
Swarm-supported Outdoor Loalization with Sparse Visual DataMarel Kronfeld ∗, Christian Weiss, Andreas ZellUniversity of Tübingen, Department of Computer Siene, Tübingen, GermanyAbstratThe loalization of mobile systems with video data is a hallenging �eld in roboti vision researh. Apart from supporttehnologies like GPS, a self-su�ient visual system is desirable. We introdue a new heuristi approah to outdoorloalization in a senario with sparse visual data and without odometry readings. Loalization is interpreted as anoptimization problem, and a swarm-based optimization method is adapted and applied, remaining independent of thespei� visual feature type. The new method obtains similar or better loalization results in our experiments whilerequiring only two-thirds of the number of image omparisons, indiating an all-over speed-up by 25%.Key words: Outdoor robotis, robot vision, visual loalization, swarm intelligene, partile swarm optimization1. IntrodutionLoalization with mobile robots may be ahievedthrough a number of ways. Besides environmentallyinstalled support arhitetures suh as radio beaonsor GPS, the usage of universal visual features is anappealing approah to inrease independene androbustness of mobile systems. Cameras may serveas small, heap, and yet powerful sensors for vari-ous surroundings and deliver a large amount of data,whih, as biologial organisms show, are highly valu-able for orientation in natural environments. For vi-sual loalization, widely used tehniques onsist inombining a feature-based image similarity measurewith a nonlinear Partile Filter (PF).The paper at hand takes a loser look at a se-nario with sparse visual data and without odometry,where a typial PF loalization approah was em-ployed using an image similarity measure, the SaleInvariant Feature Transform (SIFT) [1℄. Video dataan easily be produed, but are extremely memory-
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onsuming if densely olleted. Also, sparse visualdata an be maintained and updated easier, e.g., bydriving through the streets of a ity environmentand taking few, linearly ordered pitures.The task of visual loalization onsists in �ndinga mathing loation by visual features in a databaseontaining the environmental map. SIFT produesrelatively reliable loal image features based onstrutural interest points and may be used to re-ognize objets or loations in visual images withsome robustness under hanging illumination anddiretion of view. SIFT is a popular method forvisual appliations, but omparing SIFT features isan expensive operation and often a bottlenek whenthe database is large. Some researhers ompare atrial image to all images in the database and keepthe database slim using pruning methods [2, 3℄. An-other approah uses a partile �lter to onentratethe omparisons on a smaller subset of the featuresin the database for whih a math is expeted withhigh probability [4℄. Database tuning an be doneo�ine, while the latter method may still redue thenumber of online image omparisons.Besides typial proprioeptive odometry, visionan be used to obtain odometry estimates, e.g., fromPreprint submitted to Robotis and Autonomous Systems 28 February 2009



Fig. 1. RWI outdoor robot �Arthur�.feature traking [5, 6℄ or optial �ow [7℄. Yet, thesetehniques are relatively expensive with respet toomputation time and usually require a spei� lo-al visual feature type. Sine, in large-sale senar-ios, very diverse platforms may be employed, our ap-proah remains independent of the spei� featuredetetor. Therefore, we only presume an image sim-ilarity measure of a ertain distintness omparableto SIFT, and we do not employ optial �ow.A wide range of feature types have been used forvisual robot loalization. Besides global features,e.g., PCA-based [8℄ or Integral Invariant features[9℄, loal features suh as SIFT have been suess-fully employed in indoor [10, 11℄ and in outdoor en-vironments, over longer time sales, and in spite ofolusion [12, 13, 14℄. Sine loal approahes extrata diverse set of loal desriptors from an image,they are usually more robust, but also more time-onsuming than global feature methods. In [15℄,Tamimi presents a wide overview of visual featuresfor robot loalization.Partile �lters have been used for robot loaliza-tion for some time [16℄, and numerous instanes havebeen proposed [17, 18, 19℄. For visual traking, Sotoemployed a PF with adaptive partile ount [20℄,while Zhou et al. presented an approah in whihmotion veloities and the noise level are adapteddynamially [21℄. The Kernel Partile Filter (KPF)has been proposed by Chang et al. in [22℄ and latelybeen suessfully ombined with a heuristi alledGeneti Evolution by Wang et al. [23℄. A number ofevolutionary extensions to the more general Markov

hain Monte Carlo method are presented in [24℄.Heuristially augmented partile �lters have alsobeen proposed by Treptow [25℄ and shown to be ef-fetive in reduing the partile ount in real-timeobjet traking.Considering swarmmethods, the original PartileSwarm Optimization method (PSO) was proposedby Kennedy and Eberhart [26℄ and shown to be avaluable tehnique in di�erent areas, of whih op-timization in dynami environment is most relatedto our work, see, e.g., [27℄. Random perturbationwithin partile swarms has been proposed by Liu etal. [28℄. Vahdat et al. [29℄ employed PSO for indoorrobot loalization with laser sensors without onsid-ering the dynami traking phase.The rest of the paper is organized as follows: Se-tion 2 gives a short introdution to partile �ltersand points out some of their properties with respetto loalization. In Se. 3, the basi partile swarmoptimization method is explained, and Se. 4 sug-gests a formulation of the loalization problem in theontext of optimization. Setion 5 details our adap-tations to PSO for the loalization approah, alsoalled Dynami PSO (DPSO). Setion 6 introduesthe experimental setup, the results are presented inSe. 7, and we onlude with Se. 8.2. Partile Filter-based LoalizationPartile �lters essentially represent the probabil-ity density funtion (pdf) of the estimated systemstate by a set of �partiles�, eah of whih enodesa single possible state. The partiles are iterativelypropagated using ontrol inputs (the motion model)and assoiated with importane weights represent-ing their individual probability given new measure-ments (the measurement model). The weighted sumof the partiles represents the estimated state. In vi-sual loalization, a partile represents a hypothesison the system's position (and possibly its orienta-tion and veloity) and is assoiated with a trainingimage. The pdf then estimates the pose in the envi-ronment at a time. The estimation is improved iter-atively by reweighing the partiles aording to thesimilarity to new test images.Theoretially, if the number of partiles is verylarge, the partile �lter estimate will approah theoptimal Bayesian state estimate [30℄, whih is opti-mal with respet to the system models. In pratie,however, the number of partiles is limited due tothe omputational osts, and thus often only rela-2



tively few partiles an be used, a fat from whihsome problems arise.As the variane of the importane weights anonly inrease over time [31℄, it is inevitable that af-ter some iterations most of the partiles grow �im-possible� in that their importane weights tend tozero, and muh of the omputation time is spentpropagating highly improbable states. This may beavoided by using an importane resampling step, inwhih the partiles are drawn anew from the ur-rently estimated pdf at eah iteration. Thereby, atiteration t, only those regions � and thus trainingimages � are regarded whih have a high probabil-ity given the information of t− 1 earlier test imagesand the system models.This diversity loss, however, abets loalizationfailure in senarios where jumps in the state spaemay our � known as the kidnapped-robot problem.To ounter this, a ommon tehnique is to reini-tialize a small ratio of partiles randomly in eahturn to keep the state spae thinly overed (randominjetion). Other approahes try to detet kidnap-ping situations and handle them in a speializedway, faing the problems of possible misdetetionand applying appropriate reovery.In the senario we are looking at, jumps in thestate spae are � to some extent � part of the under-lyingmethod, namely visual loalizationwith sparsevisual images of the environment. Large numbers ofpartiles are required to over the state spae andallow for good loalization, while omparing visualimages usually requires omputationally expensiveoperations, so a redution of the partile ount isessential for quik loalization. Then again, usingvisual features allows for making some helpful as-sumptions and provides a high information density,whih we exploit by interpreting loalization as adynami optimization problem.3. Partile SwarmsOne branh of heuristi methods alled PartileSwarm Optimization (PSO) is espeially useful indynamially hanging domains [27, 32℄. PSO takesas basi idea the �oking behaviour of birds andsearhes for the solution using a population of poten-tial solutions, alled �partiles� or �individuals�. In agenerational loop similar to evolutionary optimiza-tion, the individuals are iteratively updated usingproblem-spei� knowledge to evaluate their urrentpositions, resulting in a ��tness� value. Eah indi-

vidual I has a position x(t) and is assigned a travelveloity v(t). The individuals are arranged in a log-ial topology, by whih a neighborhood NI of otherindividuals is de�ned for eah I. For the iteration attime t, the veloity vetor of an individual is thenattrated to the best loation p
h in the individual'shistory HI =

⋃t

t′=0{x(t′)} on the one hand, and tothe best loation p
n found by its neighbors in NI onthe other hand, see Eqs. 1 and 2, de�ned by ompo-nents of x and v. The parameters φ1 and φ2 ontrolthe impat of the attrators p

h and p
n, while r1 and

r2 are uniform random samples within the interval
[0, 1] used as stohasti omponents. The fator ω isalled inertia and ontrols the impat of the past ve-loity. For this work, we use a simple star topologyas neighborhood relation, implying that all parti-les are neighbors and are attrated to the urrently��ttest� position in the population.

vi(t + 1) = ωvi(t) + φ1r1(p
h
i − xi) + φ2r2(pn

i − xi) (1)
xi(t + 1) = xi(t) + vi(t + 1) (2)In typial PSO implementations, the veloity ve-tor is limited to a maximum veloity v0 by ensuringthat ‖v‖ ≤ v0. A number of extensions have beenintrodued to improve PSO for dynami optimiza-tion problems, of whih we use the following:� Invalidation of p

h at hanges of the environment.When expeting the hardest ase, whih is on-tinuous movement, p
h is replaed by a randomperturbation term;� Quantum partiles, similar to random injetionused with PF. Quantum partiles have no speedbut are stohastially distributed over an areaaround the last position estimate within whihmovements are typially expeted;� High-energy partiles, whih are allowed higherspeeds than usual partiles and have the sameproperties otherwise.A heuristi approah redues the system omplexity,and PSO typially needs only few partiles for goodresults, whih is desirable for visual loalization.4. Visual Loalization as OptimizationProblemLet S be the set of all possible amera images.Presuming a training set M ⊂ S of images orre-sponding to known positions as a given world map,the goal of loalization is to dedue a position esti-mate based on test images taken online with respetto the training set. Our formulation of visual loal-3



ization as optimization problem is in analogy to theresampling riterion of a PF: If a partile has a highprobability of �tting the measurement, it also has ahigh value or ��tness� in the sense of optimization.The �tness value of a partile with position x ∈ Xat time t may be expressed using a similarity mea-sure of two arbitrary images, m : S × S → [0, 1]:
fM (x, t) = m(iM (x), s(t)) · (3)

ζ(dist(x, pM (iM (x))))Herein, m ompares the nearest training imageorresponding to the partile, iM : X → M , and theurrent test image s(t) ∈ S. pM : M → X deliversthe known position for an image whih is part of themap. The penalty funtion ζ : R → R redues the�tness for partiles far away from the training data,beause loalization is feasible only where there istraining information available. This is done similarlyto [4℄ in terms of a Gaussian funtion. The problemof traking a position now orresponds to a dynamioptimization problem: �nd the optimum x
∗ of fMat a time and follow it ensuring a plausible path.In an approah with sparse visual outdoor data,a distint similarity measure is desirable and anbe implemented using SIFT [1℄. The SIFT mathfuntion ompares sets of loal SIFT features of im-ages A and B by alulating the ratio of single fea-ture mathes to all possible mathes. A singe fea-ture math for a feature a ∈ A is deteted by look-ing at the two losest features of a within image

B, ba,1, ba,2 ∈ B, by a distane measure d in fea-ture spae: d(a, ba,1) ≤ d(a, ba,2) and ∀ b ∈ B \
{ba,1, ba,2} : d(a, ba,2) ≤ d(a, b). Feature a is saidto math feature b ∈ B if b is its losest neighbor(b = ba,1) and the distane ratio with respet to theseond losest neighbor ba,2 is above a threshold δ,typially δ ∈ [0.6, 0.8]. Thus, for the set of singlefeature mathes of A in B, MAB, it holds that

a ∈ MAB ⇔
d(a, ba,1)

d(a, ba,2)
< δ.Spei�ally, we use a more robust symmetri vari-ant and de�ne the set of symmetri feature mathes

M∗
AB for pairs (a, b) that ful�l a = ab,1 ∧ b = ba,1,meaning that they are reiproal nearest neighbors:

(a, b) ∈ M∗
AB ⇔ a ∈ MAB ∧ b ∈ MBAThe math funtion m an now be expressed as

m(A, B) =
|M∗

AB
|

min(|A|,|B|) , where |A| stands for thenumber of features extrated from image A, so

Fig. 2. Example images of the datasets, sunny (left) andloudy (right).
min(|A| , |B|) is the maximum size of M∗

AB. Thesalar produt, d(a, b) = 〈a, b〉, is used as the dis-tane measure on feature vetors, sine it is a metrifor normed vetors and approximates the Eulidiandistane for small angles ∠(a, b). δ is set to 0.6.Sine the target funtion f depends on the urrentview and thus on the robot loation, the value of apartile at a �xed position x hanges substantiallywhen the robotmoves. The problem of traking a po-sition therefore orresponds to a dynami optimiza-tion problem, aiming for �nding the optimum x
∗(t′)of f at time t′ and then following it while ensuringa plausible path. A dynami optimization methodneeds to predit potential future optima, while keep-ing them related to the urrent state. The veloityomponents assigned to PSO partiles may be inter-preted as multiple motion models with respet to aPF and allow for just that. The atual position esti-mate an be dedued from the swarm by alulatingthe weighted swarm enter. In optimization, how-ever, the partile set is not assumed to orrespondto the statistial solution distribution at a single in-stant, but rather every partile is seen as a possiblesolution in the light of the �tness funtion. Due tothat and the assumption of a distintive similaritymeasure on sparse visual data, we just pik out thebest partile from the swarm as position estimate.5. Adapting PSO to Visual LoalizationIn senarios with sparse visual data, the partile�lter approah is time-onsuming, mainly beause itrequires a relatively large number of partiles om-pared to the number of available images. As PSOis known to perform well in dynami environments,we adapted PSO to this lass of loalization prob-lems. The dataset did not ontain odometry, so theveloity of partiles ould also be used to estimatethe robot's speed.4



Basi algorithmThe �tness of an individual at time t depends onthe amera view at that time and is alulated as theSIFT similarity between the urrent test image andthe training image losest to the individual's posi-tion, modi�ed by a penalty funtion if the individualis far away from the position of the training image(Eq. 3). The resampling is replaed by the PSO for-mula, adapted to the dynami loalization ase inthe following way:
vi(t + 1) = ωvi(t) + φ0r0δiv0 + φ2r2(pn

i (t) − xi(t)), (4)
xi(t + 1) = xi(t) + vi(t + 1). (5)Instead of the p

h-omponent, a random termis used therein, beause we expet a ontinuouslyhanging environment where historially good po-sitions quikly lose their relevane. φ0 is the weightof the random perturbation, the additional param-eters δi and v0 stand for the range of axis i and themaximum veloity of a partile, respetively. Themaximum veloity v0 is expressed relative to therange and also serves as a saling fator to keep φ0in similar dimension as φ1 and φ2. E�etively, themain attrator p
n is thereby turned into an area ofattration around p

n of dimensions ρi = φ0

φ2

δiv0 .For the fration q̂r of quantum partiles, the up-date takes the following form:
xi(t + 1) = pn

i (t) + δiN(0, q̂d) (6)The parameter q̂d de�nes the standard deviationof the quantum partiles around p
n. The formulais similar to the standard Gaussian motion modelemployedwith the PF. The quantum ratio q̂r is set to10% by default, q̂d to 0.15, and a fration of partiles

ĥr = 10% is allowed a veloity three times v0 to easequik optimum traking.The inertia is usually set ω < 1 to allow for on-vergene. For dynami traking, however, it needsto be large to stress orrelation of movement, so weset it to 0.99. The best φ-settings in PSO for a prob-lem lass are often established by a parameter gridsearh. The trade-o� between the φ-values in Eq. 4remains of similar importane as for standard parti-les, now trading between random exploration andloal exploitation. Random perturbation is nees-sary for partile diversity, but redues the overalltraking quality if too dominant. We found φ2 = 0.6to perform well, while the method is pretty robusttowards settings of φ0 ∈ [0.005, 1.5], where smaller

values allow loser onvergene but inrease the dan-ger of losing the trak. We suggest φ0 = 0.3 as a de-fault. The full algorithm is termed �Dynami PSO�(DPSO) for the rest of this paper.Self-adaptive parametersWe introdue two self-adaptive mehanisms, oneof whih dynamially adapts v0 by alulating thespeed vsw of the swarm's enter of mass and holdingthe relation v0 ≈ 2vsw. This is done by looking atthe Exponential Moving Average (EMA, α = 1
8 ) 1of vsw and adapting v0 by 10% after an iteration t if

EMAvsw
(t)

v0

does not lie in [0.4,0.6℄. This enables themethod to reat to speed hanges while providingrobust traking at any speed. When traking theloation, vsw also gives a good estimate of the robot'sspeed in absene of or in addition to odometry.SIFT features o�er robust image similarity infor-mation in outdoor areas, still some situations areambiguous. To ounter this and to ope with thekidnapped-robot problem, we inlude a mehanismto dynamially adapt swarm diversity. To do this,we assume the image similarity funtion to delivera quasi-absolute measure of similarity. For loal fea-ture detetors suh as SIFT, this an be delegatedto the desriptor ount: If the best math in the par-tile set is still bad, e.g., mathing less than 5% ofloal features, it may be an ambiguous position orthe loalizer lost the real position. If this happensfor several iterations in a row, we start a reoveryphase and boost partile diversity by inreasing v0,
q̂r and dereasing φ2 towards prede�ned limit val-ues. φ2 may be redued lose to zero (φ2,min = 0.01),reduing the attration of the best mathing parti-le, whih is, in this ase, still bad. The veloity and
q̂r should be allowed values large enough to quiklystart exploring the problem spae and overome pos-sible jumps due to kidnapping.Without further tun-ing, we preset q̂r,max to 20% and allow v0,max = 0.1,meaning that in ase of position loss, partiles mayross the searh spae in about 10 iterations. As soonas the best mathes inrease in quality again, the re-overy phase ends and the parameters return to theirinitial values. Preliminary experiments showed thatthe adaption of v0 improves traking and the adap-tion of diversity improves robustness plus it solvesthe kidnapped-robot situation, see Se. 7.1.
1 For a sequene of values (Y0, Y1, Y2, . . . ): EMAY (0) = Y0,EMAY (k + 1) = (1 − α) · EMAY (k) + αYk, k ∈ N05



6. Experimental SenarioIn the experiments in [4℄, we used images ol-leted by our RWI ATRV-JR outdoor robot, Arthur(Fig. 1). We took one 320×240 pixel graysale imageper seond with the left amera of the Videre DesignSVS stereo amera system mounted on top of therobot. As we used a onstant veloity of about 0.6 m
s
,the positions of subsequent images are about 0.6 maway from eah other. The robot is also equippedwith a GPS system, whih we used to get groundtruth data for the position of eah image. Underideal onditions, the auray of the GPS is below

0.5 m. However, due to olusions and re�etions bytrees and buildings, the GPS path sometimes signif-iantly deviated from the real position or ontainedgaps. As we know that we moved the robot on asmooth trajetory, we eliminated some wrong GPSvalues as outliers. As we also used a onstant velo-ity, we losed gaps by linearly interpolating betweenthe positions before and after the gap.We reorded two di�erent datasets, eah onsist-ing of three rounds around our institute building.One round is 260 m long and ontains about 360 to400 images. The �rst three rounds were olleted un-der sunny onditions. However, there are some shortsetions (about 5 to 10 s long) during whih the sunwas overed. Six weeks later, we olleted the otherthree rounds on a loudy day. The images ontainbuildings, streets, as well as some vegetation. Ad-ditionally, there are dynami objets, namely arsand people passing by. We also traversed a park-ing lot, where di�erent ars were parked on the twodays. Exemplary images from both sets are shownin Fig. 2, whereas the layout of the rounds is plottedin Fig. 3, in whih, for larity, only every 20th imageis marked. As in [4℄, we redued the number of SIFTfeatures by omparing eah image to the two neigh-boring images in the series beforehand and disard-ing the �noisy� features whih ould not be disov-ered in either of the diret neighbors. This speeds upthe SIFT omparison drastially, as about 50% to80% of the features are left out, while not a�etinglater loalization performane.With the two datasets �sunny� and �loudy�,three kinds of experiments were onduted. Usingone round as environmental map and treating theseond as online data, we tested sunny vs. sunny,loudy vs. loudy, and sunny vs. loudy. We did nottest a round against itself, so there are six ases forthe sunny and loudy only experiments and nine
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Fig. 4. Loalization error at di�erent simulated speeds.for the sunny vs. loudy experiment. We alulatedthe mean error for the three experiments distintly.For eah ase, we repeated the loalization run ntimes, where n is the number of test images. Foreah of these runs, we used a di�erent test image asstarting image for loalization.7. Results7.1. Adaptivity of DPSOTo demonstrate the e�ets of the settings forDPSO, we ontrast loalization rounds for a singleloalization ase, namely loalizing sunny (round 1)vs. loudy (round 1), whih is one of the di�ultases. Where not stated otherwise, DPSO is usedwith a swarm size of 80 partiles. We varied thesimulated speed of the mobile system in Fig. 4.Here, the simulated speed v̄ = 1 orresponds to theoriginal data olletion speed of vR ≈ 0.6 m
s
. Forspeeds k times the original one we use every k -th6



Table 1Varying the number of partiles for DPSO and PF, see Fig. 8.Method DPSO-40 DPSO-60 DPSO-80 DPSO-100 DPSO-120 PF-g-100 PF-g-300 PF-l-100 PF-l-300Mean err. (m) 2.84 2.60 2.54 2.50 2.46 3.95 3.39 2.80 2.38Avg. omp./image 17.9 22.3 25.9 29.1 32.0 40.8 62.4 42.2 69.6image for loalization only, resulting in the simula-tion hurrying around the loop at higher speed. Inanalogy, a simulated speed of 1
2 or 1

4 orrespondsto loalizing against eah image twie or four timesonseutively. In the non-adaptive version, we setthe maximum speed parameter manually to roughly�t the original speed ase. For higher speeds, thenon-adaptive method learly fails without manualtuning of the speed limit (Fig. 4).Figure 5 shows two exemplary runs within thementioned senario illustrating a reovery phase.The graph in Fig. 5 (a) displays the umulated error,momentary speed limit and the exponential mov-ing average of the swarm speed during the run. Af-ter the initial onvergene phase, the swarm speedswings around the atually driven speed of vR ≈
0.6m

s
. There are two espeially ambiguous situationsaround iterations 130 and 300, in whih the parti-le swarm is prone to lose the trak. The more dif-�ult one, around iteration 300, auses a lear dropin swarm speed and a raise of the error value. Thereal position is lost for some iterations and reov-ered around step 320, whih requires the swarm tohurry after it with inreased speed before resettling.In Fig. 5 (b), the very same senario is simulatedwith the reovery mode ativated. In the di�ultsituation around iteration 300, due to ambiguousimage similarity values, a reovery phase is startedand the diversity inreased. In e�et, the error as-ent is minor and the veloity swing shorter and ofsmaller amplitude. Figure 7 ompares the ourse ofthe mean distanes of partiles within the swarm forthe di�erent runs. The inrease in diversity duringreovery is visible around iteration 300. It witnessesthat the dereasing swarm speed is also due to theswarm diverging, while for the run without reovery,the swarm size remains similar, and while slowingdown, it has a higher probability of losing the trak.In Tab. 2, the self-adaptive diversity mehanismomes again into play when a kidnapped-robot se-nario is simulated. To do this, the virtual positionafter half a simulated round is set to the oppositeof the round by adding n/2 to the urrent test im-age index modulo n, where n is the number of testimages. This means that the loalization method is
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Fig. 7. Illustrating swarm diversity in the example run.fored to jump to the opposite side of the playgroundafter onverging for half of the run. The simulatedkidnapping takes plae at iteration 182, whih is ⌊
n
2

⌋of n = 365, and auses an abrupt loalization errorof about 68 m at that instant. Of ourse, the kidnap-ping redues performane, but the adaptive methodis learly able to re-trae the position. The mean on-line loalization error of the experiment is plotted inFig. 6. The performane of the non-adaptive variantand the mean loalization errors are also shown.Table 1 and Fig. 8 show results for di�erent num-bers of partiles, demonstrating that even low popu-lation sizes are able to performwell. The largest pop-ulation tested here still requires muh fewer SIFTomparisons than the partile �lter, f. Setion 7.2.Smaller populations, admittedly, have more prob-lems reovering in a kidnapping ase. We thereforeuse a swarm size of 80 for the �nal omparison withthe PF.7.2. Comparison to Partile FilterIn the �nal test runs for the omparison with a PFapproah, we used the self-adaptivemehanisms anddefault settings desribed in Se. 5. As our datasetdid not ontain odometry, the partile �lter was�rst employed with a Gaussian motion model witha standard deviation of 4 m (PF-g), while the sam-pling weights are alulated in analogy to Eq. 3. Analternative direted motion model was formulatedfor the PF by asssuming a linearmotion between twoiterations (PF-l): Eah partile is assigned a veloityvetor whih is rotated and saled using zero-meanGaussian distributions of standard deviation σrotfor the angles and standard deviation σacc for a-eleration. In Eqs. 7-8, the update step is desribedformally. Notie that, therein, v and x are 2D ve-tors, and v is �rst rotated and then saled by a log-normally hosen fator modelling hange in speed.
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(b) Avg. number of omparisons per test image.Fig. 8. Comparison of loalization error and omparisons perimage with varying partile ounts.
v(t + 1) = eN(0,σacc)

· rot(v(t), N(0, σrot)), (7)
x(t + 1) = x(t) + v(t + 1). (8)A grid searh over the motion-model parameters

σrot, σacc, and the initial speed vinit = |v(0)| wasperformed on PF-l with 300 partiles (PF-l-300)for the more di�ult senario sunny (round 1) vs.loudy (round 1) already used in Se. 7.1. The resultsare given in Tab. 3, where error values below 2.60 mare aentuated to gain a better overview. Thevalues tested were σrot ∈ {20◦, 30◦, 40◦, 50◦, 60◦},
σacc ∈

{
10−2, 10−3, 10−4, 10−5

}, and vinit ∈
{vR, 2 vR, 3 vR}, where vR again orresponds to theatually driven speed.Interestingly, small deviations in rotation per-form poorly ompared to large ones, and higherinitial speeds are advantageous. The best resultsare ahieved for σrot = 60◦, σacc = 0.001, and
vinit = 3vR, whih orresponds to about 2 m

s
. Thesesettings imply a high diversity of partiles due tothe high veloity and large rotations, where singlepartile states do not approximate the real motion.The smaller the angle distributions, the loser thePF-l may onverge to the position for short periods,and the easier it fails in more ambiguous situations.On average, there are 60 to 80 image ompar-isons performed per iteration for the tested PF-l-3008



Table 3Grid searh for the PF-l-300 with linear motion model; displayed are error values in m averaged over 365 runs (f. Se. 7.2).
σrot 20◦ 30◦ 40◦ 50◦ 60◦

σacc vinit vR 2vR 3vR vR 2vR 3vR vR 2vR 3vR vR 2vR 3vR vR 2vR 3vR

10−2 5.43 4.22 4.31 4.79 3.55 3.60 4.49 3.34 3.42 4.37 3.22 3.21 4.23 3.12 3.11
10−3 5.70 3.56 3.22 5.16 2.81 2.61 4.77 2.65 2.56 4.54 2.59 2.53 4.51 2.58 2.51
10−4 5.62 3.45 3.13 5.18 2.72 2.61 4.70 2.60 2.55 4.55 2.54 2.54 4.44 2.54 2.52
10−5 5.63 3.43 3.14 5.14 2.72 2.61 4.68 2.60 2.56 4.50 2.56 2.54 4.36 2.54 2.53
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Fig. 9. Comparing swarm diversity of DPSO with PF-l-300.on�gurations, and 72.15 for the best on�gurationtested. When the partile ount for the PF-l withthe advantageous settings is dereased, the numberof neessary omparions drops only slowly, sine thehigh speed keeps the diversity permanently high sothat the partiles are fairly distributed and manytraining images need to be looked at. This is illus-trated in Fig. 9, where the mean partile distanesper iteration of DPSO-80, PF-l-100 andPF-l-300 areplotted for the exemplary senario.Table 4 and Fig. 10 summarize the mean errors ofDPSO using 80 partiles ompared to the PF using100 and 300 partiles in all three senarios. The par-tile �lter with simple Gaussianmotion and 100 par-tiles (PF-g-100) performs onsiderably worse thanthe other methods and is omitted. Note that the in-diated standard deviations refer to full rounds andare therefore higher than the deviations within spe-i� pairs of training and test rounds.Considering the loalization auray, both thePF-l-300 and the DPSO-80 variants outperform thePF-g methods as well as the PF-l with 100 parti-les. This is supported by Student's t-test on a sig-ni�ane level below 0.5% in the three senarios.The PF-l-300 ahieves a slightly smaller loaliza-tion error than DPSO-80, however it requires a largenumber of image omparisons to do so. The DPSOmethod needs only half of the omparisons of thePF-l-100 while yielding better loalization, and itneeds less than a third ompared to the PF-l-300.
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(b) Avg. number of omparisons per test image.Fig. 10. Final omparison of partile �lter to DPSO.This an be projeted onto the real system run-time, sine the SIFT omparison is the most ex-pensive operation of the loalization proedure. TheDPSO iteration with self-adaption an be done intwo loops over the partile population and is there-fore omparable to a PF with resampling. A SIFTomparison of the onsidered dataset took 0.015 son average on our test system, a 2.4 GHz dual oreAMD Opteron. The image omparisons for an iter-ation of the PF-l-300 thus take about 0.9 to 1 s anda redution by two-thirds implies saving about 0.6 sper test image. With regard to [4℄, where SIFT om-parisons took about 40% of the omputation timeusing the PF-g-300 method for loalization, an all-over speed-up by 25% an be expeted.9



Table 4Comparison of partile �lter to DPSOPF-g-300 PF-l-100 PF-l-300 DPSO-80Mean err. (m) Avg. omp. Mean err. (m) Avg. omp. Mean err. (m) Avg. omp. Mean err. (m) Avg. omp.Experiment per img. per img. per img. per img.Sunny vs. sunny 2.15 ± 0.29 60.8 2.24 ± 0.29 44.72 1.79 ± 0.30 66.6 1.99 ± 0.36 21.4Cloudy vs. loudy 2.06 ± 0.56 55.3 1.92 ± 0.27 38.31 1.43 ± 0.33 62.2 1.47 ± 0.35 20.5Sunny vs. loudy 3.28 ± 0.27 60.9 3.11 ± 0.42 41.62 2.52 ± 0.32 69.1 2.77 ± 0.40 22.38. ConlusionIn the work at hand, we have proposed a PSO-based method replaing a standard partile �lter forloalization with SIFT features on sparse outdoorvisual data. As in standard PSO, the partiles areattrated to the best global partile, allowing for fastonvergene. The partiles have a veloity ompo-nent with high inertia, thus the dynamially hang-ing position an be traked without requiring a us-tomized motion model. This is a major advantage,e.g., for the augmentation of blak-box systems withindependent visual trakers.For distintive visual features suh as SIFT, whihprovide a quasi-absolute measure of image similar-ity, a good guess an be made whether the posi-tion has been lost. In that ase, partile diversity isboosted until a good position estimate is redisov-ered. Moreover, dynami speed adaptation makesthe system robust with regard to manual parame-ter settings and the robot's veloity. Aording to aomparison to partile �lter approahes, the swarm-based method reahes similar auray but requiressubstantially fewer of the ostly image omparisons.Our experiments were based on visual images or-dered linearly within an urban outdoor environmentusing GPS ground truth. Similar data an be ob-tained without muh e�ort in large sale, wherebythe plausibility of the GPS annotations must be ver-i�ed. Given that, we are on�dent that the DPSOfor loalization sales well to large datasets. How-ever, in extremely ambiguous environments suh asforests, the swarm approah may lose auray om-pared to a partile �lter, at least while employingthe rather greedy star topology for the swarm. Weintend to test a multi-swarm approah to ounterthis issue in suh senarios.The use of visual sensory and robust features isthe basis for our loalization method. The spei�method of image omparison, however, is not �xed,and the general algorithm an be used with any vi-
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