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Abstract. In outdoor environments, a great variety of ground surfaces exists. To
ensure safe navigation, a mobile robot should be able to identify the current ter-
rain so that it can adapt its driving style. If the robot navigates in known environ-
ments, a terrain classification method can be trained on the expected terrain classes
in advance. However, if the robot is to explore previously unseen areas, it may face
terrain types that it has not been trained to recognize. In this paper, we present a
vibration-based terrain classification system that uses novelty detection based on
Gaussian mixture models to detect if the robot traverses an unknown terrain class.
If the robot has collected a sufficient number of examples of the unknown class,
the new terrain class is added to the classification model online. Our experiments
show that the classification performance of the automatically learned model is only
slightly worse than the performance of a classifier that knows all classes before-
hand.
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Introduction

In outdoor environments, a mobile robot faces many different types of ground surfaces.
Each surface poses different hazards to the robot. One type of hazards are positive and
negative obstacles, e.g. rocks or ditches. Other dangers originate from the properties of
the ground surface itself, for example that it is very rough or slippery. Such dangers
are called non-geometric hazards [1]. To avoid accidents or damage, a robot should be
able to identify the current terrain in order to adapt its driving style. A common way to
determine the terrain type is to group the terrain into classes that have known properties,
e.g. grass or gravel. These classes are learned from training examples.

The most common methods for terrain classification use laser scanners (e.g. [2,3]) or
cameras (e.g. [4,3,5]). A way to detect non-geometric hazards is vibration-based terrain
classification, which was first suggested by Iagnemma and Dubowsky [6]. The main
idea is based on the observation that traversing different terrain types induces different
kinds of vibrations in the body or the wheels of the robot. Commonly, the vibrations are
measured by accelerometers and the characteristic vibrations of different terrain classes
are learned from training examples. A method based on probabilistic neural networks has
been presented by DuPont et al. [7]. An approach based on linear discriminant analysis
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was suggested by Brooks and Iagnemma [8]. We proposed a method that uses a support
vector machine [9,10]. Stavens et al. focus on assessing the roughness of the terrain
instead of grouping the ground surface into classes [11]. There also exist systems that
combine vision and vibration sensing [12,13,14].

These approaches can only identify terrain classes that are contained in the training
set. If the robot explores unknown areas, it is likely to encounter terrain it has never seen
before. In this case, the new terrain will be classified wrongly as a class from the training
set. Unlike the other approaches, the one presented by Brooks [8] can classify terrain
as “unknown”. This occurs, however, if a test example is equally similar to two terrain
classes, and does not indicate that the current terrain is new. A possibility to detect new
terrain is novelty detection which detects if a test sample is dissimilar to the training set
(and therefore novel). Novelty detection approaches have been presented, for example,
based on nearest-neighbor techniques [15], string matching [16], multi-layer perceptrons
[17], one-class support vector machines (SVM) [18] or habituation [19]. An overview
over different novelty detection methods can be found in [20,21].

In the paper at hand, we present a vibration-based terrain classification system that is
able to detect if the robot traverses a ground surface it has not been trained to identify. We
achieve this by novelty detection based on Gaussian mixture models (GMM) which have
been sucessfully used for novelty detection in other domains, e.g. the detection of masses
in mammograms [22] or sensor fault detection [23]. We chose GMMs because they are
relatively simple and fast. In initial experiments, they also performed better than one-
class SVMs. If in our system the robot has collected enough samples of a new class, this
class is added to the model online. Our experimental results show that the classification
performance of automatically learned models is only slightly worse than the performance
of models that were trained manually on the same classes.

The rest of this paper is organized as follows. Section 1 gives an overview of our
system and Section 2 describes the components in more detail. Section 3 presents our
experimental results. Finally, Section 4 concludes the paper and suggests future work.

1. System Overview

The first step in our system is an offline training phase. As training data, we use vibration
data of a number of terrain classes that are known to the robot right from the start. We
represent vibration data by accelerations measured in three directions: perpendicularly
to the ground floor (z-acceleration), left-to-right (y-acceleration) and front-to-back (x-
acceleration) [10]. We split these x-, y- and z- vibration signals into smaller segments
corresponding to a period of 1 s. At a measurement frequency of 100 Hz, this leads to
three 1×100 vectors per terrain segment. We then transform each vector individually
to the frequency domain using a log-scaled power spectral density (PSD), as suggested
by Brooks [8]. After this, we concatenate the PSDs of the x-, y- and z- vibrations of
a terrain segment to create the feature vector of the segment. Next, we normalize the
feature vectors in the training set such that each feature has mean 0 and standard deviation
1. Additionally to such a feature vector, our system holds two other representations for
a terrain segment. The first one is the feature vector reduced by principal component
analysis (PCA) to dimension 1×20. The second one is formed by the raw acceleration
data of the segment. In each stage of the system, the appropriate representation is used.
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Figure 1. Overview of the classification phase of our system.

To complete the training phase, we train a k-nearest-neighbor (kNN) classifier on the
initial training set. Additionally, we create an initial set of Gaussian mixture models for
novelty detection.

The classification phase is depicted in Fig. 1. This phase forms a repeating cycle
starting with the collection of a new one-second terrain segment and the computation of
the corresponding feature vector f . In the following step, the novelty detection method
checks if f belongs to one of the known classes (f is “accepted”) or if the class of f seems
to be unknown so far (f is “rejected”). In case of acceptance, the kNN classifier predicts
the segment’s terrain type. Next, the system decides whether to add f to the training set.
Being able to update existing classes is especially useful for increasing the number of
training examples of newly created classes until the training set is balanced.

If the new terrain segment f is “rejected”, the system decides if f should be stored
in a buffer for further use, or if f is discarded. This step is an attempt to separate rejected
outliers of known classes from truly unknown terrain segments. The next stage checks
if the number of stored feature vectors in the buffer exceeds a given threshold. This
indicates that enough examples of the unknown class are available to create a new class.
In this case, the classifier must be retrained and new GMMs for novelty detection must be
computed. Finally, the system tries to assign some properties like hardness or bumpiness
to the new class.

2. System Components

2.1. Novelty Detection Using GMMs

The purpose of the novelty detection stage is to predict whether or not a newly aquired
terrain segment f belongs to a class that is contained in the training set. For this purpose,
we follow a novelty detection approach described in [24]. The main idea is to model the
distribution of the available training data by a Gaussian mixture model. If a test example
cannot be explained by the model, i.e. has a low probability given the model, it is likely
to belong to a class that is not present in the training set. Our terrain classification system
works on the feature vectors whose size have been reduced by PCA to dimension 1×d.
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Figure 2. a) GMM with three spherical Gaussians fitted to vibration data (100 examples per class) of asphalt,
gravel and boule court. Grass is used for testing. The centers of the Gaussians are indicated by a blue plus sign.
Blue circles show one standard deviation error bars. The data dimension was reduced to 2 by applying PCA.
b) Histogram of log probabilities on the training set (dark blue) and on the test set (light purple). Values larger
than 30 were cut for clearer visibility.

In experiments, we found d = 20 to be a good trade-off between novelty detection per-
formance and computation time. Smaller d generally led to decreasing novelty detection
performance, while for larger d, generating GMMs becomes to slow.

In a GMM, a probability density function is expressed as a linear combination of
Gaussian basis functions. If there are M Gaussians, the model is given by

p(x) =

M∑

j=1

P (j)p(x|j), (1)

where the mixing coefficient P (j) can be viewed as the prior probability of the j-th com-
ponent, and the p(x|j) are the Gaussian component density functions. By constraining
the mixing coefficients by

∑M

j=1
P (j) = 1 and 0 ≤ P (j) ≤ 1∀j = 1, . . . , M and

having
∫

p(x|j)dx = 1, the model represents a probability density function.
Each of the Gaussian densities is represented by a mean vector µj of dimension

d and a covariance matrix Σj . We use spherical Gaussians with Σj = σ2

j I, where I

is the identity matrix. Fig. 2 a) shows an example of a GMM with three Gaussians fit-
ted to vibration data. In practice, we use 16 Gaussians to form a GMM. For fitting a
GMM to given data in an unsupervised fashion, one must determine the parameters of
the GMM, i.e. the means and standard deviations of the Gaussians. This is done by max-
imizing the data likelihood or, equivalently, by minimizing the negative log likelihood
−

∑N

n=1
log p(xn) of the data, where N is the number of data points. To solve this prob-

lem we follow the common approach to use the expectation-maximization (EM) algo-
rithm [25]. The EM algorithm is initialized by the result of five iterations of K-means
clustering. For both the initialization and the fitting of GMMs to data, we use the Netlab
Matlab toolbox [24].



For novelty detection, we first use the GMM to compute the log probabilities
log p(xi) of all training examples. To identify a test vector f as novel, its log probabil-
ity log p(f) must be lower than the log probability of most training examples. Fig. 2 b)
illustrates this method by comparing two histograms: the histogram of log probability
of the training set and the histogram of log probability of test examples whose class is
not in the training set. In practice, our terrain classification system computes a log prob-
ability threshold tp below which test examples will be identified as novel. The higher
tp, the more samples belonging to unknown classes are be recognized as unknown, but
also more (outliers) of known classes. The smaller tp, the more test samples of unknown
classes are misclassified as being known, but also more known samples are correctly
accepted. Experimentally we found that good results can be obtained by setting tp such
that the log probabilities of 99% of the training data are above the threshold.

The K-means clustering, which initializes the EM algorithm, is initialized randomly.
Depending on the random starting values, the minima found by the EM algorithm may
be suboptimal, which can lead to suboptimal GMMs. Therefore, we use ten GMMs for
novelty detection instead of a single one. Each of these GMMs gives an individual nov-
elty prediction for a test example f . A voting scheme then marks f as novel if more than
half of the GMMs rejected f .

2.2. Classification using kNN

As our system must be able to frequently update its classifier online, we use the k-
nearest-neighbor algorithm, because its training is extremely fast. Additionally, despite
its simplicity, we found that kNN performs very well for vibration-based terrain classifi-
cation [26]. Training the kNN simply means to store all training vectors xi. To classify
a test vector f , the distances di of f to all xi are computed and the k training vectors
with the smallest distances are selected. The predicted class is the one that is most fre-
quent among the selected vectors. If there is a draw, a random label is chosen from the
winners. We use k = 10 in our experiments, because in [26], we found k = 10 to work
best among k ∈ {1, 2, 5, 10, 15}. As source data, we use the PSD feature vectors of full
dimension.

2.3. Update of a Known Class

Having classified a terrain segment f as a known class ki, the system decides whether
to update the training set with f . Currently, our system has a fixed upper limit of 100
training examples per class. When a new class is created, however, this class typically
has fewer members. If the robot traverses further examples of the new class, they are
added to the training set until the new class reaches the maximum number of members.
In order not to update the model by wrongly classified test examples, we only add test
vectors whose predecessor was classified as the same class. If one changes the condition
so that more than only the preceding terrain segment must be of the same class, less
samples are added. These samples, however, are also more likely not to be outliers. Each
time we update a known class, we must recompute the GMMs on the updated training
set. Thus to save computation time, we do not update the model after each selected test
sample, but whenever 10 such samples have been stored in a buffer.



2.4. Creation of a New Class

Before the system adds a new terrain class, a sufficiently large number q of examples of
the unknown class must be available. Thus, a rejected terrain segment f is first stored in
a buffer. To prevent outliers of known classes from being stored, f is only added if either
the preceding or the successive example is also added. For the same reason, the system
additionally possesses a forget mechanism. If no terrain segment is added to the buffer
during a fixed time t (currently, we use t = 10 s), the oldest entry of the buffer is deleted.

As soon as the number of buffer entries exceeds q, a new terrain class is created
from the buffer entries. In our experiments, we use q = 20, which enables fast learning
of new classes. If there is a frequent change of terrain classes, this relatively small q also
reduces the chance of creating new classes containing different terrain types. To update
the model with the new class, three steps are necessary. First, the kNN must be retrained
by simply adding the samples of the new class to the training set. Second, the PCA must
be recomputed on the updated training set. Finally, new GMMs for novelty detection are
created on the version of the updated training set that has been processed by PCA.

2.5. Estimation of Class Properties

When a new class is created, its physical properties are unknown, because there is no
label like “asphalt” or “grass” indicating the properties. Therefore, our system tries to
assign the properties “hardness” and “bumpiness” to the new class based on its raw vi-
bration data. This section only shortly describes this procedure, because this is not the
focus of this paper and our research in this direction is still in the beginning.

In experiments on raw vibration signals of different terrain surfaces, we identified
some values computed from the signals that can serve as a hint for hardness and bumpi-
ness. For example, the absolute value of the maximum and minimum of the y- and z-
vibration typically is smaller the softer the surface, because soft surfaces dampen the
vibration. An example of an indicating feature for the bumpiness is the number of sign
changes in the x- or y-vibration signal. Lower numbers indicate bumpier surfaces. Dur-
ing big bumps, the acceleration stays positive or negative for a longer period, whereas
for flat surfaces, the acceleration changes more rapidly between being positive and nega-
tive. These values are, however, often not characteristic enough when looking at a single
terrain segment but only when averaged over a sufficiently large number of examples of
a class.

Our current system computes a number of such values that measure hardness and
bumpiness for each class. By comparison to a threshold, each measure casts a vote for
hard or soft (or bumpy or flat). The largest number of votes per property finally leads to
a label for the class, for example “hard and bumpy”.

3. Experimental Results

We acquired experimental data with our RWI ATRV-JR outdoor robot (Fig. 3 a). The
robot is equipped with an Xsens MTi three-axis accelerometer working at 100 Hz. At
speeds of around 0.5 m/s, the robot traversed four different ground surfaces: asphalt,
gravel, grass and the surface of a boule court (Fig. 3 b). The number of terrain segments



Figure 3. a) Our RWI ATRV-JR robot, equipped with an Xsens MTi sensor. b) Terrain types we used in the
experiments: asphalt (1), gravel (2), grass (3), boule court (4).
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Figure 4. Number of samples per class in the evaluation dataset, the initial model and the test run for the
experiment with one unknown class.

is 513 for asphalt, 323 for gravel, 572 for grass and 579 for the boule court, which
corresponds to about 33 minutes of robot drive. As depicted in Fig. 2 a), grass and gravel
are relatively well seperated from the other classes. However, a considerable overlap
exists between asphalt and boule court. This overlap does decrease, but it does not vanish,
when more than two dimensions are used.

3.1. Experiments with One Unknown Class

In the first experiments we present in this paper, we trained the system on three classes
and left one class unknown. Before starting an experiment, we split the data into parts
(Fig. 4). Firstly, we put aside 100 evaluation examples per class. We classified the evalu-
ation data at the end of the experiment using the final, automatically updated model, and
compared the results to the predictions of a manually trained classifier which knows all
classes from the start. Secondly, we use 100 examples of each known class to train the
initial model. With the remaining data, we simulated a test run of the robot. In such a run,
the system is first presented half the examples of each known class. Then, the system en-
counters half of the unknown examples. After that, the robot traverses the remaining half
of all classes. In the first block of the test run, i.e. from the beginning until a new class
is created from the unknown examples, most known examples should be accepted, and
most unknown examples should be rejected. In the subsequent second block, all classes
are known, so only a small number of test examples should be rejected. We executed
experiments for all possible combinations of known and unknown classes. Additionally,
we repeated each experiment five times with a permuted data order such that the training,
test and evaluation sets are different each time.



Table 1. Average rejection rates (%) of the experiment with one unknown class ± standard deviation.

Block 1 Block 2
Known examples 2.74 ± 0.34 3.51 ± 0.89

Unknown examples 71.01 ± 23.22 (no unknown class exists)
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Figure 5. True positive rates on the evaluation dataset: manually trained (left) and automatically trained clas-
sifiers started with one (middle) or three (right) unknown classes.

Tab. 1 summarizes the percentage of test examples per block that were rejected by
the novelty detector. From the known examples, only a small fraction was rejected. The
rejection rate in the second block is a little larger than in the first block. This is because
newly created classes consist of only 20 examples in the beginning. These 20 examples
are not enough to explain almost all of the new classes’s examples. For the examples
belonging to unknown classes, the average rejection rate is over 70%. Without novelty
detection, all of these examples would be accepted and classified wrongly. However,
the large standard deviation of this value shows that the rejection rate differs greatly
depending on which class is unknown. If there is little overlap with the known classes,
the rejection rate is high, e.g. over 99% for grass. If there is a considerable overlap with
one or more known classes, the rejection rate is lower, e.g. about 45% for asphalt.

Fig. 5 compares the mean true positive rate (TPR) on the evaluation dataset, achieved
by the automatically updated system (96.65%), to the TPR of a manually trained kNN
classifier (97.43%). These TPRs differ only slightly, as well as the rates for the individual
classes. Only for the boule court, which has a considerable overlap with asphalt, there is
a gap of about 2.5%. Note that in the automatically generated training set, newly added
classes will only have little overlap with the other classes. The reason why the TPR on
asphalt is better than on boule court is that some boule court test examples are spread
in the main asphalt area, whereas much fewer asphalt test examples are in the main
boule court region (Fig. 2 a). Note that all classes in our evaluation dataset have the
same number of test samples. Therefore, the mean true positive rates correspond to the
accuracy measure.

3.2. Experiments with Three Unknown Classes

In the second experiment, the system started with a single known class k1 and three
unknown classes u1, u2, u3. We used the same data split and setup as in the first
experiment, but with the following order of appearance of classes in the test run:
(k1, u1, k1, û1, u2, k1, û1, û2, u3, k1, û1, û2, û3). ûi denotes that the i-th unknown class
already has been added to the model, which should be the case if the system works well.
We repeated the experiment for all 24 possible combinations of known and unknown
classes, and repeated this five times for each combination with a permuted data order.



Table 2. Rejection rates (%) of the experiment with three unknown classes ± standard deviation.

Block 1 Block 2 Block 3 Block 4
Known examples 6.83 ± 2.62 9.06 ± 2.11 7.73 ± 1.85 6.61 ± 1.21

Unknown examples 92.07 ± 10.56 85.65 ± 13.14 77.80 ± 15.83 -

Compared to the first experiment, the rejection rates for known classes are larger
now (Tab. 2). The main reason is that during the experiment, the average number of
training examples is smaller, because the three new classes start with only 20 examples.
Thus, the explanatory power of the training set is lower on average. On the other hand,
the rejection rates for unknown examples are also larger than in the first experiment.
Again, the rejection rates vary depending on overlaps of the unknown class with known
classes.

The mean TPR on the evaluation dataset using the final, automatically trained model
is 95.22%, which is about 2% less than the TPR using a manually trained kNN (Fig. 5).
Again, the boule court is classified significantly worse than the other classes.

On a 3 GHz Pentium 4 PC with 1 GHz RAM, we measured the following computa-
tion times for our Matlab code. When using the maximum number of training examples
(400), computing the PCA took about 0.085 s. On average, novelty detection for one
vector only required about 0.34 ms. kNN classification took about 4.9 ms per test vector.
The time for training the kNN is negligible. Creating the novelty detector is the compu-
tationally most expensive part, because 10 Gaussian mixture models must be fitted to the
data using the EM algorithm. When using maximally 20 iterations of the EM algorithm,
fitting one GMM took about 0.160 s if the training set contains 400 examples. In this
case, creating a new class (computing the PCA + creating the novelty detector) would
take about 1.685 s. Using a C++ implementation, this should be possible in less time.

At the end of all experiments, the system updated all unknown classes to 100 exam-
ples. It assigned the following properties to the classes: asphalt is hard and flat, gravel is
hard and bumpy, grass is soft and bumpy, and the boule court is hard and flat. Depending
on the weather, the boule court could also be soft. As we recorded our data on a dry
summer day, however, the boule court actually was hard and the assignment is correct.

4. Conclusion

We presented a vibration-based terrain classification system that is capable of identifying
terrain classes that are not included in the training set. When the robot has collected a
sufficiently large number of examples of the unknown terrain class, it adds a new terrain
class online. Our experiments showed that a classifier trained by our system in an online
fashion has a classification performance which is only slightly worse compared to a
manually trained classifier to which all classes were known beforehand.

A problem for the current system appears if different unknown terrain types follow
each other closely. Then, a new class will be possibly created containing more than one
physical terrain type. We are currently searching for methods to detect such situations.
Additionally, we will further improve our methods to assign properties to new classes.
We will also investigate alternative novelty detection methods to GMMs. Furthermore,
we want to implement the system in C++ instead of Matlab to achieve accelerated com-
putation times for the model update.
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