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Abstract. This paper focuses on motion control problems of an omnidirectional
robot based on the Nonlinear Model Predictive Control (NMPC) method. Although
NMPC has been studied in many mobile robots applications due to the advantages
of taking the robot constraints into account and increasing the robot performance
with future information, the high computational requirement makes NMPC diffi-
cult to be utilized in the real systems with fast sampling time. In order to reduce
the computational effort, many works either eliminate the computations which are
necessary to keep the control stability, or linearize the nonlinear models only with
local stability. Lots of research only presents the simulation results with NMPC.
The main contributions of this paper are not only to analyze and design NMPC con-
trollers with guaranteed stability to nonlinear kinematic models, but also to show
the feasibility of NMPC with a real fast moving omnidirectional robot.
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Introduction

Recently, omnidirectional wheeled robots have received more attention in mobile robots
applications, because they have full mobility in the plane, which means that they can
move at each instant in any direction without any reorientation [5]. Unlike nonholonomic
robots, such as car-like robots, having to rotate before implementing any desired trans-
lation velocity, omnidirectional robots have higher maneuverability and are widely used
in dynamic environments, for example, in the middle-size league of the annual RoboCup
competition.

Two fundamental motion control problems of mobile robots, trajectory tracking and
path following, have been well studied. The aim of the trajectory tracking problem is to
control robots to track a given trajectory parameterized in time t. In the path following
problem, robots are required to converge to a reference path described by a parameter
s. Normally, solving these problems is first to formulate error kinematic models, which
present the errors between the real robot states and their desired states according to a
reference path or trajectory. Then feedback controllers are designed to drive the errors
to zero. With respect to the nonlinear characteristics of error kinematic models, many
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Figure 1. Kinematics diagram of the base of an omni-
directional robot

Figure 2. The real omnidirectional robot

nonlinear controllers have been presented ([1,2,6,7,9,17,18]). However, many methods
rarely take the robot constraints into account, which are the crucial factors capable of
degrading the robot performance, even destroying the control stability ([11,19]). More-
over, only the errors between the current robot states and the desired states are considered
in most control laws, which ignore the potential opportunity of improving the control
performance by considering more information of the given path or trajectory.

Motivated by the above considerations, we apply Nonlinear Model Predictive Con-
trol (NMPC) to solve the path following and trajectory tracking problem of an omni-
directional robot. As NMPC can easily take robot constraints into account, and utilize
the future information to get current control inputs, it has been used in many robotics
applications. Because the high computational requirement of NMPC, some works elimi-
nate the computations which are necessary to keep the control stability ([4,13,14]). Some
methods linearize the error kinematics to reduce the computational effort in NMPC, but
they can only guarantee local stability ([3,20]). Many researches present detailed analysis
of NMPC with mobile robots, but the applications only in simulation ([10,15,16]). The
main contributions of this paper are to analyze and design NMPC controllers with re-
spect to nonlinear kinematic models with guaranteed stability, and to show the feasibility
of applying NMPC on a real omnidirectional robot.

1. Robot Kinematic Model

Figure 1 shows the base of our omnidirectional robot. Besides the fixed world coordinate
system {W} composed of axes Xw and Yw, a moving robot coordinate system {M}
consisting of axes Xm and Ym is defined. Angle θ between the axis Xm and Xw denotes
the robot orientation. Angles α and ϕ denote the robot moving direction in the world
and robot coordinate systems, respectively. Each wheel has the same distance L w to the
robot’s center of mass R. δ refers to the wheel orientation in the robot coordinate system
and is equal to 30 degrees. The kinematic model of the robot is as follows:

ẋ =

⎡
⎣ ẋ

ẏ

θ̇

⎤
⎦ =

⎡
⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣u

v
ω

⎤
⎦ , (1)



Figure 3. Path following problem with the desired
position determined by parameter s.

Figure 4. Trajectory tracking problem with the desired
position determined by time t.

where x is the robot state vector with respect to the world coordinate system, which is
composed of the robot position x, y and the robot orientation θ; The inputs include the
robot rotation velocity ω and the robot translation velocities u and v with respect to the
axes Xm and Ym of the robot coordinate system, respectively.

When we consider the wheel velocities, the lower level kinematic model of the robot
can be deduced as:

q̇ =

⎡
⎣ cos(θ + δ) sin(θ + δ) Lw

− cos(θ − δ) − sin(θ − δ) Lw

sin θ − cos θ Lw

⎤
⎦

⎡
⎣u

v
ω

⎤
⎦ , (2)

where q̇ is the vector of wheel velocities [q̇1 q̇2 q̇3]
T , and q̇i(i = 1, 2, 3) denotes the i-th

wheel velocity, which is equal to the wheel’s radius multiplied by the wheel’s angular
velocity. As the motor’s voltage and current are magnitude limited, the maximum wheel
velocity is limited by q̇m, namely |q̇i| ≤ q̇m.

It is important to notice that the transformation matrices in the above kinematic mod-
els are all full rank, which denotes that the translation and rotation of the omnidirectional
robot are decoupled, and guarantees the separate control of these two movements.

2. Problem Formulation

The path following and trajectory tracking problems are illustrated in Figures 3 and 4,
respectively. P and T denote the given path and trajectory, respectively. Point Q is the
desired point of the robot. vR refers to the robot translation velocity. The main difference
between these two problems is that the desired position of the robot are determined by
the parameter s and time t, respectively.

2.1. Path Following Problem

In the path following problem, a path coordinate system {P} is introduced, which moves
along the path P . The coordinate axes xt and xn direct the tangent and normal directions
at point Q, respectively. θP denotes the path tangent direction at point Q. If we use
vectors R and Q to describe the positions of R and Q in the world coordinate system,
wRm and wRp to present the transformation matrices from {M} to {W} and from {P}
to {W}, respectively, we can get the following equation:



R = Q +w Rp(
xe

ye
), (3)

where xe and ye denote the robot positions with respect to the path coordinate system
{P}. With derivatives and some simple calculations, the error kinematic model can be
deduced as,

ẋe =

⎡
⎣ ẋe

ẏe

α̇e

⎤
⎦ =

⎡
⎣(yec(s) − 1)ṡ + vR cosαe

−xec(s)ṡ + vR sin αe

α̇ − c(s)ṡ

⎤
⎦ , (4)

where the error vector xe is with respect to the path coordinate system {P}, αe presents
the angular error between the robot moving direction α and the path tangent direction θ p,
the c(s) denotes the path curvature at point Q, α̇ is the corresponding angular velocity of
α.

It is noticed from Eq. (4) that the controlling of vR is decoupled from controlling of
ṡ and α̇, because the errors can stay on the equilibrium (xe = 0) when ṡ approaches vR.
Therefore, the path following problem is to find suitable values of ṡ and α̇ driving errors
xe, ye and αe to zero with vR to be steered to track any desired velocity.

2.2. Trajectory Tracking Problem

Unlike the path following problem, the desired translation velocity of the robot can not
be chosen freely in the trajectory tracking problem, but is determined by the reference
trajectory parameterized in time t. Therefore, the trajectory tracking problem requires
the robot to track the specified position and velocity defined by each given time. Similar
to the robot model (1), a reference trajectory T for an omnidirectional robot can be
described as follows,

ẋd =

⎡
⎣ ẋd

ẏd

θ̇d

⎤
⎦ =

⎡
⎣cos θd − sin θd 0

sin θd cos θd 0
0 0 1

⎤
⎦

⎡
⎣ud

vd

ωd

⎤
⎦ , (5)

where the reference state xd = [xd, yd, θd]T and corresponding reference input velocities
ud, vd and ωd are determined by time t.

If we control the robot orientation to track the tangent direction of the reference
trajectory, namely vd = 0, and the robot coordinate system as the reference frame, the
following error kinematic model of the trajectory tracking problem can be deduced by
combining models (1) and (5):

ẋe =

⎡
⎣ ẋe

ẏe

θ̇e

⎤
⎦ =

⎡
⎣ ωye − u + ud cos θe

−ωxe − v + ud sin θe

ωd − ω

⎤
⎦ , (6)

where the error vector xe is with respect to the robot coordinate system {M}, xe and ye

denote the distance error between the robot and the trajectory T , θ e presents the orienta-
tion error between the robot orientation θ and the trajectory tangent direction θ d.

With respect to the error model (6), the objective of trajectory tracking is to choose
suitable robot inputs u, v and ω, such as the tracking error x e converges to zero.



3. Nonlinear Model Predictive Control

As an attractive optimal control method, Nonlinear Model Predictive Control has been
used in our control problems, because it can easily handle the system constraints and
take future information into the controller design ([8]).

With respect to a normal nonlinear system described by the following differential
equation:

ẋ(t) = f(x(t),u(t)), subject to u(t) ∈ U , x(t) ∈ X , ∀t ≥ 0, (7)

where x(t) ⊆ Rn and u(t) ⊆ Rm are the n dimensional state vector and m dimensional
input vector, respectively, the sets X and U include the feasible states and inputs, espe-
cially the system equilibrium (x(t) = 0 and u(t) = 0), the basic idea of NMPC is to
execute the following steps :

1. predict the system’s future behavior over a prediction horizon T p at each time
step t;

2. find optimal inputs ū(·) : [t, t + Tp] → U to minimize the value of the following
objective function,

J(t,x(t), ū(·)) =
∫ t+Tp

t

F(x̄(τ), ū(τ)) dτ, (8)

subject to:

• ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(0),
• ū(τ) = ū(τ + Tc), ∀τ ∈ [t + Tc, t + Tp] ,
• ū(τ) ∈ U , x̄(τ) ∈ X , ∀t ∈ [t, t + Tp] ,

where Tc is the control horizon with Tc ≤ Tp, F is the cost function specify-
ing the desired control performance, the bar denotes the predicted values in the
future, which are not same as the real values;

3. take the first optimal input value ū(t) as the current input.

It is well known that the above finite horizon strategy can not guarantee closed-loop
stability. In many proposed methods, adding a terminal penalty E ( x̄(t + Tp) to the ob-
jective function and constraints x̄(t + Tp) ∈ Ω to the terminal state is a computationally
feasible method to achieve closed-loop stability ([8,10]), where the objective function
becomes

J(t,x(t), ū(.)) =
∫ t+Tp

t

F(x̄(τ), ū(τ)) dτ + E (x̄(t + Tp)). (9)

The following stability theorem presented in [10] provides a way to find the suitable
terminal penalty and constraints,

Theorem Suppose

• the cost function is continuous with F(0,0) = 0 and F(x,u) > 0 for every
state x and u,



• the open-loop optimization problem has a solution at time t = 0,
• for a terminal penalty E(x) with E(0) = 0, and a closed region Ω ⊆ X in-

cluding the origin, if there is a control law k(x) ∈ U with k(0) = 0 such
that

Ė(x) + F(x,k(x)) ≤ 0, ∀x ∈ Ω, (10)

the former described NMPC method guarantees asymptotical stability of the
closed-loop system.

Although the high computational demands of solving the nonlinear finite optimiza-
tion problem make NMPC hard to be implemented in applications with fast sampling
time and limited computational resources ([8]), many research results show the possi-
bility of applying nonlinear predictive controllers in some real-time processes ([13,12]).
As one often used method, sequential quadratic programming (SQP) is utilized in our
project to solve the online open-loop nonlinear optimization problem. We use the soft-
ware donlp2-intv-dyn written by P. Spellucci ([21]), which is a general purpose nonlinear
optimizer and can be found at http://plato.la.asu.edu/donlp2.html.

3.1. Path Following Control

As the translation and rotation of an omnidirectional robot are completely decoupled,
the angular error αe in Eq. (4) can be directly controlled. Therefore, the path following
problem of an omnidirectional robot can be solved by finding suitable ṡ and α e. With
the other freedom of controlling the robot orientation, we can drive the robot orientation
θ to any desired orientation θd at the same time. Defining the orientation error θe, and a
new vector ue = [u1, u2, u3]T , we get the following error kinematic model having the
equilibrium at xe = 0 and ue = 0,

⎡
⎣ ẋe

ẏe

θ̇e

⎤
⎦ =

⎡
⎣ 0 c(s)ṡ 0
−c(s)ṡ 0 0

0 0 0

⎤
⎦

⎡
⎣xe

ye

θe

⎤
⎦ +

⎡
⎣u1

u2

u3

⎤
⎦ ,

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣−ṡ + vR cosαe

vR sin αe

ω̇d − ω

⎤
⎦ , (11)

where θe = θd − θ, ωd denotes the desired rotation velocity.
As the errors are required to converge to zero, we select the following cost function:

F (x,u) = xT
e Qxe + uT

e Rue + g(xe(t + Tp)), (12)

with positive weight matrices

Q =

⎡
⎣q11 0 0

0 q22 0
0 0 q33

⎤
⎦ , R =

⎡
⎣r11 0 0

0 r22 0
0 0 r33

⎤
⎦ , (13)

where q11 > 0, q22 > 0, q33 > 0 and r11 > 0, r22 > 0, r33 > 0.
To guarantee the control stability, the following Lyapunov function can be selected

as the terminal penalty:



g(xe(t + Tp)) =
1
2
xe(t + Tp)T xe(t + Tp), (14)

where xe(t + TP ) = [xeTP , yeTP , θeTP ]T denotes the terminal state.
When we choose the terminal feedback controller uL = [uL

1 , uL
2 , uL

3 ]T as:

uL
1 = −αxeTP ,

uL
2 = −βyeTP ,

uL
3 = −γθeTP

(15)

with parameters α ≥ 0, β ≥ 0, and γ ≥ 0, the stability condition (10) becomes

ġ(xe(t + T )) + F (t + T ) =x2
eT

(−α + q11 + α2r11)

+ y2
eT

(−β + q22 + β2r22)

+ θ2
eT

(−γ + q33 + γ2r33).

(16)

To satisfy the stability condition (10), the following requirements are necessary:

α − q11 − α2r11 ≥ 0,
β − q22 − β2r22 ≥ 0,
γ − q33 − γ2r33 ≥ 0.

(17)

Furthermore, the outputs of feedback controllers (15) have to satisfy the system
constraints, which are the bounded wheel velocities in our case. With the definitions of
the input vector ue , terminal feedback controller uL, and the robot kinematic model (1),
we get the second part of terminal constraints as

−
⎡
⎣ q̇m

q̇m

q̇m

⎤
⎦ ≤

⎡
⎣ cos(θ + δ) sin(θ + δ) Lw

− cos(θ − δ) − sin(θ − δ) Lw

sin θ − cos θ Lw

⎤
⎦

⎡
⎣ −αxeT + ṡ

−βyeT

−γθeT + ωd

⎤
⎦ ≤

⎡
⎣ q̇m

q̇m

q̇m

⎤
⎦ , (18)

3.2. Trajectory Tracking Control

With the same idea of solving the path following problem, we transfer the error kine-
matic model of the trajectory tracking problem (6) by introducing the following control
variables u1, u2 and u3:

⎡
⎣ ẋe

ẏe

θ̇e

⎤
⎦ =

⎡
⎣ 0 ω 0
−ω 0 0
0 0 0

⎤
⎦

⎡
⎣xe

ye

θe

⎤
⎦ +

⎡
⎣u1

u2

u3

⎤
⎦ ,

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎣−u + uR cos θe

−v + uR sin θe

ω̇d − ω

⎤
⎦ . (19)

When we select the cost function, the terminal penalty and the feedback controller with
the same forms as (12), (14) and (15), the corresponding terminal constraints can be
deduced following the above process.



4. Experimental Results

The real-world experiments were made in our robot laboratory having a carpet covered
field with a size of 5.1 × 4.2 m2. Figure 2 shows our middle-sized RoboCup robot,
which is equipped with a Pentium-M 2GHz on-board PC with 1GB RAM. The wheels
are driven by three 60W Maxon DC motors and have the maximum wheel velocity q̇ m =
1.9m/s.
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Figure 5. Reference trajectory and robot trajectory.
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Figure 6. Velocities with respect to the robot frame.
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Figure 7. Wheel Velocities.
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Figure 8. Tracking errors.

Two kinds of experiments were made to test the above NMPC method: one is the
path following control with a constant desired velocity of vR = 1.0m/s and the desired
robot orientation θd = θP , the other is the trajectory tracking control, where the desired
velocity of vR is changing with time t. An eight-shaped curve is adopted as the reference
path and trajectory, because its geometrical symmetry and sharp changes in curvature
make the test challenging. With respect to the world coordinate system, the coordinates
of the reference path (xP , yP ) and trajectory (xT , yT ) are given by

{
xP (s) = 1.8 sin (s)
yP (s) = 1.2 sin (2s)

{
xT (t) = 1.8 sin (0.4t)
yT (t) = 1.2 sin (0.8t). (20)

In the path following and trajectory experiments, we chose the same parameters as:

Q = 0.5I3, R = 0.1I3, α = β = γ = 2, τ = 0.07s, TP = Tc = 3, vR = 1.0m/s.

Figures 5 and 9 illustrate the results of trajectory tracking and path following experi-
ments. Figures 6 and 10 show that the desired translation velocity is changing according
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Figure 10. Velocities with respect to the robot frame.
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Figure 11. Wheel Velocities.
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Figure 12. Following errors.

to the trajectory’s curvature, but keeps constant in the path following problem, which in-
creases the difficulty in following the sharp turning part of the given path. Figures 7 and
11 show that the controller guarantees the required wheel velocities under the bound-
aries. Figures 8, 12 show that the NMPC solved these real-time motion control prob-
lems with good performance, because at most time steps, the distance errors are less than
0.15m and 0.3m, the orientation errors are less than 0.2rad and 0.5rad in the trajectory
tracking and path following tasks, respectively.

5. Conclusions

This paper focuses on motion control problems of an omnidirectional robot. Considering
the constraints of robot systems and utilizing more known information to increase the
robot performance, we use Nonlinear Model Predictive Control in this work. According
to analyzing the path following and trajectory tracking problems, we formulate NMPC
with respect to the corresponding error kinematic models, especially present details of
choosing suitable terminal penalties and terminal constraints to guarantee the control
stability. Experimental results with a real omnidirectional robot show that the Nonlinear
Model Predictive Control not only can solve the path following and trajectory tracking
problems with good performance, but also is feasible to be applied on a fast moving robot
platform.
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