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Abstract

The localization of mobile systems with video data is a challenging field in robotic vision research. Apart from support
technologies like GPS, a self-sufficient visual system is desirable. We introduce a new heuristic approach to outdoor
localization in a scenario with sparse visual data and without odometry readings. Localization is interpreted as an
optimization problem, and a swarm-based optimization method is adapted and applied, remaining independent of the
specific visual feature type. The new method obtains similar or better localization results in our experiments while
requiring only two-thirds of the number of image comparisons, indicating an all-over speed-up by 25%.
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1. Introduction

Localization with mobile robots may be achieved
through a number of ways. Besides environmentally
installed support architectures such as radio beacons
or GPS, the usage of universal visual features is an
appealing approach to increase independence and
robustness of mobile systems. Cameras may serve
as small, cheap, and yet powerful sensors for vari-
ous surroundings and deliver a large amount of data,
which, as biological organisms show, are highly valu-
able for orientation in natural environments. For vi-
sual localization, widely used techniques consist in
combining a feature-based image similarity measure
with a nonlinear Particle Filter (PF).

The paper at hand takes a closer look at a sce-
nario with sparse visual data and without odometry,
where a typical PF localization approach was em-
ployed using an image similarity measure, the Scale
Invariant Feature Transform (SIFT) [1]. Video data
can easily be produced, but are extremely memory-
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consuming if densely collected. Also, sparse visual
data can be maintained and updated easier, e.g., by
driving through the streets of a city environment
and taking few, linearly ordered pictures.

The task of visual localization consists in finding
a matching location by visual features in a database
containing the environmental map. SIFT produces
relatively reliable local image features based on
structural interest points and may be used to rec-
ognize objects or locations in visual images with
some robustness under changing illumination and
direction of view. SIFT is a popular method for
visual applications, but comparing SIFT features is
an expensive operation and often a bottleneck when
the database is large. Some researchers compare a
trial image to all images in the database and keep
the database slim using pruning methods [2, 3]. An-
other approach uses a particle filter to concentrate
the comparisons on a smaller subset of the features
in the database for which a match is expected with
high probability [4]. Database tuning can be done
offline, while the latter method may still reduce the
number of online image comparisons.

Besides typical proprioceptive odometry, vision
can be used to obtain odometry estimates, e.g., from
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Fig. 1. RWI outdoor robot “Arthur”.

feature tracking [5, 6] or optical flow [7]. Yet, these
techniques are relatively expensive with respect to
computation time and usually require a specific lo-
cal visual feature type. Since, in large-scale scenar-
ios, very diverse platforms may be employed, our ap-
proach remains independent of the specific feature
detector. Therefore, we only presume an image sim-
ilarity measure of a certain distinctness comparable
to SIFT, and we do not employ optical flow.

A wide range of feature types have been used for
visual robot localization. Besides global features,
e.g., PCA-based [8] or Integral Invariant features
[9], local features such as SIFT have been success-
fully employed in indoor [10, 11] and in outdoor en-
vironments, over longer time scales, and in spite of
occlusion [12, 13, 14]. Since local approaches extract
a diverse set of local descriptors from an image,
they are usually more robust, but also more time-
consuming than global feature methods. In [15],
Tamimi presents a wide overview of visual features
for robot localization.

Particle filters have been used for robot localiza-
tion for some time [16], and numerous instances have
been proposed [17, 18, 19]. For visual tracking, Soto
employed a PF with adaptive particle count [20],
while Zhou et al. presented an approach in which
motion velocities and the noise level are adapted
dynamically [21]. The Kernel Particle Filter (KPF)
has been proposed by Chang et al. in [22] and lately
been successfully combined with a heuristic called
Genetic Evolution by Wang et al. [23]. A number of
evolutionary extensions to the more general Markov

chain Monte Carlo method are presented in [24].
Heuristically augmented particle filters have also
been proposed by Treptow [25] and shown to be ef-
fective in reducing the particle count in real-time
object tracking.

Considering swarm methods, the original Particle
Swarm Optimization method (PSO) was proposed
by Kennedy and Eberhart [26] and shown to be a
valuable technique in different areas, of which op-
timization in dynamic environment is most related
to our work, see, e.g., [27]. Random perturbation
within particle swarms has been proposed by Liu et
al. [28]. Vahdat et al. [29] employed PSO for indoor
robot localization with laser sensors without consid-
ering the dynamic tracking phase.

The rest of the paper is organized as follows: Sec-
tion 2 gives a short introduction to particle filters
and points out some of their properties with respect
to localization. In Sec. 3, the basic particle swarm
optimization method is explained, and Sec. 4 sug-
gests a formulation of the localization problem in the
context of optimization. Section 5 details our adap-
tations to PSO for the localization approach, also
called Dynamic PSO (DPSQO). Section 6 introduces
the experimental setup, the results are presented in
Sec. 7, and we conclude with Sec. 8.

2. Particle Filter-based Localization

Particle filters essentially represent the probabil-
ity density function (pdf) of the estimated system
state by a set of “particles”, each of which encodes
a single possible state. The particles are iteratively
propagated using control inputs (the motion model)
and associated with importance weights represent-
ing their individual probability given new measure-
ments (the measurement model). The weighted sum
of the particles represents the estimated state. In vi-
sual localization, a particle represents a hypothesis
on the system’s position (and possibly its orienta-
tion and velocity) and is associated with a training
image. The pdf then estimates the pose in the envi-
ronment at a time. The estimation is improved iter-
atively by reweighing the particles according to the
similarity to new test images.

Theoretically, if the number of particles is very
large, the particle filter estimate will approach the
optimal Bayesian state estimate [30], which is opti-
mal with respect to the system models. In practice,
however, the number of particles is limited due to
the computational costs, and thus often only rela-



tively few particles can be used, a fact from which
some problems arise.

As the variance of the importance weights can
only increase over time [31], it is inevitable that af-
ter some iterations most of the particles grow “im-
possible” in that their importance weights tend to
zero, and much of the computation time is spent
propagating highly improbable states. This may be
avoided by using an importance resampling step, in
which the particles are drawn anew from the cur-
rently estimated pdf at each iteration. Thereby, at
iteration ¢, only those regions — and thus training
images — are regarded which have a high probabil-
ity given the information of ¢t — 1 earlier test images
and the system models.

This diversity loss, however, abets localization
failure in scenarios where jumps in the state space
may occur — known as the kidnapped-robot problem.
To counter this, a common technique is to reini-
tialize a small ratio of particles randomly in each
turn to keep the state space thinly covered (random
injection). Other approaches try to detect kidnap-
ping situations and handle them in a specialized
way, facing the problems of possible misdetection
and applying appropriate recovery.

In the scenario we are looking at, jumps in the
state space are  to some extent part of the under-
lying method, namely visual localization with sparse
visual images of the environment. Large numbers of
particles are required to cover the state space and
allow for good localization, while comparing visual
images usually requires computationally expensive
operations, so a reduction of the particle count is
essential for quick localization. Then again, using
visual features allows for making some helpful as-
sumptions and provides a high information density,
which we exploit by interpreting localization as a
dynamic optimization problem.

3. Particle Swarms

One branch of heuristic methods called Particle
Swarm Optimization (PSO) is especially useful in
dynamically changing domains [27, 32]. PSO takes
as basic idea the flocking behaviour of birds and
searches for the solution using a population of poten-
tial solutions, called “particles” or “individuals”. In a
generational loop similar to evolutionary optimiza-
tion, the individuals are iteratively updated using
problem-specific knowledge to evaluate their current
positions, resulting in a “fitness” value. Each indi-

vidual I has a position x(t) and is assigned a travel
velocity v(t). The individuals are arranged in a log-
ical topology, by which a neighborhood N; of other
individuals is defined for each I. For the iteration at
time t, the velocity vector of an individual is then
attracted to the best location p” in the individual’s
history H; = U’;,Zo{w(t')} on the one hand, and to
the best location p™ found by its neighbors in N; on
the other hand, see Egs. 1 and 2, defined by compo-
nents of « and v. The parameters ¢; and ¢- control
the impact of the attractors p” and p™, while r; and
ro are uniform random samples within the interval
[0, 1] used as stochastic components. The factor w is
called inertia and controls the impact of the past ve-
locity. For this work, we use a simple star topology
as neighborhood relation, implying that all parti-
cles are neighbors and are attracted to the currently
“fittest” position in the population.

vit +1) = wui(t) + prr1(pf — i) + dar2(pf — i) (1)
2t +1) = 2a(t) + vi(t +1) 2)

In typical PSO implementations, the velocity vec-
tor is limited to a maximum velocity vy by ensuring
that ||v|| < vo. A number of extensions have been
introduced to improve PSO for dynamic optimiza-
tion problems, of which we use the following;:

Invalidation of p” at changes of the environment.

When expecting the hardest case, which is con-

tinuous movement, p” is replaced by a random

perturbation term;

Quantum particles, similar to random injection

used with PF. Quantum particles have no speed

but are stochastically distributed over an area
around the last position estimate within which
movements are typically expected;

High-energy particles, which are allowed higher

speeds than usual particles and have the same

properties otherwise.
A heuristic approach reduces the system complexity,
and PSO typically needs only few particles for good
results, which is desirable for visual localization.

4. Visual Localization as Optimization

Problem

Let S be the set of all possible camera images.
Presuming a training set M C S of images corre-
sponding to known positions as a given world map,
the goal of localization is to deduce a position esti-
mate based on test images taken online with respect
to the training set. Our formulation of visual local-



ization as optimization problem is in analogy to the
resampling criterion of a PF: If a particle has a high
probability of fitting the measurement, it also has a
high value or “fitness” in the sense of optimization.
The fitness value of a particle with position € X
at time ¢ may be expressed using a similarity mea-
sure of two arbitrary images, m : S x S — [0, 1]:

fra(,t) =m(ine (@), 5(t)) - (3)
C(dist(z, par (ins(2))))

Herein, m compares the nearest training image
corresponding to the particle, iy : X — M, and the
current test image s(t) € S. py : M — X delivers
the known position for an image which is part of the
map. The penalty function ¢ : R — R reduces the
fitness for particles far away from the training data,
because localization is feasible only where there is
training information available. This is done similarly
to [4] in terms of a Gaussian function. The problem
of tracking a position now corresponds to a dynamic
optimization problem: find the optimum x* of fj,
at a time and follow it ensuring a plausible path.

In an approach with sparse visual outdoor data,
a distinct similarity measure is desirable and can
be implemented using SIFT [1]. The SIFT match
function compares sets of local SIFT features of im-
ages A and B by calculating the ratio of single fea-
ture matches to all possible matches. A singe fea-
ture match for a feature a € A is detected by look-
ing at the two closest features of a within image
B, bs1,ba,2 € B, by a distance measure d in fea-
ture space: d(a,bs1) < d(a,be2) and Vb € B\
{ba1,ba,2} : d(a,bs2) < d(a,b). Feature a is said
to match feature b € B if b is its closest neighbor
(b = bg,1) and the distance ratio with respect to the
second closest neighbor b, 2 is above a threshold 9,
typically § € [0.6,0.8]. Thus, for the set of single
feature matches of A in B, M 4p, it holds that

d(a, ba,l)
d(a, bayg)

Specifically, we use a more robust symmetric vari-
ant and define the set of symmetric feature matches
M 5 for pairs (a,b) that fulfil @ = ap1 A b = bg 1,
meaning that they are reciprocal nearest neighbors:

a€ Myp & < 6.

(a,b) e Mg a€ MapANbe Mpa

The match function m can now be expressed as

m(A,B) = %, where |A] stands for the

number of features extracted from image A, so

Fig. 2. Example images of the datasets, sunny (left) and
cloudy (right).

min(|A|,|B|) is the maximum size of M7%5. The
scalar product, d(a,b) = (a,b), is used as the dis-
tance measure on feature vectors, since it is a metric
for normed vectors and approximates the Euclidian
distance for small angles Z(a,b). ¢ is set to 0.6.
Since the target function f depends on the current
view and thus on the robot location, the value of a
particle at a fixed position & changes substantially
when the robot moves. The problem of tracking a po-
sition therefore corresponds to a dynamic optimiza-
tion problem, aiming for finding the optimum x*(¢’)
of f at time ¢’ and then following it while ensuring
a plausible path. A dynamic optimization method
needs to predict potential future optima, while keep-
ing them related to the current state. The velocity
components assigned to PSO particles may be inter-
preted as multiple motion models with respect to a
PF and allow for just that. The actual position esti-
mate can be deduced from the swarm by calculating
the weighted swarm center. In optimization, how-
ever, the particle set is not assumed to correspond
to the statistical solution distribution at a single in-
stant, but rather every particle is seen as a possible
solution in the light of the fitness function. Due to
that and the assumption of a distinctive similarity
measure on sparse visual data, we just pick out the
best particle from the swarm as position estimate.

5. Adapting PSO to Visual Localization

In scenarios with sparse visual data, the particle
filter approach is time-consuming, mainly because it
requires a relatively large number of particles com-
pared to the number of available images. As PSO
is known to perform well in dynamic environments,
we adapted PSO to this class of localization prob-
lems. The dataset did not contain odometry, so the
velocity of particles could also be used to estimate
the robot’s speed.



Basic algorithm

The fitness of an individual at time ¢ depends on
the camera view at that time and is calculated as the
SIFT similarity between the current test image and
the training image closest to the individual’s posi-
tion, modified by a penalty function if the individual
is far away from the position of the training image
(Eq. 3). The resampling is replaced by the PSO for-
mula, adapted to the dynamic localization case in
the following way:

vi(t 4+ 1) = wv;(t) + gorodive + dar2(py (t) — zi(t)), (4)
2i(t+1) = 24(t) + vi(t + 1). (5)

Instead of the p”-component, a random term
is used therein, because we expect a continuously
changing environment where historically good po-
sitions quickly lose their relevance. ¢ is the weight
of the random perturbation, the additional param-
eters J; and vy stand for the range of axis 7 and the
maximum velocity of a particle, respectively. The
maximum velocity vy is expressed relative to the
range and also serves as a scaling factor to keep ¢q
in similar dimension as ¢, and ¢5. Effectively, the
main attractor p™ is thereby turned into an area of
attraction around p™ of dimensions p; = %&-vo .

For the fraction ¢, of quantum particles, the up-
date takes the following form:

zi(t +1) = p(t) + 6;N (0, Gu) (6)

The parameter ¢y defines the standard deviation
of the quantum particles around p™. The formula
is similar to the standard Gaussian motion model
employed with the PF. The quantum ratio ¢, is set to
10% by default, g to 0.15, and a fraction of particles
E; = 10% is allowed a velocity three times vy to ease
quick optimum tracking.

The inertia is usually set w < 1 to allow for con-
vergence. For dynamic tracking, however, it needs
to be large to stress correlation of movement, so we
set it to 0.99. The best ¢-settings in PSO for a prob-
lem class are often established by a parameter grid
search. The trade-off between the ¢-values in Eq. 4
remains of similar importance as for standard parti-
cles, now trading between random exploration and
local exploitation. Random perturbation is neces-
sary for particle diversity, but reduces the overall
tracking quality if too dominant. We found ¢4 = 0.6
to perform well, while the method is pretty robust
towards settings of ¢¢ € [0.005, 1.5], where smaller

3

values allow closer convergence but increase the dan-
ger of losing the track. We suggest ¢g = 0.3 as a de-
fault. The full algorithm is termed “Dynamic PSO”
(DPSO) for the rest of this paper.

Self-adaptive parameters

We introduce two self-adaptive mechanisms, one
of which dynamically adapts vy by calculating the
speed vy, of the swarm'’s center of mass and holding
the relation vy ~ 2v4,. This is done by looking at
the Exponential Moving Average (EMA, a = é) !
of vy, and adapting vy by 10% after an iteration ¢t if
%zw(t) does not lie in [0.4,0.6]. This enables the
method to react to speed changes while providing
robust tracking at any speed. When tracking the
location, v, also gives a good estimate of the robot’s
speed in absence of or in addition to odometry.

SIFT features offer robust image similarity infor-
mation in outdoor areas, still some situations are
ambiguous. To counter this and to cope with the
kidnapped-robot problem, we include a mechanism
to dynamically adapt swarm diversity. To do this,
we assume the image similarity function to deliver
a quasi-absolute measure of similarity. For local fea-
ture detectors such as SIFT, this can be delegated
to the descriptor count: If the best match in the par-
ticle set is still bad, e.g., matching less than 5% of
local features, it may be an ambiguous position or
the localizer lost the real position. If this happens
for several iterations in a row, we start a recovery
phase and boost particle diversity by increasing vy,
¢r and decreasing ¢o towards predefined limit val-
ues. ¢ may be reduced close to zero (2 min = 0.01),
reducing the attraction of the best matching parti-
cle, which is, in this case, still bad. The velocity and
¢» should be allowed values large enough to quickly
start exploring the problem space and overcome pos-
sible jumps due to kidnapping. Without further tun-
ing, we preset ¢, ,,,,,, t0 20% and allow vg ;a2 = 0.1,
meaning that in case of position loss, particles may
cross the search space in about 10 iterations. As soon
as the best matches increase in quality again, the re-
covery phase ends and the parameters return to their
initial values. Preliminary experiments showed that
the adaption of vy improves tracking and the adap-
tion of diversity improves robustness plus it solves
the kidnapped-robot situation, see Sec. 7.1.

I For a sequence of values (Yo,Y1,Y2,...): EMAy(0) = Yp,
EMAy(k—l- 1) = (1 — a) . EMAy(k) +aYy, k€ Ng



6. Experimental Scenario

In the experiments in [4], we used images col-
lected by our RWI ATRV-JR outdoor robot, Arthur
(Fig. 1). We took one 320x 240 pixel grayscale image
per second with the left camera of the Videre Design
SVS stereo camera system mounted on top of the
robot. As we used a constant velocity of about 0.6 =,
the positions of subsequent images are about 0.6 m
away from each other. The robot is also equipped
with a GPS system, which we used to get ground
truth data for the position of each image. Under
ideal conditions, the accuracy of the GPS is below
0.5 m. However, due to occlusions and reflections by
trees and buildings, the GPS path sometimes signif-
icantly deviated from the real position or contained
gaps. As we know that we moved the robot on a
smooth trajectory, we eliminated some wrong GPS
values as outliers. As we also used a constant veloc-
ity, we closed gaps by linearly interpolating between
the positions before and after the gap.

We recorded two different datasets, each consist-
ing of three rounds around our institute building.
One round is 260 m long and contains about 360 to
400 images. The first three rounds were collected un-
der sunny conditions. However, there are some short
sections (about 5 to 10 s long) during which the sun
was covered. Six weeks later, we collected the other
three rounds on a cloudy day. The images contain
buildings, streets, as well as some vegetation. Ad-
ditionally, there are dynamic objects, namely cars
and people passing by. We also traversed a park-
ing lot, where different cars were parked on the two
days. Exemplary images from both sets are shown
in Fig. 2, whereas the layout of the rounds is plotted
in Fig. 3, in which, for clarity, only every 20" image
is marked. As in [4], we reduced the number of SIFT
features by comparing each image to the two neigh-
boring images in the series beforehand and discard-
ing the “noisy” features which could not be discov-
ered in either of the direct neighbors. This speeds up
the SIFT comparison drastically, as about 50% to
80% of the features are left out, while not affecting
later localization performance.

With the two datasets “sunny” and ‘“cloudy”,
three kinds of experiments were conducted. Using
one round as environmental map and treating the
second as online data, we tested sunny vs. sunny,
cloudy vs. cloudy, and sunny vs. cloudy. We did not
test a round against itself, so there are six cases for
the sunny and cloudy only experiments and nine
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Fig. 4. Localization error at different simulated speeds.

for the sunny vs. cloudy experiment. We calculated
the mean error for the three experiments distinctly.
For each case, we repeated the localization run n
times, where n is the number of test images. For
each of these runs, we used a different test image as
starting image for localization.

7. Results
7.1. Adaptivity of DPSO

To demonstrate the effects of the settings for
DPSO, we contrast localization rounds for a single
localization case, namely localizing sunny (round 1)
vs. cloudy (round 1), which is one of the difficult
cases. Where not stated otherwise, DPSO is used
with a swarm size of 80 particles. We varied the
simulated speed of the mobile system in Fig. 4.
Here, the simulated speed v = 1 corresponds to the
original data collection speed of vg ~ 0.6 . For
speeds k times the original one we use every k-th



Table 1
Varying the number of particles for DPSO and PF, see Fig. 8.

Method DPSO-40 DPSO-60 DPSO-80 DPSO-100 DPSO-120 PF-g-100 PF-g-300 PF-1-100 PF-1-300
Mean err. (m) 2.84 2.60 2.54 2.50 2.46 3.95 3.39 2.80 2.38
Avg. comp./image 17.9 22.3 25.9 29.1 32.0 40.8 62.4 42.2 69.6

image for localization only, resulting in the simula-
tion hurrying around the loop at higher speed. In
analogy, a simulated speed of % or % corresponds
to localizing against each image twice or four times
consecutively. In the non-adaptive version, we set
the maximum speed parameter manually to roughly
fit the original speed case. For higher speeds, the
non-adaptive method clearly fails without manual
tuning of the speed limit (Fig. 4).

Figure 5 shows two exemplary runs within the
mentioned scenario illustrating a recovery phase.
The graph in Fig. 5 (a) displays the cumulated error,
momentary speed limit and the exponential mov-
ing average of the swarm speed during the run. Af-
ter the initial convergence phase, the swarm speed
swings around the actually driven speed of vgp ~
0.6%. There are two especially ambiguous situations
around iterations 130 and 300, in which the parti-
cle swarm is prone to lose the track. The more dif-
ficult one, around iteration 300, causes a clear drop
in swarm speed and a raise of the error value. The
real position is lost for some iterations and recov-
ered around step 320, which requires the swarm to
hurry after it with increased speed before resettling.

In Fig. 5 (b), the very same scenario is simulated
with the recovery mode activated. In the difficult
situation around iteration 300, due to ambiguous
image similarity values, a recovery phase is started
and the diversity increased. In effect, the error as-
cent is minor and the velocity swing shorter and of
smaller amplitude. Figure 7 compares the course of
the mean distances of particles within the swarm for
the different runs. The increase in diversity during
recovery is visible around iteration 300. It witnesses
that the decreasing swarm speed is also due to the
swarm diverging, while for the run without recovery,
the swarm size remains similar, and while slowing
down, it has a higher probability of losing the track.

In Tab. 2, the self-adaptive diversity mechanism
comes again into play when a kidnapped-robot sce-
nario is simulated. To do this, the virtual position
after half a simulated round is set to the opposite
of the round by adding n/2 to the current test im-
age index modulo n, where n is the number of test
images. This means that the localization method is
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Fig. 5. Examples of cumulated error, absolut speed and speed
limit for a single run.

Table 2
Comparing adaptive DPSO in the standard and kidnapped
case.

Condition Standard case, Kidnapped case,
mean err. (m) mean err. (m)
Non-ad. 2.56 + 0.71 10.54 + 22.1
Adaptive 2.50 + 0.35 5.58 + 14.2
70 T T T
Online error adaptive
60 F Avg. error adaptive
Online error non-adaptive -
50 b , Avg. error non-adaptive
E w0}
g
5 30 F
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Fig. 6. DPSO in the kidnapped-robot scenario.
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Fig. 7. Nlustrating swarm diversity in the example run.

forced to jump to the opposite side of the playground
after converging for half of the run. The simulated
kidnapping takes place at iteration 182, which is L%J
of n = 365, and causes an abrupt localization error
of about 68 m at that instant. Of course, the kidnap-
ping reduces performance, but the adaptive method
is clearly able to re-trace the position. The mean on-
line localization error of the experiment is plotted in
Fig. 6. The performance of the non-adaptive variant
and the mean localization errors are also shown.

Table 1 and Fig. 8 show results for different num-
bers of particles, demonstrating that even low popu-
lation sizes are able to perform well. The largest pop-
ulation tested here still requires much fewer SIFT
comparisons than the particle filter, cf. Section 7.2.
Smaller populations, admittedly, have more prob-
lems recovering in a kidnapping case. We therefore
use a swarm size of 80 for the final comparison with
the PF.

7.2. Comparison to Particle Filter

In the final test runs for the comparison with a PF
approach, we used the self-adaptive mechanisms and
default settings described in Sec. 5. As our dataset
did not contain odometry, the particle filter was
first employed with a Gaussian motion model with
a standard deviation of 4 m (PF-g), while the sam-
pling weights are calculated in analogy to Eq. 3. An
alternative directed motion model was formulated
for the PF by asssuming a linear motion between two
iterations (PF-1): Each particle is assigned a velocity
vector which is rotated and scaled using zero-mean
Gaussian distributions of standard deviation o,
for the angles and standard deviation o4, for ac-
celeration. In Egs. 7-8, the update step is described
formally. Notice that, therein, v and @ are 2D vec-
tors, and v is first rotated and then scaled by a log-
normally chosen factor modelling change in speed.
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Fig. 8. Comparison of localization error and comparisons per
image with varying particle counts.

v(t 4 1) = eN(OTace) L rot (v(t), N(0, orot)), (7)
x(t+1) =a(t) +v(t+1). (8)

A grid search over the motion-model parameters
Orots Oace; and the initial speed vi,: = |v(0)] was
performed on PF-1 with 300 particles (PF-1-300)
for the more difficult scenario sunny (round 1) vs.
cloudy (round 1) already used in Sec. 7.1. The results
are given in Tab. 3, where error values below 2.60 m
are accentuated to gain a better overview. The
values tested were o,.,; € {20°,30°,40°,50°,60°},
Oace € {1072, 1073,1074, 1075}, and vjpi €
{vr, 2vR, 3vr}, where vg again corresponds to the
actually driven speed.

Interestingly, small deviations in rotation per-
form poorly compared to large ones, and higher
initial speeds are advantageous. The best results
are achieved for 0.,y = 60°, 04ec = 0.001, and
Vinit = 3UR, which corresponds to about 2 7. These
settings imply a high diversity of particles due to
the high velocity and large rotations, where single
particle states do not approximate the real motion.
The smaller the angle distributions, the closer the
PF-1 may converge to the position for short periods,
and the easier it fails in more ambiguous situations.

On average, there are 60 to 80 image compar-
isons performed per iteration for the tested PF-1-300



Table 3

Grid search for the PF-1-300 with linear motion model; displayed are error values in m averaged over 365 runs (cf. Sec. 7.2).

Orot 20° 30° 40° 50° 60°

Oace Vinit VR 2VR 3UR vR 2vRr 3vRp 2ur  3ugr VR 2ur  3vg VR 2uR 3vgr
10—2 5.43 4.22 4.31 4.79 3.55 3.60 4.49 3.34 3.42 4.37  3.22 3.21 4.23  3.12 3.11
10-3 5.70 3.56 3.22 5.16 2.81 2.61 4.77 2.65 2.56 4.54 2.59 2.53 4.51 2.58 2.51
104 5.62 3.45 3.13 5.18 2.72 2.61 4.70 2.60 2.55 4.55 2.54 2.54 4.44 2.54 2.52
105 5.63 3.43 3.14 5.14 2.72 2.61 4.68 2.60 2.56 4.50 2.56 2.54 4.36 2.54 2.53

45 T v T 3 T T 4 Sunny vs. sunny

DPS0-80: Mean particle distance Cloudy vs. cloudy :
40 PF-I-100: Mean particle distance -------- 35 Sunny vs. cloudy &
35 PF-I-300: Mean particle distance -

Distance (m)

50 100 150 200 250 300 350
Iteration

Fig. 9. Comparing swarm diversity of DPSO with PF-1-300.

configurations, and 72.15 for the best configuration
tested. When the particle count for the PF-1 with
the advantageous settings is decreased, the number
of necessary comparions drops only slowly, since the
high speed keeps the diversity permanently high so
that the particles are fairly distributed and many
training images need to be looked at. This is illus-
trated in Fig. 9, where the mean particle distances
per iteration of DPSO-80, PF-1-100 and PF-1-300 are
plotted for the exemplary scenario.

Table 4 and Fig. 10 summarize the mean errors of
DPSO using 80 particles compared to the PF using
100 and 300 particles in all three scenarios. The par-
ticle filter with simple Gaussian motion and 100 par-
ticles (PF-g-100) performs considerably worse than
the other methods and is omitted. Note that the in-
dicated standard deviations refer to full rounds and
are therefore higher than the deviations within spe-
cific pairs of training and test rounds.

Considering the localization accuracy, both the
PF-1-300 and the DPSO-80 variants outperform the
PF-g methods as well as the PF-1 with 100 parti-
cles. This is supported by Student’s t-test on a sig-
nificance level below 0.5% in the three scenarios.
The PF-1-300 achieves a slightly smaller localiza-
tion error than DPSO-80, however it requires a large
number of image comparisons to do so. The DPSO
method needs only half of the comparisons of the
PF-1-100 while yielding better localization, and it
needs less than a third compared to the PF-1-300.

Mean localization error (m)
N

0 K ] b
PF-g-300 PF-1-300 PF-g-300 PF-1-300 PF-g-300 PF-1-300
PF-1-100 DPSO-80 PF-1-100 DPSO-80 PF-1-100 DPSO-80

(a) Mean localization error.

Sunny vs. sunny —
Cloudy vs. cloud
70 Sunny vs. cloudy &

60 11

50

40

30

20
10

o gl ;
PF-g-300 PF-1-300 PF-g-300 PF-1-300 PF-g-300 PF-1-300
PF-1-100 DPSO-80 PF-1100 DPSO-80 PF-1100 DPSO-80

Avg. number of image comparisons

(b) Avg. number of comparisons per test image.

Fig. 10. Final comparison of particle filter to DPSO.

This can be projected onto the real system run-
time, since the SIFT comparison is the most ex-
pensive operation of the localization procedure. The
DPSO iteration with self-adaption can be done in
two loops over the particle population and is there-
fore comparable to a PF with resampling. A SIFT
comparison of the considered dataset took 0.015 s
on average on our test system, a 2.4 GHz dual core
AMD Opteron. The image comparisons for an iter-
ation of the PF-1-300 thus take about 0.9 to 1 s and
a reduction by two-thirds implies saving about 0.6 s
per test image. With regard to [4], where SIFT com-
parisons took about 40% of the computation time
using the PF-g-300 method for localization, an all-
over speed-up by 25% can be expected.



Table 4
Comparison of particle filter to DPSO

PF-g-300

PF-1-100

PF-1-300 DPSO-80

Mean err. (m) Avg. comp. Mean err. (m) Avg. comp. Mean err. (m) Avg. comp. Mean err. (m) Avg. comp.

Experiment per img. per img. per img. per img.
Sunny vs. sunny  2.15 £ 0.29 60.8 2.24 £ 0.29 44.72 1.79 £ 0.30 66.6 1.99 £ 0.36 21.4
Cloudy vs. cloudy 2.06 £ 0.56 55.3 1.92 £ 0.27 38.31 1.43 £ 0.33 62.2 1.47 £ 0.35 20.5
Sunny vs. cloudy 3.28 £ 0.27 60.9 3.11 4+ 0.42 41.62 2.52 £ 0.32 69.1 2.77 £ 0.40 22.3

8. Conclusion

In the work at hand, we have proposed a PSO-
based method replacing a standard particle filter for
localization with SIFT features on sparse outdoor
visual data. As in standard PSO, the particles are
attracted to the best global particle, allowing for fast
convergence. The particles have a velocity compo-
nent with high inertia, thus the dynamically chang-
ing position can be tracked without requiring a cus-
tomized motion model. This is a major advantage,
e.g., for the augmentation of black-box systems with
independent visual trackers.

For distinctive visual features such as STFT, which
provide a quasi-absolute measure of image similar-
ity, a good guess can be made whether the posi-
tion has been lost. In that case, particle diversity is
boosted until a good position estimate is rediscov-
ered. Moreover, dynamic speed adaptation makes
the system robust with regard to manual parame-
ter settings and the robot’s velocity. According to a
comparison to particle filter approaches, the swarm-
based method reaches similar accuracy but requires
substantially fewer of the costly image comparisons.

Our experiments were based on visual images or-
dered linearly within an urban outdoor environment
using GPS ground truth. Similar data can be ob-
tained without much effort in large scale, whereby
the plausibility of the GPS annotations must be ver-
ified. Given that, we are confident that the DPSO
for localization scales well to large datasets. How-
ever, in extremely ambiguous environments such as
forests, the swarm approach may lose accuracy com-
pared to a particle filter, at least while employing
the rather greedy star topology for the swarm. We
intend to test a multi-swarm approach to counter
this issue in such scenarios.

The use of visual sensory and robust features is
the basis for our localization method. The specific
method of image comparison, however, is not fixed,
and the general algorithm can be used with any vi-
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able feature extraction method by just switching the
similarity function. SIFT is a popular choice and
serves well for comparisons to further approaches,
which could be using iterative SIFT [33], SURF [34],
additional geometric constraints or hybrid feature
sets. An analysis of the swarm-supported localiza-
tion with hybrid features in larger scenarios will
therefore be considered in future work.
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