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Abstract— Internet technology and the availability of large public
knowledge bases should enable future autonomous systems to

5990 - 641.26,5988.78

drastically improve their perceptual and cognitive capablities

with only inexpensive sensors. In this paper we investigate 6780950790 |
this aspect with respect to robot self-localization. We prsent 5080~ )
a method to improve GPS-based localization of mobile robots %16.74,5074.37

using geographic data from a public database. From a cadasat sor0l-

map a basic map of a robot's working area is automatically
created. A mobile robot is equipped with a low-cost GPS receer
and ultrasonic sensors. Then, a particle filter is used to fus

5960 -

GPS position values and odometry data and to match sonar _ X

scan data with the a priori geodata map. The map is also E sos0- 631.77,5952.05
updated with previously unknown environment features. The

algorithm was tested in an outdoor environment with uneven 50401

terrain. Experimental results show considerable improvenents
in position estimation compared to using GPS alone.
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Index Terms— localization, geographical data, GPS, ultrasonic, sl 674.37,5925.7
rao-blackwellized particle filter
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I. INTRODUCTION AND RELATED WORK
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The task of self-localization for autonomous robots in out- (m]

door areas is more difficult than indoors for several reasons

The environment is unstructured, the underground cannot fi@ 1. The cadastral map of the testing area showing bgidiproperty
assumed to be even, and odometry data are more imprecigiler and coordinates in the Gauss-Krueger system (skofte
However, outdoor environments offer two advantages footob

localization: The GPS satellites provide a global system of ) .
active landmarks which can be used for absolute deterroimatiaser scanners and differential GPS systems. We use the GPS

of the own position and, by exploiting the doppler effecttud t _recei\{er both as position and orientati_on sensor. The idhgor
received signals, even the own velocity and orientationTig itself is based on Monte Carlo Localization as m_troduced by
other advantage is the availability of preprocessed inftion  Dellaert et. al. in [2]. To reduce the number of particlesdese
about the potential robot workspaces in the form of geogicapfi©r reliable localization we apply a Rao-Blackwellization
data. Geographic data (geodata) describe the position?hand[& 4] on the partlcle_fllter by estimating the direction with
characteristics of stationary objects and features on anth e Subordinate Kalman filters. Performance and robustneseeof t
surface. Large public geographic information systems hafjéer are improved using Adaptive Resampling [5, 3] and
been created in recent times and data like cadastral maps3f8SOr Resetting Localization [6]. As applications for the

now available in electronic form for further processing. ~ resulting localization we present approaches to calculete
_ ] _ area covered by the robot's movements and an update of a
In this paper we address the case of mobile robots Opemt'”gﬁobabilistic occupancy grid map.

outdoor areas in the vicinity of buildings. In such space$sG

accuracy typically suffers from multipath issues, withiioa A variety of techniques for improving GPS-based localizati
errors up to 20m, or satellite reception can be disruptéés been described over the past years. In [7] an extended
completely. We use a prior map created from cadastral datakaflman filter is used to fuse GPS with inertia sensors and
the area (Fig. 1). The main assumption is that buildings show laser scanner for matching with an incomplete map of the
in this map always exist, but there might be other, previpustobot’s surroundings. [8] uses an adaptive Kalman filte}. [9
unknown obstacles. As our objective is also to use low-castorporates a map-based prior into a GPS-based localizati
sensory equipment, the presented approach is adapteddae ulh [10] an approach using GPS in combination with a laser
sonic sensors and commercial-grade GPS receivers insteadaanner and a map created from geographic data is presented.




Il. ALGORITHM AND SENSOR INTEGRATION with L the wheel distance. Herd), does not depend on

) ) _ (zt—1,y:—1) and therefore we can assume for the transition
A. Rao-Blackwellized Particle Filter distribution

The core of the presented localization algorithm is a plartic
filter (PF) as introduced in [2] for robot localization. The
distribution p(s¢|21.¢, u1.¢) of the robot's pose; is estimated
given the sequence of observations; and odometry mea-
surements:;., . The particle filter is implemented as sampling Gro1=_1 0+ ( —1/L +1/L ) ( d > . @)
importance resampling filter (SIR) and approximates thepos ~ dr
distribution by a large set of\/ particles s[f], where each
particle has an assigned importance We'rgféﬁ. The weights _ . i _ .
are calculated recursively, using the current observatign wheref is estimated using subordinate Kalman filters
i i i The performance of the particle filter is improved using
wﬁ] - "wul H p(zj"t'zp) (1) adaptive resampling. As shown in [3], the resampling step is
J=te only performed when the effective sample size, introduced b

Liu [5] in the formulation by Doucet [4],

D(st|st—1) = p(Xe|Or—1,Xe—1)p(0¢|0c—1).

This satisfies

A B

where i is a normalization factor and is the number of
applied sensors.

(5)

1
A common problem of particle filters is their computional Mepp = W
complexity, which increases with the number of particled an =1

the dimension of the state vector. A technique to reduce this pelow a threshold\Z,, . The argumentation here is that
this complexity is the Rao-Blackwellization as described e |arger standard deviation of the weightd the poorer the
[4]. The key concept here is to exploit dependencies in thenroximation of the posterior is and the lowef;. [3] and

state variables to reduce the dimension of the particle filbel [11] suggest as threshold a value®5)/ and 0.6M, which
therefore the complexity of the estimation task. The substa qnforms to the experimental results of this work.

removed from the particle filter are determined analytjcal _ . _ . o N
using less costly filters. This approach can be applied if th issue with particle filters for localization is the possp
variables inside the state vectsy can be divided into two that the algorithm might fail entirely simply when due to

groupss:* ands? so that bad previous sensor measurements no particles are left in
the vicinity of the true pose. A simple measure against this
plselsi—1) = p(sP|sit v s 1)p(s7 sie) (2)  behavior is the injection of new particles in the estimation
[6] it is suggested to inject particles randomly in the entir
applies. Then the posterior turns according to [4] into working area or drawn from the inverse sensor distribution

A B _ (B AN A p(s!|z;) based on the current observation The number of
p(si, 8¢ |21, ure) = p(sy |21, U, 814) - D(54 |21:t,u1;t()3) new particlesM;, is determined, using the average particle
weight weuy = M wl?, by
If (s#,s%) can be observed separately by*, ) with the

wa’u
assumptiomp(zf|sf') = p(zP) follows with Bayes Mipn = M - max(0,1 — W:)

B|_A B _
plsilss 2 une) = with a heuristic thresholdv,;,. As in our setup we have an

p(sB|2E Ur.e, 59) ; .
AT Pt Pt j‘:t absolute sensor at our disposal, namely the GPS, this method
p(ztlzre-1,ure, 57,)  avoids with|3—s| < |z, — s| the divergence of the localization
B B|_B A
s 21— 1, Ul:t) P8y [215—15 U1st, 814

2B|sP

= p( ,Zﬁt_pulct,Sf;Q

= np(zF|s”
The structure of the complete localization algorithm isveho
in Fig.2.

We use this derivation to split the robot's pose state into

orientationd and positionz. This is possible, as the motion
model of a robot with differential drive is

which leads to a Bayesian filter fef with the inputs(u, s*).

B. Sensor Modelling and Geographic Data

In our approach we apply a sensor fusion of data from a GPS
receiver, ultrasonic sensors and odometry measuremems. T

o . Tl GPS here is the only provider of absolute position infororati
e - Y1 A GPS measurement vector
¢t d)tfl
COS(@tfl) COS(@tfl) Zgps = (x7yah797aGPSavwvvyavz)
1 . . di¢
+ 3 sin(f;—1) sin(6;—1) L . N _ o
—2/L 2/L Tt consists of positiork,,s = (z,y) and altitudeh, a direction

6, a velocity vector(v,, vy, v.) and an error estimation value
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ocps. The position and velocity values are transformed in@gﬁsg.r Ultrasonic sensor modeling with regard to refledti@way from
the coordinate system of the robot map. Our experiments
showed that the GPS provides satisfactory direction values

Ocps only for velocitiesvy,r > 0.3m/s . The covariance |||, A PPLICATIONS OF THE LOCALIZATION ALGORITHM
X4 gps is calculated for each measurement of the GPS by
o2 0 A. Estimation of Robot Area Coverage
(4 3)
we 0 o} To test the results of the localization approach describede,

two applications for robot self-localization were implemted.
The likelihoodpc ps(zgps|x) for a particle positionx by the A typical task for robots in outdoor environments is to visit
GPS valuex,,; is calculated using all reachable terrain in its assigned working area. Exasmple
1 these tasks include systematic exploration and many assign
PG ps(Zgps|x) = exp(—5 (x — Xgps)" Sgps (X = Xgps)) (6)  ments in agriculture robotics.

-he areas covered by the robot can easily be derived from the

In terms of the applied Bayesian localization the a priopl- . . -
geodata map is regarded as a sensor as well. Here the wor ﬁg.'de filter. Letpzy(ﬁl:k,). be the prob{;\bmty fqr the rqbot
ing covered the positior = (z,y) in the time period

area of the robot 1S represgnted using an occtipancy gtl?..tk] andp,.,(t) , the corresponding probabilities for The
map m. Each cell in the grid holds two values,.. and o v . )

Dfree rEpresenting the current estimations for free space a%)bab'“ty for never having been &t,y) is

obstacles. Buildings known from geodata have a probability Pay(tr) = H 0 7)
as obstacle op,.. = 1 . The mapm now works as a sensor sk

which assigns weights to particles: . . .
9 9 P From this and the relationshjp,, (t) = 1-p,,, (t) the coverage

P(Zgeo|x, M) =1 — Poce (%) probability can be formulated recursively as

The ultrasonic sensors are integrated in the localizatgngu Poy(tre) = (1= Pay(Be) Py (brin-1) + Py () (8)
aLikelihood Fieldas suggested in [12] . The basic idea of thiC%
method is to determine the probability to detect an obsta éi
from a hypothetical robot posér,y,6) at the distancez,. 0
The mechanics of the combined map and ultrasonic filter aap- W il

illustrated in Fig. 3. At first the map filter sets the weights Pay(t) = Z(wl s € cell(z,y))

of all particles inside the building to zero. As the ultrason ‘

detects some object at a distantehe robot cannot be closer

to the building than this distance. However, it is possiblett B. Mapping of Previously Unknown Objects

the robot encountered a previously unknown object with a

probability p..xnown - Being in distancel from the building The same approach as described above could be used to update
is still the best guess. Figure 4 shows the modelling of thlee map with previously unknown objects detected by the
ultrasonic sensor as a simple beam with opening angéad sonar scans. However, this would mean applying the sensor
a ranger . model of the ultrasonics to all particles at all times. Since

sed on the particle filtep,, (¢) is approximated as the sum
all weights of particles within a cell of widtly in a grid



this would be too time-consuming for online processing, wes
apply a different method to this task. Generally a particle* £\ ' N
filter delivers the state estimation as a set of possiblestat.” /N A
combined with weights. However, many applications of selﬁ»zz \ D00
localization including map updates benefit from a concregez /
value  for the estimated position. To determine such a valiye: \ |
several methods were suggested. A common method is tg y/ /

f

s . i A /
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This approach negates the main advantage of particle filter,

namely the ability to deal with non-Gaussian distributioims | [ Garmin 18 USB | Holux GR-213_|
our experiments it often produced robot positions consider Chipset PhaseTrac12 SiRF Star 1l
impossible, e.g. inside buildings. A simple method whic (Garmin) (SIRF)

h d d results is to use the particle with the &rge Frequency Sl ez
showed very goo he partcl HIGeVisible Satellites 7.9 8.6
weights™®. This method can be varied by using the weightgdEstimated Position Error] 14,8m -
mean of the particles within a distance of less thdrom the (EtPE) - o

. . . . . M pOsiItion error ,Am ,9m
particle with the highest weight: & posifion error >8m Tom
Max position error 12,5m 6,8m
M Interface Binary Binary,NMEA
4 — [i] 1] . | o] _ omax Remarks No Output of raw Altitude Hold
s Zw s ‘S s ‘ Se€ (10) GPS data Mode
i=1
TABLE |
Based on these position estimations and the data from th&oMPARISON OFGPSDEVICES, VALUES ARE AVERAGED FROM TEST
environment scans, the area map of the robot can be updated. SERIES

To every point of the pathx,, .., of the best particle is a
probability p(x;), the confidence, by which the localization

algorithm has estimated this position. If an obstaclecats This illustrates the high influence of the uneven and partly

detected from the viewpoint, the quality of this measure slippery test terrain on the quality of the odometry measure
depends omp(x) being at this point. So the probability that ppery quality y

) S ments.
an area is occupied is
During this project we evaluated two commercial grade low-

Poc(Xpr) ~ max (p(Zew(xn)|%e) ) cost GPS receivers, a Garmin 18 USB and Holux GR-213. The
chipset inside the Holux, a SiRF Star Ill, allows for settany
Altitude Hold Modewnhere an approximate altitude is specified
in advance. The internal GPS algorithm of the device takes
advantage of this a priori information to improve its pasiti

As p(x;) the robust weight of the particle of the best patgstimations. In our case, the altitudes of the test arearawik

is used. The same applies to the free spage(x). For the from the geographical data. Both receivers are usedely
path the robot has driven is obvioush(z s (x:)|x;) = 1. coupled which means the localization uses the GPS position
This approach is implemented using a grid map where eaghd orientation values estimated by the devices.

cell holds two valuegpar.ps) as introduced in [13]. To collect GPS data, we mounted both devices on the robot.
The robot was driven along different trajectories with neaisk
on the ground for position reference. Test drives were made
on 3 days to minimize the influence of GPS satellite constel-
lations. The accuracy of the position reference is in thgean
+0.5m .
The presen Igorithm w. in r with diff . .
€ prese ted ago t as tested using a _opot th d eI[able | and Fig. 6 show the results of the GPS test series. For
ential drive. We first determined the characteristics ofitbed . . .
. . o the orientation error we included only values taken at a robo
sensors. The testing area has uneven terrain and is irrggula . )
. . . . Speedvy,: > 0.3m/s, an experimentally determined threshold
covered with grass. To estimate the typical odometric sroor for usable orientation measurements by GPS
such a terrain we carried out test drives where the grourtld tru y '
of the robot's position was provided by an infrared trackingigure 7 illustrates some of the typical difficulties whelings
system. Figure 5 shows the analysis of the gained data (10&RS for more exact position estimates. Figure 7(a) shows the
straight drive and 42 turns in the range 45°-100°). position error caused by reflections and shadowing in frént o

IV. EXPERIMENTAL RESULTS

A. Sensor Characteristics
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orientation relative to the forward direction.
buildings. Here the robot drove along a course 2m in front of a
two-storied building. Figure 7(b) displays for comparisbe
GPS values in free terrain. This test run was executed right Localization results
before Fig. 7(b), i.e. with a very similar satellite conktgbn. o .
Although the GPS error is zero-mean in the long run (Fig. 6&3 evaluate our localization algorithm, we performed mul-

GPS can exhibit a constant position error over a significaiip/e st drives. The robot was equipped with sensors and
period of time. In Fig. 7c) an offset of 4m is visible. Fig_drlven along different trajectories on the testing areae Th

(d) points out the error caused by the estimation algorithipg9ed sensor data were processed offline with the locaiizat
inside the GPS device itself: The robot (black arrow indisat SOftware. The reference path was determined using ground

direction of movement) stops and turns near a building, tf&arkers or an infrared tracking system. Fig. 8 illustraigshs
GPS estimate follows the previous direction. a test run. Figure 8a) shows the initial distribution of 100

particles around the first GPS value. Figure 8b) shows how
As environment sensors we used two ultrasonic modules of tie position estimation uses the building’s wall as refeegn
type SRF08. This sensor has a range of 6m with a resolutialthough the GPS provides erroneous position estimatés jus
of 1cm. The angle of the beam was measured wGtli. because of the building. In the next figure (c) the trajeetadf
The modules were mounted on the robot in left and righiie 50 best particles are plotted, this shows that the ahgori
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geographical data from a public database. Our experiments
show that, using only two low-cost ultrasonic sensors, the
resulting positioning accuracy is significantly largerrthaith

GPS alone and that the algorithm is able to compensate for
temporarily large GPS errors. The method takes advantage of
the fact that the used sensors mutually supplement each othe
Near buildings GPS often fails due to multi-path issuestethe
however the ultrasonic sensors detect environment feature
known from geographic data. We also showed that the number
of particles, and thus the required CPU load, can be signifi-
cantly reduced using the presented Rao-Blackwellizatipn b
estimating the orientation with subordinate Kalman Féter
Still problematic are the accuracy on open field and the
robustness of the approach regarding large deviations from
the basic map. In future work we will address these issues by

| | particles| u [ o [ max]
GPS - 2.8 | 23| 125
best trajectory 100 11| 07| 46
best particle 100 15109 70
best trajectory 200 10| 07| 51
best particle 200 14| 08| 51
Rao-Blackwell disabled 100 19| 12| 95

(1]
(2]

TABLE Il
ANALYSIS OF 3 TEST DRIVES EACH RUN 5 TIMES THROUGH THE
LOCALIZATION ALGORITHM . THE VALUES SHOW MEAN POSITION ERROR
4, STANDARD DEVIATION o AND MAXIMAL ERROR, IN METERS)

(31

(4

T

has basically two assumptions for the robot’s trajectoyiciv
fan out after the right turn at the bottom building. As the GP
provided good results on free terrain, the estimation cayec
afterwards nearly exactly to the true position (Fig. (d)).

integrating additional sensors and extending the algworith
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