DIviding RECTangles (DIRECT) search
method for solving the optimization problem and Support
Vector Machines (SVMs) for the classification task. We show
that Autoregressive (AR) coefficients are suitable features for
the extraction of the dynamic behavior of rats and also the
classification of activity profiles. Our proposed behavior classi-
fication method provides a reliable discrimination of different
classes of antidepressant drugs (imipramine and desipramine)
administered to rats versus a vehicle-treated group.

I. INTRODUCTION

The Forced Swimming Test (FST) is a behavioral test
used frequently to evaluate the potential efficacy of drugs
affecting the central nervous system (CNS) in rats or mice
[3]. In this experiment, rats are exposed to a 15-min pretest
swim period and followed the next day by a 5-min test swim.
Immersion of rodents in water for an extended period of
time produces a characteristic behavior called immobility,
in which the rat makes only those movements necessary
to keep its head above water. When antidepressant drugs
are administered between the pretest and test periods, usu-
ally three times within 24hr, the behavioral immobility is
selectively decreased [4]. Depending on the type of drug,
rats show a mixed behavior of activities such as immobility,
struggling/climbing (the rat tries to escape from the water)
and swimming. Researchers have tried to conclude the effect
of drugs from the above three states (immobile, struggling
and swimming) [25]. Typically, tricyclic antidepressants and
drugs with selective effects on noradrenergic transmission
increase struggling/climbing behavior, while selective sero-
tonin reuptake inhibitors increase swimming behavior versus
the control group [7], [5], [6].
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Fig. 1. FST test as a behavioral test. The successive images of rat movement
are converted to activity profile signals. a) activity profile (arbitrary unit)
for tylose as control and b) Desipramine 30mg as antidepressant.

Fig. 1 shows examples of activity profiles, which are
gained from successive images of rat movement in FST test.
Considering predefined thresholds for the immobility, strug-
gling and swimming states, and depending on the amplitude
of the activity profile, the average period of time in each
state can be measured. By comparing those parameters for
the animals treated with an antidepressant against the control
group, which was treated with the vehicle, it can be observed,
for example, whether the swimming behavior of rats with an
antidepressant drug has increased.
In an automated classification method, we aim to classify

animals treated with known antidepressants and the control
group. However, our experiments show that the response
of the rat to drugs is too complex to only consider those
states as indicator of the drug efficacy. The detection of the
behavior of rats depends on recognizing changes in some
characteristics of movement and we are interested in features
which represent also the dynamic behavior of rats.
An important issue in the automated classification is the

presence of noise in activity profiles. We consider the activity
profile, x(n), as the total of the inherent response of a rat
to a drug at a certain dose, s(n), and the undesired and



interference noise, N(n), so we have:

x(n) = s(n)+N(n)

N(n) is the undesired part, which affects the accuracy
of classifier. The presence of this noise can be due to the
experimental setup, the difference between the physiology
behavior of rats and so on. One method to remove this noise
is to use a suitable filter based on its frequency content. But
the frequency content of this noise is unknown. To resolve
this problem, we use the fact that when a suitable filter is
added to a classifier, it should increase the signal to noise
ratio and so the accuracy of the classifier. For this, we use
a general model of filters known as FIR (Finite Impulse
Response):

Wn = [wn(0), wn(1), ...,wn(p−1)]T ,
and the output of that filter is the estimation of s(n):

ŝ(n) =WT
n x(n)

where the coefficients of the FIR filter are obtained via
optimizing a criterion showing the accuracy of a classifier
which tries to classify two different classes of signals.
Recently, Kernel Fisher Discriminant Analysis (KFDA)

has been used for classification and also for optimal kernel
selection [1], [2], [8]. In this study we use the Fisher
discriminant criterion in the kernel space as a criterion for
the accuracy of the classifier and try to find the optimal
coefficient of the FIR filter that maximizes that criterion. To
solve the optimization problem, we use the DIRECT search
method as an algorithm for global nonlinear optimization
We also consider the activity profiles as outputs of a black

box system and select a suitable model which extracts the
dynamic behavior of those activity profiles. One possible
representation of the local dynamic behavior in the profile
activity is using an autoregressive (AR) model, in which
future values are predicted from a combination of previous
sample values. After the FIR filter, we use AR coefficients
as features for the extraction of the dynamic behavior and
also the classification of activity profiles.
In the following sections we implement the FIR based

classifier in detail and then we explain the experimental
setup and results of classification. At last, we show our
conclusions.

II. ALGORITHMS
A. FIR filter based classifier
We consider the problem of classification of signals that

contain additive unknown or undesired parts interference
(noise). If we can not find suitable features representing
the desired part of signals or if we can not deduce the
interference signal from the original signal, the classifier may
face overfitting and so a decrease of the accuracy.
FIR filters are designed to filter out the undesired part

from the signal based on its frequency specification. Because
of its stability and simplicity in implementation, they are

Fig. 2. Adaptive filter for noise cancellation

used frequently in different applications. However, in some
applications (such as FST classification), we do not have the
frequency specification of the noise, needed to design the
FIR filter.
Fig. 2 shows the block diagram of an adaptive filter which

is used for noise (interference) cancellation. As we know if
the reference noise is uncorrelated to the signal s(n), the
output of the FIR filter is an estimation of the interference
(N̂(n)) and the filter readjusts itself continuously to minimize
the error between N and N̂. The coefficients of the FIR
filter can be obtained through the Least Mean Square (LMS)
algorithm. But in our task the stationary and uncorrelatedness
conditions for s and N are not met and we can not estimate
s(n) using the adaptive filter. To cope with the problem, we
suggest a new solution.
We propose a FIR filter based classifier, in which the FIR

filter tries to remove undesired parts by getting feedback
from the accuracy of a following classifier. Fig. 3 shows
our proposed solution. Consider x1(n) = s1(n)+N1(n) and
x2(n) = s2(n)+N2(n) as two signals that contain undesired
parts N1(n) and N2(n). Our aim is to estimate s1(n) and s2(n)
as outputs of the added FIR filter. If we consider the l-length
coefficient of the FIR filter as:

Wn = [wn(0), wn(1), ...,wn(l−1)]T

we have:

ŝ1(n) =WT
n x1(n), ŝ2(n) = WT

n x2(n)

The classifier should discriminate ŝ1(n) from ŝ2(n). The
coefficients of the FIR filter that increases the accuracy of
the classifier also increases the signal to noise ratio. Then,
the task is to find optimum values of the coefficients that
maximize a criterion showing the accuracy of the classifier.
We select the Kernel Fisher discriminant criterion as a
suitable objective for our optimization problem.

B. Kernel Fisher discriminant based optimal FIR filter
We want to find the coefficients of the FIR filter that

maximizes the performance of the classifier. Here, we select
the Fisher discriminant criterion in the kernel space as a
criterion for the performance of the classifier. The kernel
Fisher discriminant analysis (KFDA) [1] is a non-linear
extension of the linear Fisher discriminant analysis. It finds



Fig. 3. Optimal FIR filter based classifier. The coefficients of FIR filters are gained via optimization of a criterion showing the accuracy of the classifier

the direction in a feature space, defined implicitly by a
kernel, onto which the projections of positive and negative
classes are well separated in terms of the Fisher discriminant
ratio. The more two classes are separated, the higher the
performance of the classifier is. Then, we make a relation
between that criteria and the FIR filter coefficients and find
the coefficients that maximizes that criterion. The kernel
Fisher discriminant based optimal FIR filter tries to find
the coefficients of the FIR filter that results in a vector v
in feature space, on which projections of points give the
maximum separation of the mean scaled in the feature space
and the minimum variance in that direction (Fig. 4).
The KFDA first maps the data via a non-linear mapping φ

into the high dimensional feature spaceF and then optimizes
the Fisher criterion. Given a map φ : u→ φ(u) ∈ F , the
aim is to find a direction v =

n
∑
i=1

αiφ(ui) in the feature

space F given by weights α = [α1, ...,αn], that maximizes
the separation of the mean scaled in the feature space and
minimizes the variance in that direction (KFD criterion).
Considering the kernel matrix K:

Ki, j = k(xi,x j) =< φ(xi),φ(x j) > (1)

For the direction v, the Fisher criterion will be in the form
of ([1]):

J(α) =
αTMα

αT (N+ λ I)α
(2)

The parameter λ is a regulation factor and M and N
(defined in [1]) are gained in terms of the kernel matrix K:

M = (μ+− μ−)(μ+ − μ−)T

where μ+ = 1
n+ ∑
x∈χ+

Kx, and μ− = 1
n− ∑
x∈χ−

are scaled mean

in the feature space, and:

N = KDKT

where D=

[
In+ − 1

n+ 1n+1
T
n+ 0

0 In− − 1
n− 1n−1

T
n−

]
n×n

in which 1n and In denote the vector of all ones and the
identity operator in R

d , respectively.
It can be shown [2], the parameter α that maximizes Eq.

2 is obtained via:

αmax = (N+ λ I)−1(μ+− μ−) = (KDKT + λ I)−1Ky

where:
y=

[
(1/n+)1n+

(−1/n−)1n−

]
n×1

which results in:

Jmax(K) = αTmaxKy= yTK(KDTK+ λ I)−1Ky (3)

The above equation (Eq. 3) shows that the KFD criterion
can be represented in terms of a kernel matrix.
The next step is to represent the kernel matrix in terms of

the FIR coefficients. In Fig. 4, if we consider the l-length
coefficient of the FIR filter as:

Wn = [wn(0), wn(1), ...,wn(l−1)]T

we have:

ŝ1(n) =WT
n x1(n), ŝ2(n) = WT

n x2(n)

We extract the features u1 and u2 from ŝ1(n) and ŝ1(n) resp.
and then:

k(u1,u2) =< φ(u1),φ(u2) >

From the above equation and equation (3) we can say that
when the coefficients of the FIR filter vary, the KFD criterion
varies, too. However, the task is to find the optimum coeffi-
cients of the FIR filter that maximizes the KFD criterion, i.e.,
maximizes the signal to interference ratio. For this, we use a
method of global optimization, by which we can search for
the optimum global value of the FIR coefficients in a given
range.

C. Direct search
The DIRECT algorithm as an effective pattern search

method was proposed by Jones et al. [17] for bound con-
strained global optimization. It deals with problems of the
form

min
x

f (x)
s.t. xL ≤ x≤ xU,

where f ∈ R and x, xL, xU ∈ R
n.

The DIRECT algorithm is one of a class of deterministic
direct search algorithms that does not require gradients. If
the objective function f is continuous or at least continuous



Fig. 4. Kernel Fisher discriminant based optimal FIR filter tries to find the coefficients of the FIR filter that results in a vector v in feature space, on
which projections of points give the maximum separation of the mean scaled in the feature space and the minimum variance in that direction.

in the neighborhood of a global optimum, it is guaranteed
that the algorithm converges to the global optimum function
value. It works by iteratively dividing the search domain
into boxes that have exactly one function value at the box’s
center. At first, it transforms the search space to be the unit
hypercube. The function is then sampled at the center point
of this cube. The hypercube is then divided into smaller
hyperrectangles whose center-points are also sampled. In
each iteration, through evaluation the objective function at
those centers, the algorithm determines which boxes are
most likely to have a better point than the current optimal
one. A box is considered potentially optimal, if it has the
potentially best function value for a given Lipschitz constant.
The process continues after a prespecified number of function
evaluations [17]. A detailed example of the search domain
in the DIRECT algorithm was given in [18]. The serial
and the parallel implementations of the algorithm have been
discussed in [19] and [20], respectively.

III. METHODS
A. Experimental setup
The experiments have been performed at the site of an

industrial cooperation partner.
1) Forced swimming test procedure: The forced swim-

ming test procedure is as described in [3]. Briefly, each
animal is placed to swim for 15min in a cylinder (height:
40cm; diameter:18cm) containing 18cm of water at 25◦C
(pretest session). They are then taken out and allowed to dry
for 20min in a cage placed below an infrared lamp. Twenty-
four hours after the pre-test session, they are again placed
in the cylinder for 5min (test session), and their behavior
is recorded with a camcorder, while it is assured that the
camera lens and water line are on a horizontal line in order
to minimize the area of distortion due to reflections on the
water surface.
2) Calculation of activity profiles: The image analysis

software Halcon 7.0 (MVTec Software GmbH, Munich, Ger-
many) was used to analyze the video tapes of rat movements.

(a) Vehicle-treated

(b) Desipramine-treated
Fig. 5. Activity images of two representative rats treated with a) vehicle
(0.5% tylose, p.o.) and b) desipramine (30mg/kg, p.o.)

To extract the activity profile showing the movement of a
rat, for five consecutive frames, the difference between the
previous and the next image was calculated and binarized
with a fixed threshold and then totalized into one gray level
image. Within each activity image all non-zero pixels are
summed up in the vertical direction to obtain one activity
profile of the whole animal. Fig. 1 shows the corresponding
activity profiles of Fig. 5.

B. Computational setup

We considered the FIR filter coefficients (W in Fig. 4) in
the range of [-1,1] and the length of 10 for that. In order
to reduce the dimension for our classification problem, we
computed the AR parameters of each activity profile via
the recursive solution of the Yule-Walker equation (Levin-
son method [15]). The optimum value of the order of the
AR model, popt was gained though Akaike’s Information



Criterion [16]. In our experiment, the average value of 5
was gained for popt . In the next step, we considered an
RBF (Radial Basis Function) kernel for the Kernel fisher
discriminant analysis with γ=1 ([24]). Then, we used the
optimization method told above, to find the optimum values
of the FIR filter coefficients, Wopt . In the next step, we used
a SVM classifier with a linear kernel. We found the optimum
C parameter of the SVM classifier using a simple grid search
in the range of [2−2,215] in terms of the maximum accuracy
of the classifier.

IV. RESULTS AND DISCUSSION
We used the computational methods described above to

classify rats treated with antidepressants of two different
classes, tricyclic (imipramine 40mg/kg: 72 rats; desipramine
30mg/kg: 112 rats), against a control group treated with
vehicle (0.5% tylose: 218 rats).
The prediction quality was then evaluated by specificity

(Spec.), sensitivity (Sen.), accuracy (Acc.) and Matthew’s
correlation coefficient (Mcc.) as follows:

Sen. = TP
(TP+FN)

Spec. = TN
(TN+FP)

Acc. = TP+TN
(TN+FN+TP+FP)

Mcc. = TP×TN−FN×FP√
(TN+FN)(TP+FN)(TN+FP)(TP+FP)

where TP = number of true positives, TN = number of
true negatives, FP = number of false positives and FN =
number of false negatives,
To show the effect of the FIR filter on the classifier, we

first do not use the FIR filter but only an SVM classifier with
the RBF kernel. The optimum values of parameters γ of the
RBF kernel andC in SVM classifier are gained through a grid
search method and in terms of maximum average accuracy
for the classifier with 5-fold cross validation. Tables I shows
the results of the classifier.

TABLE I
PERFORMANCE OF SVM CLASSIFIER WITH OPTIMUM PARAMETERS OF γ

AND C (WITHOUT OPTIMUM FIR FILTER) IN CLASSIFICATION
ANTIDEPRESSANT DRUGS VS. CONTROL.

Experiment Spec. (%) Sen. (%) Acc. (%) Mcc.
Imipramine 40mg 79.1 85.3 80.0 0.58
Desipramine 30mg 75.4 85.1 76.1 0.46

Tables II shows the results of our new method with the FIR
filter as described before. As we see, there is a significant
improvement in performance with our method.
Fig. 6 shows the activity profiles of tylose and imipramine

40mg before and after filtering. It is apparent that the data of
the filtered activity profiles are more distinguishable than that
of the unfiltered activity profiles. In our method, the classifier
extracts the features from the filtered activity profiles, while
in the second method the SVM classifier works on the

TABLE II
PERFORMANCE OF OUR METHOD (OPTIMUM FIR FILTER) IN
CLASSIFICATION ANTIDEPRESSANTS DRUGS VS. CONTROL.

Experiment Spec. (%) Sen. (%) Acc. (%) Mcc.
Imipramine 40mg 93.1 93.3 93.3 0.84
Desipramine 30mg 98.0 81.7 86.6 0.75

unfiltered data and tries to find the optimum values of γ and
C parameters in terms of classification accuracy, and this may
lead to overfitting and can result in an increased error rate
for new unseen activity profiles. Fig. 7 shows the effect of
the FIR filter on the feature space. In Fig. 7.b, in which we
have used the FIR filter, the features are more discriminative
compared with the features from the unfiltered activity profile
which are influenced from the interference noise (Fig. 7.a).

V. CONCLUSIONS

In this paper, we implemented a new method for classi-
fication of biological signals in general, and used it in the
animal behavior classification as an example. The hypothesis
behind our method is that if we can deduce the interference
signal from the original signal, the accuracy of the classifier
increases, otherwise, if our features are influenced from that
interference signal, the classifier faces overfitting and can
not classify them accurately. We used a FIR filter to filter
out those additive noise from the signal. The parameters of
the FIR filter were obtained via maximizing the accuracy
of a classifier that tries to make discrimination between two
classes of the activity profiles (e.g. drug vs. control). We
used the kernel Fisher discriminant as a criterion for the
discrimination and the DIRECT search method for solving
the optimization problem. We suggested AR parameters as
suitable features for extraction of the dynamic behavior of
rats in the forced swimming test. Our proposed behavior
classification method allowed for a very reliable discrimina-
tion of rats administered to different classes of antidepressant
drugs (imipramine and desipramine) versus a vehicle-treated
group.
We believe, with some modifications, our proposed FIR

based classifiers can also be used in other biological appli-
cations such as EEG signals classification and Brain Control
Interface (BCI).
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