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alization with Sparse Visual DataMar
el Kronfeld ∗, Christian Weiss, Andreas ZellUniversity of Tübingen, Department of Computer S
ien
e, Tübingen, GermanyAbstra
tThe lo
alization of mobile systems with video data is a 
hallenging �eld in roboti
 vision resear
h. Apart from supportte
hnologies like GPS, a self-su�
ient visual system is desirable. We introdu
e a new heuristi
 approa
h to outdoorlo
alization in a s
enario with sparse visual data and without odometry readings. Lo
alization is interpreted as anoptimization problem, and a swarm-based optimization method is adapted and applied, remaining independent of thespe
i�
 visual feature type. The new method obtains similar or better lo
alization results in our experiments whilerequiring only two-thirds of the number of image 
omparisons, indi
ating an all-over speed-up by 25%.Key words: Outdoor roboti
s, robot vision, visual lo
alization, swarm intelligen
e, parti
le swarm optimization1. Introdu
tionLo
alization with mobile robots may be a
hievedthrough a number of ways. Besides environmentallyinstalled support ar
hite
tures su
h as radio bea
onsor GPS, the usage of universal visual features is anappealing approa
h to in
rease independen
e androbustness of mobile systems. Cameras may serveas small, 
heap, and yet powerful sensors for vari-ous surroundings and deliver a large amount of data,whi
h, as biologi
al organisms show, are highly valu-able for orientation in natural environments. For vi-sual lo
alization, widely used te
hniques 
onsist in
ombining a feature-based image similarity measurewith a nonlinear Parti
le Filter (PF).The paper at hand takes a 
loser look at a s
e-nario with sparse visual data and without odometry,where a typi
al PF lo
alization approa
h was em-ployed using an image similarity measure, the S
aleInvariant Feature Transform (SIFT) [1℄. Video data
an easily be produ
ed, but are extremely memory-
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onsuming if densely 
olle
ted. Also, sparse visualdata 
an be maintained and updated easier, e.g., bydriving through the streets of a 
ity environmentand taking few, linearly ordered pi
tures.The task of visual lo
alization 
onsists in �ndinga mat
hing lo
ation by visual features in a database
ontaining the environmental map. SIFT produ
esrelatively reliable lo
al image features based onstru
tural interest points and may be used to re
-ognize obje
ts or lo
ations in visual images withsome robustness under 
hanging illumination anddire
tion of view. SIFT is a popular method forvisual appli
ations, but 
omparing SIFT features isan expensive operation and often a bottlene
k whenthe database is large. Some resear
hers 
ompare atrial image to all images in the database and keepthe database slim using pruning methods [2, 3℄. An-other approa
h uses a parti
le �lter to 
on
entratethe 
omparisons on a smaller subset of the featuresin the database for whi
h a mat
h is expe
ted withhigh probability [4℄. Database tuning 
an be doneo�ine, while the latter method may still redu
e thenumber of online image 
omparisons.Besides typi
al proprio
eptive odometry, vision
an be used to obtain odometry estimates, e.g., fromPreprint submitted to Roboti
s and Autonomous Systems 28 February 2009



Fig. 1. RWI outdoor robot �Arthur�.feature tra
king [5, 6℄ or opti
al �ow [7℄. Yet, thesete
hniques are relatively expensive with respe
t to
omputation time and usually require a spe
i�
 lo-
al visual feature type. Sin
e, in large-s
ale s
enar-ios, very diverse platforms may be employed, our ap-proa
h remains independent of the spe
i�
 featuredete
tor. Therefore, we only presume an image sim-ilarity measure of a 
ertain distin
tness 
omparableto SIFT, and we do not employ opti
al �ow.A wide range of feature types have been used forvisual robot lo
alization. Besides global features,e.g., PCA-based [8℄ or Integral Invariant features[9℄, lo
al features su
h as SIFT have been su

ess-fully employed in indoor [10, 11℄ and in outdoor en-vironments, over longer time s
ales, and in spite ofo

lusion [12, 13, 14℄. Sin
e lo
al approa
hes extra
ta diverse set of lo
al des
riptors from an image,they are usually more robust, but also more time-
onsuming than global feature methods. In [15℄,Tamimi presents a wide overview of visual featuresfor robot lo
alization.Parti
le �lters have been used for robot lo
aliza-tion for some time [16℄, and numerous instan
es havebeen proposed [17, 18, 19℄. For visual tra
king, Sotoemployed a PF with adaptive parti
le 
ount [20℄,while Zhou et al. presented an approa
h in whi
hmotion velo
ities and the noise level are adapteddynami
ally [21℄. The Kernel Parti
le Filter (KPF)has been proposed by Chang et al. in [22℄ and latelybeen su

essfully 
ombined with a heuristi
 
alledGeneti
 Evolution by Wang et al. [23℄. A number ofevolutionary extensions to the more general Markov


hain Monte Carlo method are presented in [24℄.Heuristi
ally augmented parti
le �lters have alsobeen proposed by Treptow [25℄ and shown to be ef-fe
tive in redu
ing the parti
le 
ount in real-timeobje
t tra
king.Considering swarmmethods, the original Parti
leSwarm Optimization method (PSO) was proposedby Kennedy and Eberhart [26℄ and shown to be avaluable te
hnique in di�erent areas, of whi
h op-timization in dynami
 environment is most relatedto our work, see, e.g., [27℄. Random perturbationwithin parti
le swarms has been proposed by Liu etal. [28℄. Vahdat et al. [29℄ employed PSO for indoorrobot lo
alization with laser sensors without 
onsid-ering the dynami
 tra
king phase.The rest of the paper is organized as follows: Se
-tion 2 gives a short introdu
tion to parti
le �ltersand points out some of their properties with respe
tto lo
alization. In Se
. 3, the basi
 parti
le swarmoptimization method is explained, and Se
. 4 sug-gests a formulation of the lo
alization problem in the
ontext of optimization. Se
tion 5 details our adap-tations to PSO for the lo
alization approa
h, also
alled Dynami
 PSO (DPSO). Se
tion 6 introdu
esthe experimental setup, the results are presented inSe
. 7, and we 
on
lude with Se
. 8.2. Parti
le Filter-based Lo
alizationParti
le �lters essentially represent the probabil-ity density fun
tion (pdf) of the estimated systemstate by a set of �parti
les�, ea
h of whi
h en
odesa single possible state. The parti
les are iterativelypropagated using 
ontrol inputs (the motion model)and asso
iated with importan
e weights represent-ing their individual probability given new measure-ments (the measurement model). The weighted sumof the parti
les represents the estimated state. In vi-sual lo
alization, a parti
le represents a hypothesison the system's position (and possibly its orienta-tion and velo
ity) and is asso
iated with a trainingimage. The pdf then estimates the pose in the envi-ronment at a time. The estimation is improved iter-atively by reweighing the parti
les a

ording to thesimilarity to new test images.Theoreti
ally, if the number of parti
les is verylarge, the parti
le �lter estimate will approa
h theoptimal Bayesian state estimate [30℄, whi
h is opti-mal with respe
t to the system models. In pra
ti
e,however, the number of parti
les is limited due tothe 
omputational 
osts, and thus often only rela-2



tively few parti
les 
an be used, a fa
t from whi
hsome problems arise.As the varian
e of the importan
e weights 
anonly in
rease over time [31℄, it is inevitable that af-ter some iterations most of the parti
les grow �im-possible� in that their importan
e weights tend tozero, and mu
h of the 
omputation time is spentpropagating highly improbable states. This may beavoided by using an importan
e resampling step, inwhi
h the parti
les are drawn anew from the 
ur-rently estimated pdf at ea
h iteration. Thereby, atiteration t, only those regions � and thus trainingimages � are regarded whi
h have a high probabil-ity given the information of t− 1 earlier test imagesand the system models.This diversity loss, however, abets lo
alizationfailure in s
enarios where jumps in the state spa
emay o

ur � known as the kidnapped-robot problem.To 
ounter this, a 
ommon te
hnique is to reini-tialize a small ratio of parti
les randomly in ea
hturn to keep the state spa
e thinly 
overed (randominje
tion). Other approa
hes try to dete
t kidnap-ping situations and handle them in a spe
ializedway, fa
ing the problems of possible misdete
tionand applying appropriate re
overy.In the s
enario we are looking at, jumps in thestate spa
e are � to some extent � part of the under-lyingmethod, namely visual lo
alizationwith sparsevisual images of the environment. Large numbers ofparti
les are required to 
over the state spa
e andallow for good lo
alization, while 
omparing visualimages usually requires 
omputationally expensiveoperations, so a redu
tion of the parti
le 
ount isessential for qui
k lo
alization. Then again, usingvisual features allows for making some helpful as-sumptions and provides a high information density,whi
h we exploit by interpreting lo
alization as adynami
 optimization problem.3. Parti
le SwarmsOne bran
h of heuristi
 methods 
alled Parti
leSwarm Optimization (PSO) is espe
ially useful indynami
ally 
hanging domains [27, 32℄. PSO takesas basi
 idea the �o
king behaviour of birds andsear
hes for the solution using a population of poten-tial solutions, 
alled �parti
les� or �individuals�. In agenerational loop similar to evolutionary optimiza-tion, the individuals are iteratively updated usingproblem-spe
i�
 knowledge to evaluate their 
urrentpositions, resulting in a ��tness� value. Ea
h indi-

vidual I has a position x(t) and is assigned a travelvelo
ity v(t). The individuals are arranged in a log-i
al topology, by whi
h a neighborhood NI of otherindividuals is de�ned for ea
h I. For the iteration attime t, the velo
ity ve
tor of an individual is thenattra
ted to the best lo
ation p
h in the individual'shistory HI =

⋃t

t′=0{x(t′)} on the one hand, and tothe best lo
ation p
n found by its neighbors in NI onthe other hand, see Eqs. 1 and 2, de�ned by 
ompo-nents of x and v. The parameters φ1 and φ2 
ontrolthe impa
t of the attra
tors p

h and p
n, while r1 and

r2 are uniform random samples within the interval
[0, 1] used as sto
hasti
 
omponents. The fa
tor ω is
alled inertia and 
ontrols the impa
t of the past ve-lo
ity. For this work, we use a simple star topologyas neighborhood relation, implying that all parti-
les are neighbors and are attra
ted to the 
urrently��ttest� position in the population.

vi(t + 1) = ωvi(t) + φ1r1(p
h
i − xi) + φ2r2(pn

i − xi) (1)
xi(t + 1) = xi(t) + vi(t + 1) (2)In typi
al PSO implementations, the velo
ity ve
-tor is limited to a maximum velo
ity v0 by ensuringthat ‖v‖ ≤ v0. A number of extensions have beenintrodu
ed to improve PSO for dynami
 optimiza-tion problems, of whi
h we use the following:� Invalidation of p

h at 
hanges of the environment.When expe
ting the hardest 
ase, whi
h is 
on-tinuous movement, p
h is repla
ed by a randomperturbation term;� Quantum parti
les, similar to random inje
tionused with PF. Quantum parti
les have no speedbut are sto
hasti
ally distributed over an areaaround the last position estimate within whi
hmovements are typi
ally expe
ted;� High-energy parti
les, whi
h are allowed higherspeeds than usual parti
les and have the sameproperties otherwise.A heuristi
 approa
h redu
es the system 
omplexity,and PSO typi
ally needs only few parti
les for goodresults, whi
h is desirable for visual lo
alization.4. Visual Lo
alization as OptimizationProblemLet S be the set of all possible 
amera images.Presuming a training set M ⊂ S of images 
orre-sponding to known positions as a given world map,the goal of lo
alization is to dedu
e a position esti-mate based on test images taken online with respe
tto the training set. Our formulation of visual lo
al-3



ization as optimization problem is in analogy to theresampling 
riterion of a PF: If a parti
le has a highprobability of �tting the measurement, it also has ahigh value or ��tness� in the sense of optimization.The �tness value of a parti
le with position x ∈ Xat time t may be expressed using a similarity mea-sure of two arbitrary images, m : S × S → [0, 1]:
fM (x, t) = m(iM (x), s(t)) · (3)

ζ(dist(x, pM (iM (x))))Herein, m 
ompares the nearest training image
orresponding to the parti
le, iM : X → M , and the
urrent test image s(t) ∈ S. pM : M → X deliversthe known position for an image whi
h is part of themap. The penalty fun
tion ζ : R → R redu
es the�tness for parti
les far away from the training data,be
ause lo
alization is feasible only where there istraining information available. This is done similarlyto [4℄ in terms of a Gaussian fun
tion. The problemof tra
king a position now 
orresponds to a dynami
optimization problem: �nd the optimum x
∗ of fMat a time and follow it ensuring a plausible path.In an approa
h with sparse visual outdoor data,a distin
t similarity measure is desirable and 
anbe implemented using SIFT [1℄. The SIFT mat
hfun
tion 
ompares sets of lo
al SIFT features of im-ages A and B by 
al
ulating the ratio of single fea-ture mat
hes to all possible mat
hes. A singe fea-ture mat
h for a feature a ∈ A is dete
ted by look-ing at the two 
losest features of a within image

B, ba,1, ba,2 ∈ B, by a distan
e measure d in fea-ture spa
e: d(a, ba,1) ≤ d(a, ba,2) and ∀ b ∈ B \
{ba,1, ba,2} : d(a, ba,2) ≤ d(a, b). Feature a is saidto mat
h feature b ∈ B if b is its 
losest neighbor(b = ba,1) and the distan
e ratio with respe
t to these
ond 
losest neighbor ba,2 is above a threshold δ,typi
ally δ ∈ [0.6, 0.8]. Thus, for the set of singlefeature mat
hes of A in B, MAB, it holds that

a ∈ MAB ⇔
d(a, ba,1)

d(a, ba,2)
< δ.Spe
i�
ally, we use a more robust symmetri
 vari-ant and de�ne the set of symmetri
 feature mat
hes

M∗
AB for pairs (a, b) that ful�l a = ab,1 ∧ b = ba,1,meaning that they are re
ipro
al nearest neighbors:

(a, b) ∈ M∗
AB ⇔ a ∈ MAB ∧ b ∈ MBAThe mat
h fun
tion m 
an now be expressed as

m(A, B) =
|M∗

AB
|

min(|A|,|B|) , where |A| stands for thenumber of features extra
ted from image A, so

Fig. 2. Example images of the datasets, sunny (left) and
loudy (right).
min(|A| , |B|) is the maximum size of M∗

AB. Thes
alar produ
t, d(a, b) = 〈a, b〉, is used as the dis-tan
e measure on feature ve
tors, sin
e it is a metri
for normed ve
tors and approximates the Eu
lidiandistan
e for small angles ∠(a, b). δ is set to 0.6.Sin
e the target fun
tion f depends on the 
urrentview and thus on the robot lo
ation, the value of aparti
le at a �xed position x 
hanges substantiallywhen the robotmoves. The problem of tra
king a po-sition therefore 
orresponds to a dynami
 optimiza-tion problem, aiming for �nding the optimum x
∗(t′)of f at time t′ and then following it while ensuringa plausible path. A dynami
 optimization methodneeds to predi
t potential future optima, while keep-ing them related to the 
urrent state. The velo
ity
omponents assigned to PSO parti
les may be inter-preted as multiple motion models with respe
t to aPF and allow for just that. The a
tual position esti-mate 
an be dedu
ed from the swarm by 
al
ulatingthe weighted swarm 
enter. In optimization, how-ever, the parti
le set is not assumed to 
orrespondto the statisti
al solution distribution at a single in-stant, but rather every parti
le is seen as a possiblesolution in the light of the �tness fun
tion. Due tothat and the assumption of a distin
tive similaritymeasure on sparse visual data, we just pi
k out thebest parti
le from the swarm as position estimate.5. Adapting PSO to Visual Lo
alizationIn s
enarios with sparse visual data, the parti
le�lter approa
h is time-
onsuming, mainly be
ause itrequires a relatively large number of parti
les 
om-pared to the number of available images. As PSOis known to perform well in dynami
 environments,we adapted PSO to this 
lass of lo
alization prob-lems. The dataset did not 
ontain odometry, so thevelo
ity of parti
les 
ould also be used to estimatethe robot's speed.4



Basi
 algorithmThe �tness of an individual at time t depends onthe 
amera view at that time and is 
al
ulated as theSIFT similarity between the 
urrent test image andthe training image 
losest to the individual's posi-tion, modi�ed by a penalty fun
tion if the individualis far away from the position of the training image(Eq. 3). The resampling is repla
ed by the PSO for-mula, adapted to the dynami
 lo
alization 
ase inthe following way:
vi(t + 1) = ωvi(t) + φ0r0δiv0 + φ2r2(pn

i (t) − xi(t)), (4)
xi(t + 1) = xi(t) + vi(t + 1). (5)Instead of the p

h-
omponent, a random termis used therein, be
ause we expe
t a 
ontinuously
hanging environment where histori
ally good po-sitions qui
kly lose their relevan
e. φ0 is the weightof the random perturbation, the additional param-eters δi and v0 stand for the range of axis i and themaximum velo
ity of a parti
le, respe
tively. Themaximum velo
ity v0 is expressed relative to therange and also serves as a s
aling fa
tor to keep φ0in similar dimension as φ1 and φ2. E�e
tively, themain attra
tor p
n is thereby turned into an area ofattra
tion around p

n of dimensions ρi = φ0

φ2

δiv0 .For the fra
tion q̂r of quantum parti
les, the up-date takes the following form:
xi(t + 1) = pn

i (t) + δiN(0, q̂d) (6)The parameter q̂d de�nes the standard deviationof the quantum parti
les around p
n. The formulais similar to the standard Gaussian motion modelemployedwith the PF. The quantum ratio q̂r is set to10% by default, q̂d to 0.15, and a fra
tion of parti
les

ĥr = 10% is allowed a velo
ity three times v0 to easequi
k optimum tra
king.The inertia is usually set ω < 1 to allow for 
on-vergen
e. For dynami
 tra
king, however, it needsto be large to stress 
orrelation of movement, so weset it to 0.99. The best φ-settings in PSO for a prob-lem 
lass are often established by a parameter gridsear
h. The trade-o� between the φ-values in Eq. 4remains of similar importan
e as for standard parti-
les, now trading between random exploration andlo
al exploitation. Random perturbation is ne
es-sary for parti
le diversity, but redu
es the overalltra
king quality if too dominant. We found φ2 = 0.6to perform well, while the method is pretty robusttowards settings of φ0 ∈ [0.005, 1.5], where smaller

values allow 
loser 
onvergen
e but in
rease the dan-ger of losing the tra
k. We suggest φ0 = 0.3 as a de-fault. The full algorithm is termed �Dynami
 PSO�(DPSO) for the rest of this paper.Self-adaptive parametersWe introdu
e two self-adaptive me
hanisms, oneof whi
h dynami
ally adapts v0 by 
al
ulating thespeed vsw of the swarm's 
enter of mass and holdingthe relation v0 ≈ 2vsw. This is done by looking atthe Exponential Moving Average (EMA, α = 1
8 ) 1of vsw and adapting v0 by 10% after an iteration t if

EMAvsw
(t)

v0

does not lie in [0.4,0.6℄. This enables themethod to rea
t to speed 
hanges while providingrobust tra
king at any speed. When tra
king thelo
ation, vsw also gives a good estimate of the robot'sspeed in absen
e of or in addition to odometry.SIFT features o�er robust image similarity infor-mation in outdoor areas, still some situations areambiguous. To 
ounter this and to 
ope with thekidnapped-robot problem, we in
lude a me
hanismto dynami
ally adapt swarm diversity. To do this,we assume the image similarity fun
tion to delivera quasi-absolute measure of similarity. For lo
al fea-ture dete
tors su
h as SIFT, this 
an be delegatedto the des
riptor 
ount: If the best mat
h in the par-ti
le set is still bad, e.g., mat
hing less than 5% oflo
al features, it may be an ambiguous position orthe lo
alizer lost the real position. If this happensfor several iterations in a row, we start a re
overyphase and boost parti
le diversity by in
reasing v0,
q̂r and de
reasing φ2 towards prede�ned limit val-ues. φ2 may be redu
ed 
lose to zero (φ2,min = 0.01),redu
ing the attra
tion of the best mat
hing parti-
le, whi
h is, in this 
ase, still bad. The velo
ity and
q̂r should be allowed values large enough to qui
klystart exploring the problem spa
e and over
ome pos-sible jumps due to kidnapping.Without further tun-ing, we preset q̂r,max to 20% and allow v0,max = 0.1,meaning that in 
ase of position loss, parti
les may
ross the sear
h spa
e in about 10 iterations. As soonas the best mat
hes in
rease in quality again, the re-
overy phase ends and the parameters return to theirinitial values. Preliminary experiments showed thatthe adaption of v0 improves tra
king and the adap-tion of diversity improves robustness plus it solvesthe kidnapped-robot situation, see Se
. 7.1.
1 For a sequen
e of values (Y0, Y1, Y2, . . . ): EMAY (0) = Y0,EMAY (k + 1) = (1 − α) · EMAY (k) + αYk, k ∈ N05



6. Experimental S
enarioIn the experiments in [4℄, we used images 
ol-le
ted by our RWI ATRV-JR outdoor robot, Arthur(Fig. 1). We took one 320×240 pixel grays
ale imageper se
ond with the left 
amera of the Videre DesignSVS stereo 
amera system mounted on top of therobot. As we used a 
onstant velo
ity of about 0.6 m
s
,the positions of subsequent images are about 0.6 maway from ea
h other. The robot is also equippedwith a GPS system, whi
h we used to get groundtruth data for the position of ea
h image. Underideal 
onditions, the a

ura
y of the GPS is below

0.5 m. However, due to o

lusions and re�e
tions bytrees and buildings, the GPS path sometimes signif-i
antly deviated from the real position or 
ontainedgaps. As we know that we moved the robot on asmooth traje
tory, we eliminated some wrong GPSvalues as outliers. As we also used a 
onstant velo
-ity, we 
losed gaps by linearly interpolating betweenthe positions before and after the gap.We re
orded two di�erent datasets, ea
h 
onsist-ing of three rounds around our institute building.One round is 260 m long and 
ontains about 360 to400 images. The �rst three rounds were 
olle
ted un-der sunny 
onditions. However, there are some shortse
tions (about 5 to 10 s long) during whi
h the sunwas 
overed. Six weeks later, we 
olle
ted the otherthree rounds on a 
loudy day. The images 
ontainbuildings, streets, as well as some vegetation. Ad-ditionally, there are dynami
 obje
ts, namely 
arsand people passing by. We also traversed a park-ing lot, where di�erent 
ars were parked on the twodays. Exemplary images from both sets are shownin Fig. 2, whereas the layout of the rounds is plottedin Fig. 3, in whi
h, for 
larity, only every 20th imageis marked. As in [4℄, we redu
ed the number of SIFTfeatures by 
omparing ea
h image to the two neigh-boring images in the series beforehand and dis
ard-ing the �noisy� features whi
h 
ould not be dis
ov-ered in either of the dire
t neighbors. This speeds upthe SIFT 
omparison drasti
ally, as about 50% to80% of the features are left out, while not a�e
tinglater lo
alization performan
e.With the two datasets �sunny� and �
loudy�,three kinds of experiments were 
ondu
ted. Usingone round as environmental map and treating these
ond as online data, we tested sunny vs. sunny,
loudy vs. 
loudy, and sunny vs. 
loudy. We did nottest a round against itself, so there are six 
ases forthe sunny and 
loudy only experiments and nine
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Fig. 4. Lo
alization error at di�erent simulated speeds.for the sunny vs. 
loudy experiment. We 
al
ulatedthe mean error for the three experiments distin
tly.For ea
h 
ase, we repeated the lo
alization run ntimes, where n is the number of test images. Forea
h of these runs, we used a di�erent test image asstarting image for lo
alization.7. Results7.1. Adaptivity of DPSOTo demonstrate the e�e
ts of the settings forDPSO, we 
ontrast lo
alization rounds for a singlelo
alization 
ase, namely lo
alizing sunny (round 1)vs. 
loudy (round 1), whi
h is one of the di�
ult
ases. Where not stated otherwise, DPSO is usedwith a swarm size of 80 parti
les. We varied thesimulated speed of the mobile system in Fig. 4.Here, the simulated speed v̄ = 1 
orresponds to theoriginal data 
olle
tion speed of vR ≈ 0.6 m
s
. Forspeeds k times the original one we use every k -th6



Table 1Varying the number of parti
les for DPSO and PF, see Fig. 8.Method DPSO-40 DPSO-60 DPSO-80 DPSO-100 DPSO-120 PF-g-100 PF-g-300 PF-l-100 PF-l-300Mean err. (m) 2.84 2.60 2.54 2.50 2.46 3.95 3.39 2.80 2.38Avg. 
omp./image 17.9 22.3 25.9 29.1 32.0 40.8 62.4 42.2 69.6image for lo
alization only, resulting in the simula-tion hurrying around the loop at higher speed. Inanalogy, a simulated speed of 1
2 or 1

4 
orrespondsto lo
alizing against ea
h image twi
e or four times
onse
utively. In the non-adaptive version, we setthe maximum speed parameter manually to roughly�t the original speed 
ase. For higher speeds, thenon-adaptive method 
learly fails without manualtuning of the speed limit (Fig. 4).Figure 5 shows two exemplary runs within thementioned s
enario illustrating a re
overy phase.The graph in Fig. 5 (a) displays the 
umulated error,momentary speed limit and the exponential mov-ing average of the swarm speed during the run. Af-ter the initial 
onvergen
e phase, the swarm speedswings around the a
tually driven speed of vR ≈
0.6m

s
. There are two espe
ially ambiguous situationsaround iterations 130 and 300, in whi
h the parti-
le swarm is prone to lose the tra
k. The more dif-�
ult one, around iteration 300, 
auses a 
lear dropin swarm speed and a raise of the error value. Thereal position is lost for some iterations and re
ov-ered around step 320, whi
h requires the swarm tohurry after it with in
reased speed before resettling.In Fig. 5 (b), the very same s
enario is simulatedwith the re
overy mode a
tivated. In the di�
ultsituation around iteration 300, due to ambiguousimage similarity values, a re
overy phase is startedand the diversity in
reased. In e�e
t, the error as-
ent is minor and the velo
ity swing shorter and ofsmaller amplitude. Figure 7 
ompares the 
ourse ofthe mean distan
es of parti
les within the swarm forthe di�erent runs. The in
rease in diversity duringre
overy is visible around iteration 300. It witnessesthat the de
reasing swarm speed is also due to theswarm diverging, while for the run without re
overy,the swarm size remains similar, and while slowingdown, it has a higher probability of losing the tra
k.In Tab. 2, the self-adaptive diversity me
hanism
omes again into play when a kidnapped-robot s
e-nario is simulated. To do this, the virtual positionafter half a simulated round is set to the oppositeof the round by adding n/2 to the 
urrent test im-age index modulo n, where n is the number of testimages. This means that the lo
alization method is
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overy.Fig. 5. Examples of 
umulated error, absolut speed and speedlimit for a single run.Table 2Comparing adaptive DPSO in the standard and kidnapped
ase.Condition Standard 
ase, Kidnapped 
ase,mean err. (m) mean err. (m)Non-ad. 2.56 ± 0.71 10.54 ± 22.1Adaptive 2.50 ± 0.35 5.58 ± 14.2
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Fig. 7. Illustrating swarm diversity in the example run.for
ed to jump to the opposite side of the playgroundafter 
onverging for half of the run. The simulatedkidnapping takes pla
e at iteration 182, whi
h is ⌊
n
2

⌋of n = 365, and 
auses an abrupt lo
alization errorof about 68 m at that instant. Of 
ourse, the kidnap-ping redu
es performan
e, but the adaptive methodis 
learly able to re-tra
e the position. The mean on-line lo
alization error of the experiment is plotted inFig. 6. The performan
e of the non-adaptive variantand the mean lo
alization errors are also shown.Table 1 and Fig. 8 show results for di�erent num-bers of parti
les, demonstrating that even low popu-lation sizes are able to performwell. The largest pop-ulation tested here still requires mu
h fewer SIFT
omparisons than the parti
le �lter, 
f. Se
tion 7.2.Smaller populations, admittedly, have more prob-lems re
overing in a kidnapping 
ase. We thereforeuse a swarm size of 80 for the �nal 
omparison withthe PF.7.2. Comparison to Parti
le FilterIn the �nal test runs for the 
omparison with a PFapproa
h, we used the self-adaptiveme
hanisms anddefault settings des
ribed in Se
. 5. As our datasetdid not 
ontain odometry, the parti
le �lter was�rst employed with a Gaussian motion model witha standard deviation of 4 m (PF-g), while the sam-pling weights are 
al
ulated in analogy to Eq. 3. Analternative dire
ted motion model was formulatedfor the PF by asssuming a linearmotion between twoiterations (PF-l): Ea
h parti
le is assigned a velo
ityve
tor whi
h is rotated and s
aled using zero-meanGaussian distributions of standard deviation σrotfor the angles and standard deviation σacc for a
-
eleration. In Eqs. 7-8, the update step is des
ribedformally. Noti
e that, therein, v and x are 2D ve
-tors, and v is �rst rotated and then s
aled by a log-normally 
hosen fa
tor modelling 
hange in speed.
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(b) Avg. number of 
omparisons per test image.Fig. 8. Comparison of lo
alization error and 
omparisons perimage with varying parti
le 
ounts.
v(t + 1) = eN(0,σacc)

· rot(v(t), N(0, σrot)), (7)
x(t + 1) = x(t) + v(t + 1). (8)A grid sear
h over the motion-model parameters

σrot, σacc, and the initial speed vinit = |v(0)| wasperformed on PF-l with 300 parti
les (PF-l-300)for the more di�
ult s
enario sunny (round 1) vs.
loudy (round 1) already used in Se
. 7.1. The resultsare given in Tab. 3, where error values below 2.60 mare a

entuated to gain a better overview. Thevalues tested were σrot ∈ {20◦, 30◦, 40◦, 50◦, 60◦},
σacc ∈

{
10−2, 10−3, 10−4, 10−5

}, and vinit ∈
{vR, 2 vR, 3 vR}, where vR again 
orresponds to thea
tually driven speed.Interestingly, small deviations in rotation per-form poorly 
ompared to large ones, and higherinitial speeds are advantageous. The best resultsare a
hieved for σrot = 60◦, σacc = 0.001, and
vinit = 3vR, whi
h 
orresponds to about 2 m

s
. Thesesettings imply a high diversity of parti
les due tothe high velo
ity and large rotations, where singleparti
le states do not approximate the real motion.The smaller the angle distributions, the 
loser thePF-l may 
onverge to the position for short periods,and the easier it fails in more ambiguous situations.On average, there are 60 to 80 image 
ompar-isons performed per iteration for the tested PF-l-3008



Table 3Grid sear
h for the PF-l-300 with linear motion model; displayed are error values in m averaged over 365 runs (
f. Se
. 7.2).
σrot 20◦ 30◦ 40◦ 50◦ 60◦

σacc vinit vR 2vR 3vR vR 2vR 3vR vR 2vR 3vR vR 2vR 3vR vR 2vR 3vR

10−2 5.43 4.22 4.31 4.79 3.55 3.60 4.49 3.34 3.42 4.37 3.22 3.21 4.23 3.12 3.11
10−3 5.70 3.56 3.22 5.16 2.81 2.61 4.77 2.65 2.56 4.54 2.59 2.53 4.51 2.58 2.51
10−4 5.62 3.45 3.13 5.18 2.72 2.61 4.70 2.60 2.55 4.55 2.54 2.54 4.44 2.54 2.52
10−5 5.63 3.43 3.14 5.14 2.72 2.61 4.68 2.60 2.56 4.50 2.56 2.54 4.36 2.54 2.53
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Fig. 9. Comparing swarm diversity of DPSO with PF-l-300.
on�gurations, and 72.15 for the best 
on�gurationtested. When the parti
le 
ount for the PF-l withthe advantageous settings is de
reased, the numberof ne
essary 
omparions drops only slowly, sin
e thehigh speed keeps the diversity permanently high sothat the parti
les are fairly distributed and manytraining images need to be looked at. This is illus-trated in Fig. 9, where the mean parti
le distan
esper iteration of DPSO-80, PF-l-100 andPF-l-300 areplotted for the exemplary s
enario.Table 4 and Fig. 10 summarize the mean errors ofDPSO using 80 parti
les 
ompared to the PF using100 and 300 parti
les in all three s
enarios. The par-ti
le �lter with simple Gaussianmotion and 100 par-ti
les (PF-g-100) performs 
onsiderably worse thanthe other methods and is omitted. Note that the in-di
ated standard deviations refer to full rounds andare therefore higher than the deviations within spe-
i�
 pairs of training and test rounds.Considering the lo
alization a

ura
y, both thePF-l-300 and the DPSO-80 variants outperform thePF-g methods as well as the PF-l with 100 parti-
les. This is supported by Student's t-test on a sig-ni�
an
e level below 0.5% in the three s
enarios.The PF-l-300 a
hieves a slightly smaller lo
aliza-tion error than DPSO-80, however it requires a largenumber of image 
omparisons to do so. The DPSOmethod needs only half of the 
omparisons of thePF-l-100 while yielding better lo
alization, and itneeds less than a third 
ompared to the PF-l-300.
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(b) Avg. number of 
omparisons per test image.Fig. 10. Final 
omparison of parti
le �lter to DPSO.This 
an be proje
ted onto the real system run-time, sin
e the SIFT 
omparison is the most ex-pensive operation of the lo
alization pro
edure. TheDPSO iteration with self-adaption 
an be done intwo loops over the parti
le population and is there-fore 
omparable to a PF with resampling. A SIFT
omparison of the 
onsidered dataset took 0.015 son average on our test system, a 2.4 GHz dual 
oreAMD Opteron. The image 
omparisons for an iter-ation of the PF-l-300 thus take about 0.9 to 1 s anda redu
tion by two-thirds implies saving about 0.6 sper test image. With regard to [4℄, where SIFT 
om-parisons took about 40% of the 
omputation timeusing the PF-g-300 method for lo
alization, an all-over speed-up by 25% 
an be expe
ted.9



Table 4Comparison of parti
le �lter to DPSOPF-g-300 PF-l-100 PF-l-300 DPSO-80Mean err. (m) Avg. 
omp. Mean err. (m) Avg. 
omp. Mean err. (m) Avg. 
omp. Mean err. (m) Avg. 
omp.Experiment per img. per img. per img. per img.Sunny vs. sunny 2.15 ± 0.29 60.8 2.24 ± 0.29 44.72 1.79 ± 0.30 66.6 1.99 ± 0.36 21.4Cloudy vs. 
loudy 2.06 ± 0.56 55.3 1.92 ± 0.27 38.31 1.43 ± 0.33 62.2 1.47 ± 0.35 20.5Sunny vs. 
loudy 3.28 ± 0.27 60.9 3.11 ± 0.42 41.62 2.52 ± 0.32 69.1 2.77 ± 0.40 22.38. Con
lusionIn the work at hand, we have proposed a PSO-based method repla
ing a standard parti
le �lter forlo
alization with SIFT features on sparse outdoorvisual data. As in standard PSO, the parti
les areattra
ted to the best global parti
le, allowing for fast
onvergen
e. The parti
les have a velo
ity 
ompo-nent with high inertia, thus the dynami
ally 
hang-ing position 
an be tra
ked without requiring a 
us-tomized motion model. This is a major advantage,e.g., for the augmentation of bla
k-box systems withindependent visual tra
kers.For distin
tive visual features su
h as SIFT, whi
hprovide a quasi-absolute measure of image similar-ity, a good guess 
an be made whether the posi-tion has been lost. In that 
ase, parti
le diversity isboosted until a good position estimate is redis
ov-ered. Moreover, dynami
 speed adaptation makesthe system robust with regard to manual parame-ter settings and the robot's velo
ity. A

ording to a
omparison to parti
le �lter approa
hes, the swarm-based method rea
hes similar a

ura
y but requiressubstantially fewer of the 
ostly image 
omparisons.Our experiments were based on visual images or-dered linearly within an urban outdoor environmentusing GPS ground truth. Similar data 
an be ob-tained without mu
h e�ort in large s
ale, wherebythe plausibility of the GPS annotations must be ver-i�ed. Given that, we are 
on�dent that the DPSOfor lo
alization s
ales well to large datasets. How-ever, in extremely ambiguous environments su
h asforests, the swarm approa
h may lose a

ura
y 
om-pared to a parti
le �lter, at least while employingthe rather greedy star topology for the swarm. Weintend to test a multi-swarm approa
h to 
ounterthis issue in su
h s
enarios.The use of visual sensory and robust features isthe basis for our lo
alization method. The spe
i�
method of image 
omparison, however, is not �xed,and the general algorithm 
an be used with any vi-

able feature extra
tionmethod by just swit
hing thesimilarity fun
tion. SIFT is a popular 
hoi
e andserves well for 
omparisons to further approa
hes,whi
h 
ould be using iterative SIFT [33℄, SURF [34℄,additional geometri
 
onstraints or hybrid featuresets. An analysis of the swarm-supported lo
aliza-tion with hybrid features in larger s
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