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Abstract An unmanned aerial vehicle (UAV) needs to orient itself in its operating

environment to fly autonomously. Localisation methods based on visual data are inde-

pendent of erroneous GPS measurements or imprecise inertial sensors.

In our approach, a quadrocopter first etablishes an image database of the environ-

ment. Afterwards, the quadrocopter is able to locate itself by comparing a current

image taken of the environment with earlier images in the database. Therefore, char-

acteristic image features are extracted which can be compared efficiently. We analyse

three feature extraction methods and five feature similarity measures. The evaluation

is based on two datasets recorded under real conditions.

The computations are performed on a Nokia N95 mobile phone, which is mounted on

the quadrocopter. This lightweight, yet powerful device offers an integrated camera

and serves as central processing unit. The mobile phone proved to be a good choice for

visual localisation on a quadrocopter.

Keywords Computer vision · Unmanned aerial vehicles (UAV) · Visual localisation ·
Mobile devices · Onboard computation

1 INTRODUCTION

This paper introduces a visual self-localisation system for unmanned aerial vehicles

(UAV) which is efficient enough to run at 1.7 Hz on a Nokia N95 mobile phone. Our

UAV is planned to operate autonomously from external control: It is designed to nav-

igate without a pilot and is to be independent of a base station’s processing power or

memory. Further, we focus on vision-based localisation without GPS or inertial sensors.

The environment is not artificially changed by markers.

We use a model quadrocopter as UAV. The system is limited to a payload of only 300 g.

Thus, we were looking for a lightweight device with a camera and enough processing

power and memory. We decided to use a mobile phone. It weighs only 120 g and meets

the above criteria.
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Our approach is based on content-based image retrieval (CBIR). That is, we build an

image database from the environment during one exploration flight. Afterwards, the

quadrocopter is able to locate itself by comparing the current image to the training

database. Therefore, the actual localisation is only based on visual data. However, at

this stage, we use GPS as ground truth at the exploration flight.

To compare images, we extract features which identify and characterize an image. The

main concern of appearance-based localisation methods is to find unique image at-

tributes that represent the view efficiently and in a simple data structure [27]. Finding

features containing these characteristics is a difficult task due to the complex nature

of the environment of an outdoor robot. Shapes are unstructed and irregular, colors

are permanently changing. Illumination alters depending on time of day and weather

conditions. People or objects like cars can change their position. In our analysis we lay

our focus on the influence of illumination changes. Further, the camera is mounted on

a quadrocopter, which implies that its pose can vary in six degrees of freedom (DoF).

Therefore, the features should not be influenced by image rotations and translations.

One distinguishes between global methods, which use the whole image to calculate fea-

tures, and local methods, which use several points of interest. The detection of salient

points is computationally expensive. Multiple local features have to be stored for each

image. A global feature establishes a compact representation of one image. Besides sim-

plicity, it requires less memory in comparison with local features. Its main disadvantage

is its sensitivity to occlusion. In order to archieve robustness while still being efficient,

we use local image grids to handle the occlusion problem. We analyse three global

methods under real conditions. To compare these image features, one needs distance

measures to determine how similar two features are. Thus, we analyse five different

comparison measures.

We combine the two aspects of visually locating and mobile computing to an UAV

system which we call “Flyphone”. The focus of this paper lies mainly on analysing

different feature extraction algorithms for localisation purposes.

The remainder of the paper is organized as follows. In Section 2, we introduce the

related work. Section 3 describes our robot system, consisting of a quadrocopter and

a mobile phone. We present algorithms, which extract image features, and similarity

measures to compare these features in Section 4. Section 5 analyses the presented ex-

traction and comparison methods with our airborne system. Finally, conclusions are

drawn in Section 6.

2 RELATED WORK

One contribution of this work is to bring together UAVs and mobile phones as lightweight,

but computationally powerful processing devices. Thus, related work can be categorised

into two main areas: Self-localisation of robots, especially UAVs, and image processing

on hand-held mobile phones.

Autonomous aerial vehicles have become an active area of research in recent years.

Some approaches give a solution to the problem of self-localisation by realizing Simul-

taneous Localisation And Mapping (SLAM) with visual data and additional sensors

[11, 18, 19, 24, 25]. It aims at simultaneously building and updating an environment

map. The problem of determining the position and orientation of a robot by analysing

the associated camera images is known as visual odometry in the robot vision commu-
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nity. Accurate results have been obtained by using stereo or omnidirectional cameras

[6, 14, 20]. Methods like optical flow analysis or local feature tracking are used for in-

stance on Mars missions [14]. Not only for localisation, but also for stabilisation or con-

trol purposes various approaches use artificial markers or known targets [2, 16, 17]. By

contrast, we analyse images by extracting features of the environment without artificial

markers or targets. This is also done in work with groundrobots [1, 9, 10, 21, 23, 29, 33].

Instead of an artificially modified environment, we need some prior knowledge with

means of raw image data. This knowledge is obtained by preceding exploration flights,

where images of the environment are recorded. Splitting the process in two phases has

also been done by Valgren et al. [29], Lamen et al. [12], Ulrich et al. [28] and Zhou

et al. [34]. Valgren’s work is similar to ours in the sense that it uses image features

to localise a robot in a changing, but explored environment. Our approach uses global

features instead of local ones. It deals with the characteristics of flying robots and uses

solely the built-in camera of a mobile phone instead of an omni-directional camera.

Some UAV systems perform complex vision-based applications not onboard, but on a

ground station [7], because they demand high computational power. We decided not

to use a ground station, but to perform the entire image processing onboard a mobile

phone. Although, the technical limitations of mobile devices make it difficult to imple-

ment image processing on them, there are approaches in context of user interaction and

information services. Wang et al. [31] detect the motion of a mobile phone by analysing

image sequences with motion estimation. While Castle et al. [5] compute visual SLAM

for wearable cameras on a 3.2 GHz Pentium 4 CPU, there are image processing meth-

ods which run on a Nokia N95 mobile phone. Wagner et al. [30] implemented the Scale

Invariant Feature Transform (SIFT) [13] on a N95 to find known textured targets. The

mobile infomation system by Takacs et al. [26] uses CBIR. Here, users take pictures of

a building and the system finds similar images in a database by comparing Speeded Up

Robust Features (SURF) [3]. The system further provides the user with information

about the building. In place of local image features, we study the applicability of global

features for vision-only localisation.

3 SYSTEM COMPONENTS

The main components of our robot system are the quadrocopter and a mobile phone

(Fig. 1). A quadrocopter is a fixed-wing aircraft which is lifted and propelled by four

rotors. It is controllable by variation of the rotor’s rotation speed. The lightweight

quadrocopter is a commercial Asctec X3D-BL model quadrocopter, which is in detail

described in [8]. It is equipped with a GPS sensor which reaches an accuracy of about

2.5 m. The quadrocopter lifts a maximum payload of 300 g. Thus, we need a lightweight

device which supports a camera, computing power, memory, and which is able to con-

nect to the quadrocopter. Because of these requirements we assembled a mobile phone,

which supports all these functionalities, under the quadrocopter.

We use the N95 by Nokia with the operating system Symbian OS. Phones are em-

bedded systems with limitations both in the computational facilities (low throughput,

no floating point support) and memory bandwith (limited storage, slow memory, tiny

caches). The N95 is based on an Arm 11 dual processor at 332 MHz. It contains 160 MB

internal memory and an 8 GB memory card. Furthermore, the mobile device includes

a 5-megapixel camera, a GPS sensor and data transfer techniques such as WLAN, in-
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Fig. 1 The quadrocopter Asctec X3D-BL with a Nokia N95 mobile phone.

frared and Bluetooth. To apply these technologies, the mobile phone is programmable

in Symbian C++, which offers a fast method to read the camera viewfinder images

(sized 320× 240 pixels, QVGA) in 3 ms.

The images, taken during flight missions, are stored in an image database for later

monitoring. The image features are stored in a relational database system. Symbian

OS supports a database API in the database language SQL.

4 LOCALISATION PROCESS

The localisation consists of two steps, an exploration phase and the actual localisation

phase (Fig. 2). During the exploration phase, aerial images are taken. We extract

characteristic features from these images and store them in a database. During the

localisation phase, the quadrocopter navigates in an already known area. The mobile

phone takes pictures and extracts their features. We compare these features to those

from the database. Similar features and therewith similar looking images are supposed

to originate from the same location.

Image Capture

Feature Extraction

Annotation with
Reference Pose

Exploration

Image Capture

Feature Extraction

Similarity Evaluation

Localisation

Pose Estimate

Feature
Database

Fig. 2 The process consists of an exploration phase and the actual localisation phase. The
highlighted steps are under investigation in this paper.
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(a) Illumination changes

(b) Rotation

(c) Translation

(d) Rotation, translation and illumination changes

Fig. 3 Images of a building under usual transformations

4.1 Exploration Phase

The goal of the exploration phase is to map unknown areas in which the robot should

be localised later. On exploration missions, the camera takes pictures of size 320× 240

pixels and annotates them with their recorded positions. We used GPS as ground

truth, because the values did not significantly deviate from the real position, as it can

be seen in Fig. 6. At this stage, the mobile application requests the GPS data from the

quadrocopter via infrared connection. We decided not to use the mobile phone’s GPS

sensor, because it is restricted by a fee required signing process. The GPS information

is stored in the Exif 1-header of each captured JPEG-image. For the future, we plan to

1 Exchangeable Image File Format
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turn our mapping stage into a SLAM system in order to eliminate the depending on

GPS. In this stage, however, we used GPS as ground truth in order to benchmark our

approach.

During flight, the mobile application extracts features which describe image character-

istics. Compared to robots on the ground, aerial systems differ in their movement in

six DoF (θ, φ, ψ, x, y, z). Image features have to be stable to changes of illumination

and they have to cope with image transformations in six DoF. The camera performs

large rotation and translation motions during flight, which can be seen in Fig. 3. It

shows that images taken at the same location do not have to be similar. We examine

to what extent global image features are capable of encoding image similarities. We

expect that the localisation accuracy will suffer from intense image transformations,

but that global image features should already lead to robust localisation. This limi-

tation is compensated by the relative simplicity of the approach. Further, we expect

that the features are fast to compute and need little memory, which enables the mobile

computation.

In the following, we introduce the three global feature extraction algorithms.

4.1.1 Grid Greyscale Histogram

A straightforward approach to characterize an image as a whole is to build a greyscale

histogram. Ulrich and Nourbakhsh [28] established visual self-localisation for topo-

logical place recognition using color histograms. We extended the approach on two

points. First, the illumination of the environment affects greyscale histograms. To ob-

tain robustness to illumination changes, the grey value scale is divided into eight parts.

Thus, one histogram bin represents 32 grey values. And second, partial occlusion has

less impact on the histogram if the image is divided into subimages. By this means,

changes of a subimage do not influence the whole histogram, but only the part of the

histogram which represents the affected subimage. Therefore, we split the image into

4× 4 subimages. For each subimage, we then compute a separate histogram. Transla-

tions or rotations of the image cause pixels to fall into another subimage. Pixels in the

centre of a subimage obtain a larger weight than those near the subimage border. The

weighting is realized by a Gaussian function placed in the centre of each subimage.

To get the final 1 × 128 feature vector, the histograms of the subimages are concate-

nated. The vector is normalized according to the chosen norm (Sect. 4.2).

We expect the algorithm to be sensitive to changing lighting conditions, but at the

same time, it is fast to compute.

4.1.2 Weighted Grid Orientation Histogram

Bradley et al. [4] presented the Weighted Grid Orientation Histogram (WGOH) ap-

proach in 2005. It is inspired by the popular SIFT by Lowe [13]. The feature uses

weighted histograms of image gradient orientations. In contrast to the local SIFT fea-

ture, histograms are not computed around interest points, but globally for each pixel.

We chose WGOH, because it was reported to obtain good results under different il-

lumination conditions [4]. It benefits from the robustness of the SIFT idea and the

simplicity of the global approach.

The algorithm works as follows (Fig. 4): The image is divided again into 4×4 subimages.

For each pixel the orientation of the gradient is calculated. A histogram of gradient

orientations is built for each subimage. For this purpose, the orientations are divided
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into eight intervals. The gradient orientations are weighted by the magnitude of the

gradient. Additionally, a Gaussian function is used for weighting each magnitude. The

gradient histograms are concatenated to a 1 × 128 vector, which is normalized subse-

quently.

1,0

0,8

0,6
0,4

0,2
0°

45°135°

225° 315°

90°

180°

270°

Fig. 4 Creation of the WGOH feature vector by determing the gradient orientation in each
pixel and building an orientation histogram.

4.1.3 Weighted Grid Integral Invariants

The Weighted Grid Integral Invariants (WGII) approach by Weiss et al. [32] is based

on Integral Invariants, which were first introduced by Manay et al. [15]. A detailed de-

scription of Integral Invariants can be found in [22]. Weiss et al. achieved good results

under illumination changes. The idea is to apply as many transformations as possible

to an image and to integrate the outcomes. Integration makes the features independent

of the sequence of the transformations and leads to invariance against these transfor-

mations.

Integral Invariants proceed as follows (Fig. 5): A kernel function f involves the local

t1

t0
ϕ

Σ
1
G

WGII( I )

p1

p2

Image I

Fig. 5 The creation of the WGII feature vector by rotating a pair of neighbor pixels and
averaging over the difference of their intensities.

neighborhood of each pixel. The function subtracts the intensities of two pixels lying
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on circles with different radii around the considered pixel. The two observed pixel po-

sitions are rotated 10 times. The kernel function is evaluated for each rotation g. Then,

we integrate over these evaluations to achieve independence of the order of transfor-

mations. The Integral Invariant feature of the image I of size N0 × N1 is calculated

by

F (I) =
1

RN0N1

N0−1∑
t0=0

N1−1∑
t1=0

R−1∑
r=0

f
(
g
(
t0, t1, 2π

r

R

)
I
)
, (1)

where R is the number of rotations. Integral Invariants are applied to each pixel and

weighted by a Gaussian function. The image is split in 4 × 4 subimages. To calculate

the Integral Invariants, we use two pairs of pixels (2; 0)T , (0; 3)T and (5; 0)T , (0; 10)T

as kernels. The final feature is a histogram of the Integral Invariants. We use an 8-bin

histogram per subimage. These histograms of sixteen subimages and both kernels are

concatenated to obtain the final 1× 256 feature vector.

4.2 Localisation phase

During the localisation phase, the quadrocopter flies in an already visited area. The

mobile application takes pictures and compares them with those in the database. To

compare two pictures, it is not only important to find significant features, but to define

a similarity measure to detect similar features. In the following, we define five measures

which compare histograms, represented by vectors.

In [22], Siggelkow distinguished two concepts to compare feature histograms: a bin-

by-bin measure and a cross-bin comparison measure. In the work at hand, we use

bin-by-bin measures, which compare corresponding bins. The reason for this is that

bin-by-bin measures have linear complexity in the number of bins, while cross-bin

comparison measures have higher complexity. The notation of histograms corresponds

to notation of vectors h = (h0, h1, ..., hM−1)T .

First, we remember the well-known Minkowski distance. It is defined by

dLp
(h(0), h(1)) =

(
M−1∑
m=0

|h(0)
m − h(1)

m |p
) 1

p

. (2)

We consider three choices of p: the L1-norm or Manhattan norm distance with p = 1,

the Euclidian distance with p = 2 and the infinity norm distance with p→∞:

dL∞(h(0), h(1)) = lim
p→∞

(
M−1∑
m=0

|h(0)
m − h(1)

m |p
) 1

p

= max
m=0,...,M−1

(
|h(0)

m − h(1)
m |
)
. (3)

The infinity norm performs bin-by-bin comparisons and considers the largest difference

as the measurement value. If a single pair of bins is very different and all other bins

are similar to each other, the pair of feature histograms is not regarded as a match.
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Furthermore, Siggelkow introduced another distance with intuitive motivation. It is

called the intersection measure d∩ and calculates the common part of both histograms:

d∩
(
h(0), h(1)

)
=

M−1∑
m=0

min
(
h
(0)
m , h

(1)
m

)
. (4)

Bradley et al. [4] use the following measure to compare two normalized WGOH feature

vectors:

dBradley

(
h(0), h(1)

)
= 1−

(
h(0)

)T

h(1). (5)

It is based on the fact, that the scalar product of two identical vectors is 1. The reverse

does not hold: If a scalar product of two vectors is 1, the vectors do not have to be

identical.

The intersection measure and Bradley’s measure are not induced by norms. Thus, we

normalized the feature vectors depending to the norm, which is the most suitable to

the measures. We chose the L1-norm for the intersection measure and the Euclidian

norm for Bradley’s measure, because experimentally, these combinations yielded the

best results.

In the following we examine to what extent the measures influence the image feature

approaches.

5 EXPERIMENTAL RESULTS

In this section, we analyse the presented localisation system on the basis of two datasets

and different configurations of the feature algorithms and similarity measures.

5.1 Datasets

The monocular camera of our aerial system faces forwards. Thus, a quadrocopter which

rotates or varies its altitude, has many different views at the same latitude and lon-

gitude position. Besides, a large amount of data has to be recorded. To organize the

exploration phase effectively and to minimize the database, we restrict our setting:

According to the quadrocopter’s task, the altitude and orientation are constrained. We

collect data in an exemplary task, which is a flight from a start to an end point for a

given route. The view of the camera pointed in course direction. The quadrocopter’s

altitude varied between five and ten meters, which is the range of the desired altitude.

The images of the dataset were taken at different illumination conditions.

The dataset consists of 1,275 images in total, taken during a traversal of flying eight

rounds in a courtyard. During an exploration mission, we took 348 training images of

the courtyard with diffuse illumination (dataset T), representing one round. Dataset T

was chosen to serve as our reference dataset, because it was a slow-moving exploration

flight with twice the number of images as the test flights (see Table 1). Dataset C

consists of 558 images taken at four rounds at cloudy weather. Dataset S contains

369 images, representing three rounds, which were taken on a sunny day. The images

show hard shadows (Fig. 3(a), left). The distance between images varies between the

datasets. Fig. 6 shows one round of dataset C and S, respectively.
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Table 1 Characteristics of the datasets

Dataset Illumination Number of images Purpose

T cloudy 348 Exploration

C1 cloudy 88
 558

C2 cloudy 125
C3 cloudy 142
C4 cloudy 203 Localisation

S1 sunny 94
}

369S2 sunny 118
S3 sunny 157

Fig. 6 The localisation area: The route is about 180 meters in length. The captured images
are placed in the aerial picture by their geotags. The two rounds can be clearly distinguished
from each other (dataset C1 (white); dataset S1 (black)). GPS values are consistent and not
falsified by erroneous sognals. The distances between images vary because of gusts of wind.

5.2 Results

In the following analysis, we evaluate the matching results of the visual localisation

algorithms and the corresponding measures. GPS data were added to all datasets, serv-

ing as ground truth positions.

5.2.1 Comparison of Similarity Measures

In this section we analyse the matching accuracy for the different similarity measures.

We measured the 2D position distance between the query image and the matched image

for each feature algorithm and for each similarity measure.

The results of the different measures under varying illumination are shown in Fig. 7.

The mean localisation error lies between 10.9 m and 21.4 m. Considering this error, the

appropriate choice of image feature and distance measure is important. With regard

to the intense image transformations and the size of the test area of about 180 meters
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(a) Similar illumination during exploration
and localisation phase.
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(b) Different illumination conditions in the
two phases.

Fig. 7 Comparison of the similarity measures combined with the different features. 7(a) shows
the mean absolute localisation error and standard deviations under comparable illumination
conditions during exploration and localisation (dataset C), while 7(b) is evaluated under dif-
ferent conditions (dataset S).

in length, we consider the localisation error as good. An image taken close to a query

image can look very different. However, an image which is taken from a 20 m distance

can picture the same motif (Fig. 8).

Figure 7(a) shows the results under similar illumination of training and test images.

Fig. 8 Combination (right) of a query (left) and a matched image (middle) which have a
distance of 20 m to each other and which are congruent to nearly a third.

It illustrates the importance of the correct choice of distance metric for the particular

feature extraction algorithm. The localisation error with the WGII approach varies

about 10 m, depending on the chosen measure. In contrast, WGOH is only marginal

influenced by the chosen measure. The measurements with the Euclidian norm and

the Bradley measure (Equ. 5) perform with similar good results on all features. Each

feature requires a different measure to yield the best performance. WGOH convinces

in conjuction with Bradley’s norm resulting in a localisation error of 10.92 m. WGII

achieves best results (11.5 m) with the Euclidian norm. The grid greyscale histogram

works best with the intersection measure (13.2 m) and the L1-norm (13.15 m). The

results of the infinity norm are worst. Here, only histograms are matched whose bins

are without exception similar to its correspondent bins. This approach is not robust

enough for our aerial images.

The experiments with dataset S under different illumination conditions are shown in

Fig. 7(b). The localisation error increases by 3 m on average. This difference is not
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caused by the measures, but by the feature extraction algorithms which are analysed

in the following.

5.2.2 Comparison of Feature Extraction Algorithms

Having found the most appropriate similarity measure for each approach, we concen-

trate on comparing the feature extraction algorithms.

As shown in Fig. 7, WGOH achieves the best results, followed by WGII. WGOH rep-

resents an image by its gradient orientations, while WGII examines the differences of

neighbouring pixel intensities. Both approaches can cope with intense image trans-

formations like rotation and translation to a certain extent. WGOH divides gradient

orientations into eight intervals, which means that the feature is rotation-invariant up

to 45 degrees. WGII rotates its kernels ten times. Thus, it is invariant to 36◦-rotations.

Both features divide the image into 4× 4 subimages. Grid building helps being robust

to occlusions.

Concerning the good results of the Euclidian norm, we restricted the following anal-

ysis of the influence of illumination changes by using the Euclidian norm (Fig. 9).

WGOH yields worse results under heterogenous illumination during training and test-

ing phase of 2.44 m. The localisation error of WGII increases by 2.26 m, and the one

of the greyscale histogram by 6.88 m. WGOH makes use of gradients. Images taken at

sunshine show deep shadows with gradients large in magnitude which exert influence

on the WGOH feature. WGII is least affected by illumination changes. It compares

only the difference between neighbouring pixel intensities. Varying illumination has

only little effect on the difference in intensity. For instance, plain-coloured areas likely

remain plain-coloured despite illumination variations. The grid greyscale histogram

shows surprisingly good results under similar lighting conditions. In conjuction with

the intersection and L1-norm, the greyscale histogram works better than WGII. But it

suffers under different illumination conditions, because it is solely based on greyscale

values.
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Fig. 9 Comparison of the different feature algorithms under the Euclidian norm and varying
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Table 2 Computing time [s]

WGOH WGII Histogram

a Feature Calculation 0.49 4.39 0.16
b Database Creation 0.66 0.66 0.66
c Single feature comparison 0.15 1.17 0.15

to a database of 348 entries

a+b Exploration 1.15 5.05 0.82
a+c Localisation 0.64 5.56 0.31

5.2.3 Computation Times

Table 2 shows the computation time required by the different algorithms for the Eu-

clidian measure. The greyscale histogram is the fastest approach, followed by WGOH

and finally WGII. During localisation phase, the histogram needs 0.31 s and WGOH

needs 0.64 s to process an image. WGII requires about 5.5 s to compute and match

features, and hence more than eight times as long as WGOH. This can be improved by

calculating Integral Invariants in every forth randomized pixel location in the image.

In this case, the mean localisation error worsens from 11.96 m to 12.83 m, but the time

consumption of the feature extraction reduces from 4.4 s to 1.3 s.

6 CONCLUSIONS

In this research, we visually localised a small UAV with techniques applied onboard in

a large (180 m) outdoor environment. We used only a mobile phone as visual sensor

and onboard vision processing computer. We tested the system under image trans-

formations and illumination changes with different algorithm and similarity measue

configurations. The feature extraction algorithm WGOH and the feature comparison

measure Euclidian norm worked best. The computing time in the exploration phase

is 1.15 s, the localisation phase takes 0.64 s. The mean localisation error is 10.92 m.

This is comparable to Valgren’s [29] results in large outdoor environments. Valgren et

al. defined a threshold at a distance of 10 meters between match and query image to

classify a match as correct.

We see great potential in using our system in real-world applications. Once an envi-

ronment has been explored with accurate GPS position values, the system does not

depend on GPS anymore. If GPS is unavailable or noisy, we can switch to the visual

localisation system. We will concentrate on a SLAM system to eliminate the GPS-

dependent exploration phase.

In future work we focus on the acceleration of the localisation process. Our prototype

implementation can be improved by integer optimized algorithms and SIMD instruc-

tions.

Further work includes expanding the experiments to a larger environment. In addition,

a particle filter will be used to improve the localisation error.
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