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Abstract— In this paper we show that, despite some disad-
vantageous properties of radio frequency identification (RFID),
it is possible to localize a mobile robot quite accurately in
environments which are densely tagged. We therefore employ a
recently presented probabilistic fingerprinting technique called
RFID snapshots. This method interprets short series of RFID
measurements as feature vectors and is able to position a mobile
robot after a training phase. It requires no explicit sensor
model and is capable of exploiting given tag infrastructures, e.g.,
provided by supermarket shelves containing labeled products.

I. INTRODUCTION
Radio frequency identification (RFID) has found its way

into robotics because of advantageous properties such as
the unique identification of RFID tags and the resulting
unambiguous association of sensor readings with landmarks.
Moreover, since RFID reader and tags (also called transpon-
ders) communicate via electromagnetic waves, line of sight
is not required between them. On the other hand, especially
passive ultra-high frequency (UHF, 868/915 MHz) RFID
imposes some difficulties: First, RFID readers of this type
only report which tags have been detected; they neither know
the distance nor the bearing to a detected tag (and do not even
report signal strength information). Second, the successful
detection of a tag within the read range of up to 7 m depends
largely on factors such as the relative position of the tag with
respect to the reader antenna as well as on the materials of
nearby objects. Hence, today it is widely assumed that the
use of RFID for self-localization is disadvantageous due to
sensor noise and potentially low positioning accuracy.

In this paper, however, we show that it is possible to
localize a mobile robot via RFID and odometry alone at
an accuracy of less than 0.3 m. We present empirical results
derived from extensive experiments with a mobile robot and
off-the-shelf RFID hardware. Our approach is based on a
fingerprinting technique called RFID snapshots, which we
presented recently [8]. In this method, short series of RFID
measurements are interpreted as feature vectors. They can be
trained at reference positions during an offline phase and later
be used to estimate the pose of the robot corresponding to
current tag detections. A particle filter is employed in order
to improve accuracy and robustness. The advantages of our
approach are that no explicit sensor model is required and
that environment characteristics are implicitly learned by the

This work was funded by the Landesstiftung Baden-Württemberg, Ger-
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{philipp.vorst,andreas.zell}@uni-tuebingen.de

S. Schneegans is now with the Institute for Neuroin-
formatics, Ruhr University Bochum, Bochum, Germany
sebastian.schneegans@neuroinformatik.rub.de

training, unlike most model-based approaches. Furthermore,
we do not constrain the distribution of RFID tags to specific
positions, and tag positions need not be known.

This work focuses on densely tagged environments, which
can be expected to prevail in supermarkets, warehouses,
and logistics scenarios in general on the medium run. For
these surroundings, localization via RFID is a cost-efficient
solution if a mobile robot is already equipped with an RFID
reader for inventory purposes or used as a shopping guide.

The structure of this paper is as follows: In Section II,
we investigate related work. After presenting our localization
method in Section III, we turn to practical issues of using
RFID snapshots in densely tagged environments. The results
of our experiments are provided in Section V. We finally
conclude our work in Section VI.

II. RELATED WORK

A seminal survey into how to localize a mobile robot via
RFID was presented by Hähnel et al. [5]. They first gained
a probabilistic sensor model for their RFID reader, which
associates the probability of detecting an RFID tag with the
relative position of that tag to the antenna. Using this model,
the positions of passive RFID tags in an office environment
were mapped. Monte Carlo localization was then used to
position the robot at an accuracy of approx. 0.5 m from RFID
readings and odometry. An extension to this approach which
learns the sensor model during the normal navigation of the
robot was presented in [10].

Yamano et al. [11] employed active RFID tags. They
localized a robot by learning feature vectors from signal
strength information via support vector machines. Chae and
Han [3] performed two-step indoor localization: First, they
positioned coarsely via active RFID, and then the pose
estimate was refined by means of monocular vision. Djugash
et al. [4] utilized active RFID tags outdoors. They used time-
of-flight measurements both for pure self-localization and for
simultaneous localization and mapping (SLAM) via Kalman
and particle filters. Kleiner et al. [6] performed SLAM
with short-range RFID: They improved the dead-reckoning
trajectories of humans and robots via synchronizing with
sparsely distributed transponders outdoors. At the same time,
the tag positions could be mapped, given the corrected paths.

A fingerprinting approach was pursued by Bahl et al. [1]:
In their in-building RF-based system, WLAN signal strength
measurements were used for combined localization via signal
propagation modeling and fingerprinting. Lim and Zhang [7]
presented fingerprinting-based positioning with passive UHF
RFID tags, which is similar to our work. Their solution,



however, was non-probabilistic, and the transponders were
attached to the ceiling at regular distances.

Similarly to our work, Bohn studied location estimation
with high-density tag infrastructures [2]. In contrast to our
approach, he utilized passive high frequency (HF) tags op-
erating at 13.56 MHz, and the tags were spread on the floor
rather than attached to walls and objects.

III. SNAPSHOT-BASED SELF-LOCALIZATION
Our approach compares current RFID measurements with

data obtained during a training phase. These comparisons
are embedded as observation model in a particle filter. For
reasons of self-containedness, the latter is described briefly,
before we detail the modeling of RFID snapshots.

A. Particle Filtering
In particle filter-based self-localization, also known as

Monte Carlo localization [9], the robot pose rt at time
step t is represented by an arbitrary probability density
function (pdf) over the space of locations. This pdf is
approximated by a set of n particles (also called samples).
Each particle i consists of a pose hypothesis ri
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i
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algorithm itself iteratively performs three steps:
1) Prediction: The robot pose at time t is predicted by

propagating all particle positions according to a motion
model which uses odometry readings ot since the last
iteration of the algorithm.

2) Correction: Sensor data ft are incorporated into the
set of particles by correcting the particle weights
according to some likelihood function p(ft|r

i
t):
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i
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Here, η normalizes the weights such that
∑n

i=1 wi
t = 1.

3) Resampling: A new set of n particles with equal
weights 1/n is obtained by drawing n times a sample
from the old set of particles. The probability of choos-
ing particle i corresponds to its weight wi

t. An option
is to resample not always, but only if the estimate
n̂eff ≈ 1/

(
∑n

i=1(w
i
t)

2
)

of the so-called effective
sample size falls below some threshold, e.g., n/2.

In this way, particle filtering enables a robot both to
localize itself globally and to track its position over time.
It has turned out to be robust and versatile, even in case
of non-Gaussian noise and highly imprecise measurements.
These adverse conditions especially hold for RFID.

The depicted algorithm is generic insofar as the likelihood
function p(ft|rt) must be adapted to the specific application.
This is done in the next section, where we tailor a likelihood
function to RFID snapshots.

B. RFID Snapshots
In snapshot-based self-localization, so-called RFID in-

quiries are repeated over short series of cycles. An in-
quiry represents the attempt to read the identifiers of all

transponders within read range. The list of detected tags
and their detection counts is regarded as a fingerprint which
characterizes the current pose of the robot.

In passive UHF RFID systems, both the power supply of
a tag and the communication between the reader and the
tags are realized by electromagnetic waves emitted from the
reader antennas. The successful detection of a specific tag
depends on whether it receives enough energy to reply to
the reader. This itself depends on quite a large number of
parameters, including the relative position and orientation of
the tag from the reader as well as absorbing and reflecting
materials in the vicinity of reader and tags. Instead of mod-
eling these parameters, we regard the detection of a tag l as
a random event which results in a successful detection with
probability ql. Prior experiments showed that this probability
can be assumed fix for a given position of the RFID antenna
and the transponder in the environment and to change only
little for small changes of the robot pose.

As the result of an inquiry, the reader returns a list of
detected tags for each antenna. This list can be interpreted as
a vector f = (f1, . . . , fk), where the value fj ∈ {0, . . . , N}
counts how often tag j has been reported during the recent
measurement series. It is called snapshot in our approach,
resembling a sensor fingerprint of the current situation.
Commonly, N equals 1, which means that the RFID reader
reports all tags which have been detected within one read
cycle. For our work, it is of importance to consider series of
measurements, i.e., we regard cases where N > 1.

During the training phase, a large number of these snap-
shots is stored together with the antenna positions x they
were taken at. During self-localization, the snapshots are the
basis for the computation of the particle weights.

In our application, the sensor data for every time step of
the particle filter algorithm consist of two RFID snapshots
– one from each of the two antenna pairs installed on the
robot (see Fig. 1(a)). Assuming the independence of the
measurements, we can write the likelihood function required
for the correction step as

p(fl, fr|r) = p(fl |al(r)) p(fr |ar(r)), (1)

where al(r) and ar(r) denote the poses of the left and right
antenna pairs if the robot is at pose r, and fl and fr are the
corresponding snapshots. We will show how the likelihoods
of the form p(f |a) can be determined in two steps: First,
an estimate q̂ of the detection probabilities of all tags for
the antenna pose a is computed from the training snapshots
taken in the vicinity. Then the probability of the current RFID
measurement is determined based on these estimates.

Each training snapshot f allows for the estimation of the
tag detection probabilities at the position where it was taken.
Since the detection probabilities cannot be observed directly,
we compute the Bayes estimate q̂l(fl) for a single tag l:

q̂l(fl) =

∫ 1

0

qlp(ql|fl)dql (2)

with p(ql|fl) =
p(fl|ql)p(ql)

∫ 1

0
p(fl|q′l)p(q′l)dq′l

. (3)



The conditional probability p(fl|ql) follows the binomial
distribution, stating how likely a tag will be detected fl

(among N ) times, given a detection probability ql:

p(fl|ql) =

(

N

fl

)

qfl

l (1 − ql)
N−fl . (4)

The term p(ql) in Eq. 3 is the prior detection probability
ql. It is modeled by a step function with a large value p(ql)
if ql is smaller than some ϑ close to zero and a constant
low value in the rest of the interval (ϑ, 1]. This is because
in the major part of the environment, a specific tag will not
be detected most of the time.

Now the idea is to select single training snapshots near
an antenna position a as queried by the particle filter and to
combine them to a reference snapshot. A reliable estimate is
the weighted mean of the estimates obtained from training
snapshots f (1), . . . , f (r) recorded close to a:

q̂(a) = α1q̂(f (1)) + · · · + αrq̂(f (r)) + βq̂0 (5)

with q̂ = (q̂1, . . . , q̂k)T . k is the total number of tags known
from training. The weights αj and β are computed by

αj = ν · exp
(

− 1
2 · (||xi − a||/σ)2

)

and β = ν · β0.

The xi are the positions where the training snapshots f (i)

were taken. ν is a normalization factor which ensures that
∑r

j=1 αj +β = 1. Note that the metric ||·|| must also respect
the orientations of the antennas. q̂0 in Eq. 5 is an estimate of
the detection probabilities in the absence of training scans.
Its equal entries q̂0 can be obtained from the prior probability
p(q) via

q̂0 =

∫ 1

0

p(q) q dq. (6)

The weight β0 is a constant small value such that the
influence of q̂0 decreases if many training snapshots are
available close to a and correspondingly their αi are large.

Finally, the estimate q̂(a) can be used to compute the
likelihood of a robot pose. To this end, the probabilities of the
observed detection frequencies are determined by inserting
the estimated detection probabilities q̂l(a) of each tag into
Eq. 4. Assuming the independence of the measurements of
single tags, the likelihood of the entire current snapshot f is

p(f |a) =

k
∏

l=1

p(fl|q̂l(a)). (7)

For further details and a comparison of the snapshot
approach to Hähnel’s method, we would like to refer the
reader to [8].

C. Adaptation of the Likelihood Function to Densely Tagged
Environments

In densely tagged environments, a problem arises which
is well-known from Monte Carlo localization, e.g., involving
laser scanners: If the likelihood function is computed as the
product of a larger number of independent likelihoods, as in
Eq. 7, the particle weights will receive very small values.
Besides numerical problems of the CPU in representing the

particle weights, the single weights among the set of particles
may differ by several orders of magnitudes. In these cases,
even large numbers of particles do not suffice to represent
the posterior distribution, and resampling will cause particle
depletion because very few samples are replicated a large
number of times. In the worst case, this ends up in the
delocalization of the robot.

Since the value of k in Eq. 7 (the number of present/known
transponders) is large in densely tagged surroundings (in
our case k À 100), we decided to evaluate the likelihood
function only partially. This is based on the abovementioned
observation that q̂l is close to zero for most tags l: At any
position, only a relatively small fraction of known tags is
likely to be detected. Those tags should be considered in
likelihood evaluation, while the others can be ignored. On
the other hand, if the snapshot f measured during localization
contains a tag j which is considered negligible by the
estimate q̂j , a particle should receive a lower weight because
the reference snapshot does not explain the particle pose well
enough. For this reason, we adapt the likelihood function of
Eq. 7 such that only k′ < k tags are assessed:

p(f |a) =
∏

l∈L

p(fl|q̂l(a)), (8)

where L = {ls1
, . . . , lsnt

} ∪ {lπ1
, . . . , lπm

} (9)

The lsi
are the tags of the current scan, πi : {1, . . . , k} →

{1, . . . , k} is a permutation such that πi < πj ⇒ q̂i ≥ q̂j ,
and m is chosen such that |L| = k′. Also, the nt tags li in
Eq. 9 of the current RFID scan are sorted and cut off at k′

if nt > k′. So, essentially, the tag indices of the currently
measured snapshot and the estimated reference snapshot are
sorted by descending detection rates. Then, the likelihood
function is evaluated on the first k′ permuted tags, which
are currently the most discriminative ones.

IV. PRACTICAL ISSUES

A. Parameter Choices
A remaining question is the choice of the parameter N ,

the number of measurements incorporated in one snapshot.
Larger values of N are supposed to yield more discriminative
snapshots, because the detection count of a specific tag will
reflect the detection probability better which characterizes its
relative position to the recording position of the snapshot. On
the other hand, as can be seen from Tab. I, RFID inquiries
take quite a lot of time. N = 4 repeated measurements per
antenna last 1.5 s, for example. This is a problem because
there are simply fewer pose corrections, and the robot may
have moved significantly during two inquiries. This trade-off
in the choice of N is experimentally investigated in Sect. V.

The other parameters required in our approach can be
determined empirically by measuring the localization per-
formance in preliminary experiments. We set β = 0.25 and
σ = 0.5. Moreover, for ql ∈ [0, ϑ] with ϑ = 10−3, we set
p(ql) such that

∫ ϑ

0
p(ql)dql = 0.8, and for ql ∈ (ϑ, 1], we set

p(ql) such that
∫ 1

ϑ
p(ql)dql = 0.2.



TABLE I
MEAN DURATIONS AND STANDARD DEVIATIONS (IN S) OF INQUIRIES

DEPENDING ON N (NUMBER OF MEASUREMENT CYCLES)

N 2 4 6 8
Duration 0.77± 0.02 1.46± 0.02 1.99± 0.03 2.66± 0.05

B. Accelerated Likelihood Evaluation During Localization
The computation of q̂(a) is time-consuming if the number

of particles is large and if a lot of training snapshots were
recorded. The latter is normally advantageous because the
localization accuracy is increased [8]. The estimation is even
time-consuming if training snapshots with a distance of more
than 2σ from a are pruned and the reference positions of
training snapshots are stored in a kd-tree. As a first step
of research into more efficient data structures for storing
snapshots, we decided to precompute a look-up table (LUT)
of reference snapshots.

Since the discretization of reference positions and angles
may introduce intolerable localization errors, depending on
the bin size along x, y and the orientation θ, we studied the
behavior when using LUTs of varying bin sizes in a series
of preceding experiments. The precomputation of snapshots
by means of a look-up table (LUT) yielded an acceleration
factor of approx. 40, i.e., per particle, the computation
of its likelihood was forty times faster. We observed that
the localization accuracy is highly sensitive to the angular
resolution of the look-up table. On the whole, we drew the
conclusion that a LUT is a reasonable means of speed-
up without too large additional localization error for x/y
resolutions of up to 0.2 m and angular resolutions of up
to 10◦. Doubtlessly, precomputing the LUT is memory-
demanding, depending on the resolution of the table and the
number k′ of tags in likelihood evaluations. (The latter is
because precomputed snapshots can be pruned to size k′.)
But for the finally chosen resolution, the setting k′ = 50
and the larger one of our experimental environments, the
corridor, the size of the LUT in RAM was 90.55 MB, which
we regard as unproblematic.

C. Initialization of the Particle Filter
By incorporating different RFID measurements and odom-

etry in the particle filter, the pose estimate usually improves
significantly over time. A central question, however, is how
fast a decent estimate is achieved from scratch. The naı̈ve
filter initialization strategy is to distribute the samples uni-
formly to then apply the observation model. The success of
this strategy depends on whether particles are placed near the
true position of the robot by chance. Therefore, one possible
extension to this approach is to boost the number of samples
in the early stages of pose estimation.

The snapshot-based solution to the initialization issue, by
contrast, is to initialize the particles with poses that are
directly sampled from the training snapshots as soon as the
first RFID measurements f arrive. Formally, the i-th particle

(a) (b)

Fig. 1. (a) The B21 service robot with which we gathered the experimental
data. White: the RFID antennas, connected to the RFID reader inside the
robot. Blue: the front-mounted laser scanner, used for reference localization.
(b) The supermarket shelf containing tagged product packages.

(ri, wi) is initially drawn randomly according to

ri ∼ p(f |a(ri)) =: wi,

where again the a(ri) assume the reference antenna positions
of the training snapshots. The particle initialization includes
the addition of a small portion of Gaussian noise. Again,
we compared the performance of the different strategies and
present the results in the next section.

V. EXPERIMENTS

We conducted several series of experiments on a B21
service robot (see Fig. 1(a)) in order to measure the ef-
fectiveness and accuracy of our approach. The robot is
equipped with a UHF RFID reader by Alien Technology
(type ALR-8780, 866 MHz) with two pairs of antennas. The
two antennas of each pair work cooperatively, one antenna
transmits energy and data while the other one is listening for
potential responses by RFID tags. The antenna pairs span an
angle of approx. 90◦, which enables them to scan for RFID
tags in front and sideways of the robot. Reference positions
are obtained with Monte Carlo localization based on a laser
scanner (240◦ field of view). The localization error of the
reference poses can be assumed to be sufficiently small,
below 0.1 m.

The environment in which we recorded the experimental
data is illustrated in Fig. 2. It is comprised of a laboratory
(50 m2 of accessible area) and a corridor (75 m2). In both
areas, we installed passive RFID tags of the standard EPC
Class 1 Generation 2. For the lower-density experiments, tags
were attached to walls and desks at distances of approx. 1 m
on average and roughly at the height of the upper RFID an-
tennas. For the higher-density experiments, we attached them
to walls at a density of four per meter and at about the same
height as before. In the center of the laboratory we placed a
metal shelf (2 m×1.2 m) with almost 400 empty, individually
RFID-tagged product packages at different heights in order
to imitate a supermarket environment (see Fig. 1(b)). The
width of robot-navigable passages (without transponders,



Fig. 2. The environment where we conducted the experiments: a laboratory
(green/light gray) and the adjacent corridor (blue/dark gray). The RFID tags
were attached to walls, desks and shelves in the hatched areas at a height
of approx. 1 m.

e.g., between the shelf and the walls) was at least 1.2 m,
usually 1.8 m or more, and at least 2.2 m on the corridor.

In total, we recorded 8 data sets, varying the density of tags
as well as the number of cycles N . All data sets consist of ten
log files. Each log file contains a robot trajectory of 89-188 m
length and a duration of at least five minutes. For the corridor,
we recorded four data sets, with N ∈ {2, 4} and approx.
140/210 tags (where about 100 could be detected from the
adjacent lab). In the lab, four data sets with the same high
tag density (374 tags) were logged, but we took one data set
for each N ∈ {2, 4, 6, 8}. In each single localization run of
the subsequently depicted setups, the robot was trained with
snapshots from a subset of those log files. Then, the robot had
to localize on a remaining single validation trajectory which
was not part of the training set, of course. The particle filter
in the validation runs consisted of 2000 samples in general.

A. Initialization (Global Localization)
We compared the three initialization strategies described in

Sect. IV-C: (a) the naı̈ve uniform distribution of samples, (b)
a uniform distribution with boosted number of particles (n =
10000), and (c) the sampling of reference positions from
training snapshots. We performed fivefold cross-validation
with five repeated experiments per combination of training
and validation data, where we chose log files with N ∈
{2, 4} and set k′ = 50. In each localization run, we measured
the mean absolute localization error after 1 time step and
after 10 time steps, i.e., 10 iterations of the particle filter.

The results are listed in Table II. The snapshot sampling
approach performs best, although not significantly better than
the boosting approach. It requires, however, fewer particles
(2000) in the first steps to achieve the given accuracy.

B. Localization Performance
In order to measure the accuracy of snapshot-based self-

localization, we conducted various experiments in which
we varied the number of measurement cycles, N , and the
parameter k′. We performed cross-validation by first training
a map of snapshots on N log files and then using the
remaining log files of the same N for validation. By this,
at least 2000 training snapshots were provided. In total,
we performed 400 experiments for each combination of k′

and N and varying training data. In each experiment, we
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Fig. 3. Localization results (a) in the lab and (b) in the corridor environment
for different values of k

′ and the number of measurement cycles, N .

measured the mean absolute localization error, averaged over
all time steps of the given validation log file. Note that
all experiments include global localization, i.e., the initial
pose was unknown and the particle filter was initialized via
the snapshot sampling approach described above. Based on
the insights from Sect. IV-B, we used a LUT with an x/y
resolution of 0.1 m and an angular resolution of 10◦.

On the corridor, we tested two different numbers of cycles
(N ∈ {2, 4}) and two different densities of tags (141/209
tags). k′ = 50 was fixed. Table III lists the medians over the
mean absolute localization errors of the single localization
runs in the corridor. For N = 4 and the higher tag density,
we achieved an accuracy of 0.2051 m.

In another series of experiments, we fixed the higher tag
density and measured the influence of the choice of k′. The
results are illustrated in Fig. 3(a) and 3(b), and listed in detail
in Tab. IV. In both experiment environments, we achieved the
best results for N ∈ {2, 4} and k′ = 50. Unfortunately, we
observed a few cases in which the robot was delocalized,
which results in the high standard deviations in Tab. IV.

TABLE II
POSITIONING ERRORS (IN METERS) DURING INITIALIZATION

Method N After time step 1 After time step 10
Mean Median Mean Median

Uniform distribution
2

0.950 0.882 0.494 0.432
Uniform + boosting 0.859 0.746 0.464 0.334
Snapshot sampling 0.838 0.543 0.427 0.334

Uniform distribution
4

0.524 0.442 0.400 0.381
Uniform + boosting 0.477 0.380 0.329 0.298
Snapshot sampling 0.461 0.359 0.323 0.290

TABLE III
LOCALIZATION RESULTS IN THE CORRIDOR ENVIRONMENT: QUARTILES

OF THE MEAN ABSOLUTE LOCALIZATION ERRORS (IN METERS)

N Tag density Median 25th percentile 75th percentile
2 Higher 0.239 0.215 0.256
2 Lower 0.263 0.244 0.288
4 Higher 0.205 0.189 0.218
4 Lower 0.260 0.232 0.323



A closer look at the log files revealed, however, that large
initialization errors had been the cause. In these cases the
particle filter was not able to converge later. Despite the (rare)
failures, the mean absolute localization errors of approx. 90%
of the localization runs were below 0.3 m.

From the outcomes of the experiments, we draw two
conclusions: First, the localization accuracy is better for
smaller values of N , i.e., fewer measurement cycles incor-
porated in a single snapshot. The reason for this is that
RFID measurements arrive too rarely for larger N . Second,
while it seems reasonable to set k = k′ for N ≥ 6, the
partial evaluation of the likelihood function by incorporating
only k′ < k ≈ 370 tags appears to yield better results for
smaller (and the more relevant) N ∈ {2, 4}. The outcomes
for k′ = 20 show, however, that k′ must not be chosen too
small. The abovementioned position losses mainly occurred
for k′ = k, which we regard as evidence of our assumptions
made in Sec. III-C. We experimented also with other values
of k′, but did not optimize it systematically, because our
suggestion is to first choose the other parameters and finally
fine-tune k′, depending on the environment.

VI. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

In this paper we have shown that it is possible to localize
a mobile robot quite accurately via passive UHF RFID. To
this end, we employ RFID snapshots, a probabilistic RFID
fingerprinting technique embedded in a particle filter. In this
work, we focused on densely tagged environments, because
one can expect such tag arrangements in industrial, logistics,
and warehousing scenarios in the near future.

In our indoor experiments with a mobile robot and an off-
the-shelf RFID reader, we achieved accuracies of 0.25 m or
better in both environments. To the best of our knowledge,
these are currently the most accurate results achieved in
such a UHF RFID setup. The advantage of snapshot-based
localization is that, despite the adverse properties of RFID,
quite accurate localization is achieved without an explicit
sensor model, which can be cumbersome to build. While
the accuracies of the well-known laser-based approaches are
not achieved, RFID represents a cost-neutral technology for

TABLE IV
LOCALIZATION RESULTS (IN METERS) IN THE LAB

N k
′ Mean ± Std.dev. Median 90th percentile

2
20 0.283 ± 0.075 0.268 0.355
50 0.238 ± 0.054 0.229 0.304
k 0.283 ± 0.388 0.226 0.306

4
20 0.380 ± 0.141 0.348 0.511
50 0.259 ± 0.040 0.250 0.316
k 0.264 ± 0.047 0.267 0.322

6
20 0.529 ± 0.307 0.497 0.668
50 0.364 ± 0.065 0.352 0.450
k 0.282 ± 0.064 0.266 0.365

8
20 0.813 ± 0.588 0.661 1.190
50 0.602 ± 0.232 0.554 0.824
k 0.565 ± 0.249 0.485 0.899

positioning if robots already use RFID for inventory purposes
in warehousing and logistics. Note that a specific distribution
of the tags is not required, e.g., integration into the floor as
required by other approaches. Of course, RFID can still also
be fused with other sensors to improve positioning accuracy.

The requirement to record training snapshots before the
localization phase is the disadvantage of our method. One
could argue that any different approach will also require
some mapping phase in order to learn the positions of RFID
tags. But the problem remains that reference positions are
needed when fingerprints are recorded during the training.

B. Future Works
For the future, we plan to address the elimination of

the reference localization system required in the training
phase. Moreover, we are going to allow for the revision of
the learned snapshot distribution, since tagged objects can
usually be removed or relocated. Finally, we are going to test
our approach in larger-scale environments with comparable
densities of RFID tags as in the scenario investigated here.
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