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Abstract— This paper focuses on the dribbling control prob-
lem of an omnidirectional mobile robot and a rolling ball in
the RoboCup Middle Size domain. Because the ball easily slides
away from the robot when the ball moves along a curve, drib-
bling control is more challenging than the normal mobile robot
motion control problem. Based on an introduced reference point
with respect to the robot body and a sophisticated planning
method of robot pose, the nonlinear predictive control is used
to steer the robot to follow the planned poses so as to prevent
the ball from leaving the robot. Real-world experiments showed
that nonlinear predictive control is capable of solving the pose
following problem in a real-time application.

I. INTRODUCTION

Dribbling control is a challenging task in the RoboCup
Middle Size domain. As the rules only allow one third of the
ball to be covered by the robot, the dribbling behavior has
high requirements on the robot motion control. For RoboCup
robots, dribbling refers to a robot maneuvering a rolling
ball through consecutive and short contacts in a dynamical
obstacles environment, such that the robot is able to bypass
opponents with the ball and shoot a goal.

The greatest challenge in dribbling control is not to loose
the ball when the robot moves along a curve. Due to
unknown factors of the interactions between the ball and
the robot, such as contact points and friction coefficients,it
is hard to calculate the desired forces, and the robot actions
which can exert the desired forces on the ball. Considering
the difficulty of determining the ball’s motion when it is
in continuous contact with a robot, many RoboCup teams
use artificial intelligence methods, such as neural networks
([1], [2]) or reinforcement learning ([3], [4], [5]) to learn
some basic skills of the robot, such as kicking and dribbling.
Although suitable simulation systems can support learning
before the experiments with a real robot, the skill learning
takes a long time and results in high computational cost.
Other teams fulfill the dribbling task by planning robot
moving paths [6] or designing the behavior-based approach
[7], where the mobile robot is controlled towards the desired
postures. However, the employed control methods only con-
sider to decrease the error between the current robot state
and the desired one, but do not take the robot constraints
into account.

Along the line of our earlier research ([8]), we focus
on solving the dribbling problem by controlling the robot
to follow desired poses, and take an introduced reference
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Fig. 1. The real omnidirectional robot and the ball

Fig. 2. The wheel and the dribbling mechanism of the robot

point as the controlled object instead of the robot’s center
of mass. In this work, we utilize the nonlinear predictive
control (NPC) method, such that the robot constraints and
more information of the given path can be considered in
the controller design. The real experimental results show
that the nonlinear predictive controller effectively solve the
pose following problem, and the robot can dribble the ball
in a small field avoiding collisions with a static or moving
obstacle.

II. ROBOT AND BALL

Fig. 1 shows our omnidirectional robot. It has three
Swedish 90-degree wheels mounted symmetrically with 120
degrees between each other. Three Maxon 60W motors drive
the robot with a maximum speed of 2.6 m/s. Because of six
rollers mounted along the wheel’s periphery seen in Fig. 2,
the robot is capable of moving perpendicular to the normal
rotating direction of the wheel’s axis. Besides the wheel
encoders, the only sensor on the robot is an AVT Marlin
50fps color camera with a resolution of780 × 580. It is
assembled pointing up towards a hyperbolic mirror on the top
of robot, and transmits images via IEEE 1394 to a Pentium-
M 2GHz onboard PC with 1GB RAM [9].

In the view of hardware, an effective dribbling mechanism
can help a lot in keeping the ball. Our robot’s dribbler system
shown in Fig. 2 consists of a front part and an upper part.
The front one is comprised of three spongy blocks in a
concave form, which prevents the ball from sliding away



Fig. 3. Forces analysis in a ideal dribbling situation, where the ball moves
along a curve and locates at the front of the robot

from the robot. The upper one is a plastic board, which gives
a backwards spin to the ball, such that the ball can move back
when it loses contact with the robot. The size of the dribblers
is also designed to meet the rule of ball manipulation in the
RoboCup Middle Size league.

The official tournament ball used in Robocup matches a
FIFA standard size 5 football. The only difference is that the
ball has orange color, which is helpful for the ball tracking
in the indoor Robocup environment.

III. DRIBBLING ANALYSIS

Because of the difficulty of modeling the interactions
between the robot and the ball during the dribbling process,
we concentrate on solving the dribbling control problem by
steering the robot to follow the planned poses.

Fig.3 illustrates an ideal situation, where the ball moves
along a curveP and locates at the front of the robot with
respect to the world coordinate system[Xw, Yw] fixed on the
field. In order to provide the ball with enough pushing force
Ft and centripetal forceFn, the robot orientationθ needs
to have some deviation∆θ to the tangent directionθP of
the curve, and this angle deviation has a relationship with
the centripetal accelerationcv2

d, wherec is the curvature of
the path andvd is the ideal moving velocity of the ball. We
select∆θ proportional to the centripetal acceleration with a
positive parameterkθ: ∆θ = kθcv

2
d. Then the ideal robot

orientationθd is given by

θd = θP + ∆θ, (1)

In order to get the ideal robot pose, we have to determine
the ideal robot position. It is noticed in Fig.3, if the ball
locates at the ideal position, its centerB has the coordinate
(L, 0) with respect to the robot coordinate system[Xm, Ym],
whose Xm axis denotes robot orientation.L is the ideal
distance between the robot’s center of massR andB. When
we introduce a reference pointE having the fixed coordinate
(L, 0) in the robot coordinate system, pointE will follow the
pathP in ideal situations. Therefore, the ideal robot position
can be determined with the ideal orientation and the position
of point E as follows;

xd
R = xd

E − L cos θd, (2)

yd
R = yd

E − L sin θd, (3)

where (xd
R, yd

R) and (xd
E , yd

E) are the ideal robot position
and pointE’s position with respect to the world coordinate
system, respectively. Then the dribbling control is to steer
the robot to follow the ideal pose(xd

R, yd
R, θd).

During the dribbling process, the ball can only be pushed
but not be pulled. To decrease the ball’s speed, the robot
has to move ahead and hindes the ball’s movement. when
increasing the ball’s speed, the robot needs to stay behind
the ball and push it. Therefore, varying ball speeds will
unsmooth the robot movement and increase the possibility
of losing the ball. In our research, we control the ball with
a constant high speed moving along the desired path, which
not only facilitates the robot motion control, but also ensures
the ball’s fast moving in the RoboCup matches.

When the ball keeps a constant velocity, pointE also
moves along the desired path with this constant velocity
in ideal situations. To deal with this requirement, a direct
control of the robot is not a convenient way, because it
brings quadratic constraints to robot inputs. But if we control
point E to follow the desired path and the robot to take the
desired orientations, which only ensures that the robot has
the desired poses, but also induces only linear constraintsof
system inputs.

To plan the desired path, a potential field and grid-based
path planning method have been employed in our experi-
ments ([10]). By subdividing the environment into a grid
space with unit sized grid cells and calculating the potential
value of these cells, a path composed of a set of points is
planned from the target to the robot. This backwards planning
method avoids the robot directly heading into obstacles, but
leads the robot to move around them. Replacing the robot
with point E in the path planning method, a desired path for
point E is generated. With this path and the desired robot
orientation, our task is to design a controller such that point
E can best follow the path and the robot can best take the
desired orientations.

IV. SYSTEM KINEMATIC MODEL

Fig. 4. Kinematics diagram of the base of an omnidirectional robot

Fig. 4 shows the base of our omnidirectional robot. Each
wheel has the same distanceLw to the robot’s center of mass



R. δ refers to the wheel orientation in the robot coordinate
system and is equal to 30 degrees.θ denotes the robot
orientation, which is the direction angle of the axisXm in
the world coordinate system. The kinematic model of the
robot is as follows:

ẋw
R =





2
3cos(θ + δ) − 2

3cos(θ − δ) 2
3sinθ

2
3sin(θ + δ) − 2

3sin(θ − δ) − 2
3cosθ

1
3Lw

1
3Lw

1
3Lw



 q̇, (4)

wherexw
R is the robot state vector with respect to the world

coordinate system, which is composed of the robot position
xw

R, yw
R and orientationθ; ẋw

R is the robot velocity vector,
which includes the robot translation velocitiesẋw

R andẏw
R and

robot rotation velocityω; q̇ is the vector of wheel velocities
[q̇1 q̇2 q̇3]

T , and q̇i(i = 1, 2, 3) is the i-th wheel velocity,
which is equal to the wheel’s radius multiplied by the wheel’s
angular velocity. As the motor’s voltage and current are
magnitude limited, the maximum wheel velocity is limited
by q̇m, namely|q̇i| ≤ q̇m.

Based on the definition of coordinate systems, we get the
following kinematic model of pointE :

ẋw
E =





ẋw
E

ẏw
E

θ̇



 =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 u, (5)

where ẋw
E is the velocity vector of pointE observed in the

world coordinate system; The system input vectoru includes
point E’s translation velocitieṡxm

E and ẏm
E observed in the

robot coordinate system and the robot rotation velocityω.
Because pointE is considered with constant coordinate

(L, 0) with respect to the robot coordinate system, its veloc-
ities have the following relationship with those of the robot,

[

ẋm
R

ẏm
R

]

=

[

ẋm
E

ẏm
E − Lω

]

, (6)

Substituting (5) and (6) into the inverted equations of the
robot kinematic model (4), we get the following constraints
of system inputu with respect to the limited wheel velocity:

q̇ =





cos(θ + δ) sin(θ + δ) −L sin δ + Lw

− cos(θ − δ) − sin(θ − δ) −L sin δ + Lw

sin θ − cos θ L + Lw



u,

−q̇m ≤ q̇ ≤ q̇m (7)

V. POSE FOLLOWING CONTROL

The pose following problem is illustrated in Fig. 5.P

denotes the given path of pointE. PointQ is the orthogonal
projection ofE on the pathP . l denotes the distance error.
θd is the desired robot orientation at pointQ. The angular
error is defined as̃θ = θd − θ.

Pose following control is to find proper inputs such that the
distance errorl and angular error̃θ tend to zero. Most pose
following control methods are based on finding the errors
between the current robot poses and the desired poses, then

Fig. 5. Illustration of the pose following problem

Fig. 6. Principle of nonlinear predictive control

use a PID controller ([11]) or nonlinear controller ([12], [13])
to decrease these errors. However, only using the current
errors makes these methods ignore the potential opportunity
of improving the control performance by considering more
information of the given path. Moreover, these methods
rarely take the robot’s dynamic and kinematic limitations
into account. When a robot makes a sharp turn with high
translation and rotation velocities, motors will easily come
into saturation, which can degrade the robot’s performance,
even destroy the stability ([14], [15]).

As an attractive optimal control method, the nonlinear pre-
dictive control has been used in our pose following problem,
because it can easily handle the system constraints and take
future information into the controller design ([16]). Fig.6
shows the basic principle of nonlinear predictive control.
where τ is the predicted sampling interval; Control values
u(t + iτ) for i ∈ [0, ..., Tc] are constant on each interval;
x(t+jτ, t+(j−1)τ) for j ∈ [1, ..., Tp] denotes the predicted
state value at timet+jτ based on the one at timet+(j−1)τ .
The basic idea of nonlinear predictive control (NPC) includes
three steps:(i) at each time stept, predict the future behavior
of the system over a prediction horizonTp, (ii) calculate
inputs during a control horizonTc (Tc ≤ Tp) such that a
predefined open-loop objective function is optimized under
the system and inputs constraints,(iii) take the first optimal
input value as the current input.



A. NPC Formulation

In order to obtain the predicted states in the future, we
discretise the system (5) as:

θ(k + 1) = θ(k) + ω(k)τ, (8)

xw
E(k + 1) = xw

E(k) +
ẋm

E (k)

ω(k)
[sin(θ(k + 1)) − sin(θ(k))]

+
ẏm

E (k)

ω(k)
[cos(θ(k + 1)) − cos(θ(k))], (9)

yw
E(k + 1) = yw

E(k) −
ẋm

E (k)

ω(k)
[cos(θ(k + 1)) − cos(θ(k))]

+
ẏm

E (k)

ω(k)
[sin(θ(k + 1)) − sin(θ(k))], (10)

if ω(k) = 0:

xw
E(k + 1) = xw

E(k) + [ẋm
E (k) cos(θ(k))

−ẏm
E (k) sin(θ(k))]τ, (11)

yw
E(k + 1) = yw

E(k) + [ẋm
E (k) sin(θR(k))

+ẏm
E (k) cos(θR(k))]τ. (12)

We define the following objective function:

J(t) =

Tp
∑

i=1

‖x̂w
E(t + iτ, t + (i − 1)τ) − xd

E(t + iτ)‖2
Q

+

Tc−1
∑

j=0

‖u(t + (j + 1)τ) − u(t + jτ)‖2
R (13)

wherex̂w
E(t + τ, t) denotes the predicted state of pointE at

time t + τ based on the one of timet, which is not exactly
same as the actual one.xd

E refers to the desired state.Q and
R are symmetric positive weight matrices with appropriate
dimensions. The first summand presents the performance of
the system following the desired states, the second one limits
the input changing and smooths the robot’s movement.

Then at each time stept, the following finite horizon open-
loop optimal problem is to be solved:

min
u(t)...u(t+Tcτ)

(J(t)) (14)

subject to:

x̂w
E(t + iτ) = f(xw

E(t + (i − 1)τ),u(t + (i − 1)τ)), (15)

g(x̂w
E(t + iτ),u(t + iτ)) ≤ 0, (16)

‖u(t + jτ)‖ ≤ um, ∀j ∈ [0, ..., Tc], (17)

u(t + jτ) = u(t + Tcτ), ∀j ∈ [Tc, ..., Tp] (18)

where the functionf(xw
E ,u) denotes the discretized system

equations (8-12), functiong(xw
E ,u) denotes the system con-

straints (7),um is the inputs limitation.

B. Control Stability

It is well known that the above finite horizon strategy
can not guarantee closed-loop stability. In many proposed
methods, adding a terminal penalty to the cost function and
constraints to the system terminal state is a computationally
feasible method to achieve closed-loop stability ([16], [17]).
Although the treatment of the stability conditions is not
considered in this work, the choice of a suitable terminal
penalty and terminal constrains will be our work in the
future.

C. Nonlinear Programming Solver

Although the high computational demands of solving the
upper nonlinear finite optimization problem make NPC hard
to be implemented in applications with fast sampling time
and limited computational resources ([16]), many research
results show the possibility of applying nonlinear predictive
controllers in some real-time processes, such as control
of an autonomous vehicle ([18]) and a full-scale aircraft
([19]). As one often used method, sequential quadratic
programming (SQP) is utilized in our project. We use the
softwaredonlp2-intv-dynby P. Spellucci ([20], [21]), which
is a general purpose nonlinear optimizer and can be found
at http://plato.la.asu.edu/donlp2.html. This optimizer imple-
ments a sequential equality constrained quadratic program-
ming method.

D. Computational Delays

In reality, on-line solving the optimization problem re-
quires timeτ c. At every time stept, when the optimal input
serial in the control horizon is found, the first control action
is taken att + τ c. This computational delay may influence
the control performance and system stability. Therefore, it
is important to take the computational delay into account. A
common method is to estimate the value ofτ c at time stept,
predict the system statêx(t + τ c) with x(t) andu(t), solve
the optimization problem based on̂x(t + τ c), and take the
first optimal control value as the system input.

VI. EXPERIMENTAL RESULTS

The real-world experiments were made in our robot labo-
ratory having a carpet covered field with a size of5.1× 4.2
m2. Based on the real-time output signal of the camera, a
self-localization algorithm described in [22] determinesthe
robot’s position in the play field, and a fast object detection
algorithm is used to get the real world positions of other
objects as introduced in [23].

Considering the desired constant velocityvd , we trans-
form the input vectoru in kinematics model (5) into
[vd cos α, vd sinα, ω]T , whereα is point E’s moving direc-
tion with respect to the robot coordinate system. Therefore,
we have two inputs‖α‖ ≤ π

2 and‖ω‖ ≤ ωm to control our
robot.

In the experiments, the following parameters have been
used in the nonlinear predictive control: the predicted sam-
pling time: τ = 0.4s; the predictive horizon is equal to
the control horizon:Tp = Tc = 3, constraints on wheel
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Fig. 7. Results in the scenario with a static obstacle
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Fig. 8. Results in the scenario with a moving obstacle

(a) Static obstacle (b) Moving obstacle

Fig. 9. Measured trajectories in the scenarios with a staticand moving obstacle. (solid line: pointE, dashed line: ball, asterisk: obstacle; The Arrow
points the obstacle’s moving direction)



velocity: qm = 1.9m/s, constraints on robot rotation velocity:
ωm = 2.0rad/s, weight matricesQ = [5.0 00; 0 5.0 0; 0 0 6.0],
R = [1.0 0; 0 1.0]. the computational delay:τ c = 0.15s.

In the experiments an obstacle is located between the ball’s
initial position and the target position(3, 1) . The robot is
required to dribble the ball to the target position without
colliding with the obstacle. When pointE has a distance
of less than0.3m to the target, the robot stops moving. At
every sampling time, the real time path from the current
position of pointE to the target position is created by the
path planner, and we selectkθ = 0.5 to calculate the desired
robot orientation.

In two experiment scenarios, the obstacle was set to be
static or to move linearly, respectively. The desired ball’s
velocity vd was set to 1.3m/s in the static obstacle scenario,
and 1.0 m/s in the moving obstacle scenario. Fig. 7(a) and
8(a) show that the nonlinear predictive control can solve the
real-time pose following problem with good performance,
because at most time steps, the distance errors are less than
0.3m, the orientation errors are less than 0.25rad. Fig. 7(c)
and 8(c) show that the NPC get small values of the cost
function, and Fig. 7(b) and 8(b) show that the NPC is fast
enough to control our robot, with a computational time less
than 0.25s at most time steps. Fig. 9(a) and 9(b) show the
measured trajectories of pointE, ball and obstacle. Although
we can see that the ball is not always located at the position
of point E, the robot can keep the controlling of the ball in
the dribbling process.

VII. CONCLUSIONS

In this paper a new control method for an omnidirectional
robot dribbling a rolling ball is presented. Based on the
analysis of the dribbling process, this approach solves the
control problem of the consecutive mobile robot pushing
operation by introducing a reference point as the controlled
object and a sophisticated planning method of the desired
robot orientations. The nonlinear predictive control method is
used to steer the reference point to follow the given path and
the robot to take the desired orientations. To test the control
method, real-world experiments were made in a small lab
field, where the ball was dribbled from an initial position
to a target with a static or moving obstacle. The desired
velocities of the ball were set to 1.3 m/s and 1.0 m/s in
the two different scenarios. Experimental results show that
the nonlinear predictive control effectively solved the pose
following problem in real-time, and the desired robot pose
can guarantee the ball moving to the target position without
colliding with the obstacle.
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