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Abstract. Self-localization of mobile robots is often performed visually,
whereby the resolution of the images influences a lot the computation
time. In this paper, we examine how a reduction of the image resolu-
tion affects localization accuracy. We downscale the images, preserving
their aspect ratio, up to a tiny resolution of 15×11 and 20×15 pixels.
Our results are based on extensive tests on different datasets that have
been recorded indoors by a small differential drive robot and outdoors
by a flying quadrocopter. Four well-known global image features and a
pixelwise image comparison method are compared under realistic con-
ditions such as illumination changes and translations. Our results show
that even when reducing the image resolution down to the tiny resolu-
tions above, accurate localization is achievable. In this way, we can speed
up the localization process considerably.

1 Introduction

Mobile robots need to localize themselves in an environment to solve complex
tasks. Positioning is often done visually, since cameras are inexpensive and flex-
ible sensors and nowadays provide high resolutions. But even if computational
power has increased significantly during the past decade, there are still fields in
which it keeps restricted. For example, swarm robotics requires a large number
of relatively simple agents that have to be reasonably priced at a small size. And
even in case of unmanned aerial vehicles, processing power is often restricted
due to the limited weight and battery power that the robots can carry.

Visual self-localization is often performed using image retrieval techniques
that store images in a database. For localization, a new image is taken and com-
pared to all or a subset of previously recorded images. The computed similarity
leads then to an estimation of the robot’s position. Mostly, this task is performed
by extracting features from the images. Such features often promise to be robust
to changes in the environment and the viewpoint of the observer. The extraction
time of those features depends mainly on the image resolution and thus could
be decreased. However, by reducing the resolution of images we lose information
that might be helpful for the localization task. Thus, the focus of this paper lies
in the investigation to what extent a reduction of image data affects localization
accuracy and computation time. We therefore examine the localization process
on two different platforms: a small two-wheeled mobile robot indoors and a flying
quadrocopter outdoors.



Fig. 1. Employed robots and example images at highest and lowest resolutions.

2 Related Work

Approaches to the visual self-localization problem mainly differ in the type of
image features that are extracted from the images. We distinguish two kinds
of image features: local and global ones. While local features, like the Scale-
Invariant Feature Transform (SIFT) by Lowe [1], describe only patches around
interest points in an image, global features describe the whole image as one single
fixed-length vector.

Many local features are invariant to scale and rotation and robust to illu-
mination changes [1]. As the number of local features in an image can be high,
however, it may take a long time to find, match, and store them. Global image
features have also shown a good localization accuracy [2,3,4], that is, however,
lower. Their main advantage is their short computation time. As our applications
require onboard image processing on microcontrollers with limited computation
power, we decided to employ global image features in this work.

Ulrich and Nourbakhsh [5] established self-localization for place recognition
using color histograms. They applied a nearest-neighbor algorithm to all color
bands and combined it with a simple voting scheme based on the topological
map of the environment. Zhou et al. [6] extended this approach to the use of
multidimensional histograms, taking into concern features like edges and tex-
turedness. Wolf et al. [7] performed visual localization by combining an image
retrieval system with Monte Carlo localization. They used local image features
that are invariant to image rotations and limited scale [8] and that are also the
basis for the global Weighted Grid Integral Invariants, which are employed in
this paper.

Our approach to use tiny images was also inspired by Torralba et al. [9]
who stored millions of images from the internet in a size of 32×32 pixels and
performed object and scene recognition on this dataset. Self-localization with
small images was earlier performed by Argamon-Engelson [10]. He used images
with a resolution of 64×48 pixels using measurement functions based on edges,
gradients, and texturedness, but did not compare the localization rate and com-
putation time to other image resolutions.



3 Robots

We conducted our experiments on two different robots: a small, two-wheeled
c’t-Bot (http://www.ct-bot.de), which was developed by the German computer
magazine c’t, and a quadrocopter X3D-BL Hummingbird distributed by Ascend-
ing Technologies [11] (see Fig. 1). The image processing is performed on separate
modules: in case of the c’t-Bot on a POB-Eye camera module equipped with a
60MHz ARM7 microcontroller and in case of the quadrocopter on a Nokia N95
mobile phone with a 332MHz ARM11 processor. On the c’t-Bot, feature vectors
are saved on a SD card that is connected via I2C, while on the quadrocopter
feature vectors can be stored directly in the internal memory. On both systems,
computation power is restricted and thus is a valuable resource.

4 Global Image Features

The selection of image features results from the limited processing power of
our robots. Color and grayscale histograms are simple and fast methods for
computing the feature vectors. More complex methods are Weighted Gradi-
ent Orientation Histograms (WGOH) and Weighted Grid Integral Invariants
(WGII), which yielded good results in earlier research, especially under illumi-
nation changes [2,3,4].

All features are investigated for different resolutions. Therefore, we down-
scale the images preserving their aspect ratio up to a tiny resolution of 15×11
and 20×15 pixels by interpolating the pixel intensities in a bilinear fashion. This
downscaling also permits a pixelwise image comparison in a reasonable com-
putation time. All selected features, except the pixelwise image comparison, are
based on a grid which divides the image into a number of subimages. This makes
the features more distinctive through adding local information. Changes within
one subimage only influence a small part of the feature vector. We tested the
methods at different grid sizes and image resolutions and discovered that a 4×4
grid leads to the best results.

4.1 Weighted Gradient Orientation Histograms

Weighted Gradient Orientation Histograms (WGOH) were presented by Bradley
et al. [2] and were intended for outdoor environments because of their robustness
to illumination changes. Their design was inspired by SIFT features [1]. Bradley
et al. first split the image into a 4×4 grid of subimages. On each subimage, they
calculated an 8-bin histogram of gradient orientations, weighted by the mag-
nitude of the gradient at each point and by the distance to the center of the
subimage. In our implementation of WGOH, we use a 2D Gaussian for weight-
ing, where the mean corresponds to the center of the subimage and the standard
deviations correspond to half the width and the height of the subimage, respec-
tively [3]. This choice is similar to SIFT, where a Gaussian with half the width



of the descriptor window is used for weighting. The 16 histograms are concate-
nated to a 1×128 feature vector, which is normalized subsequently. To reduce
the dependency on particular regions or some strong gradients, the elements of
the feature vector are limited to 0.2, and the feature vector is normalized again.

4.2 Weighted Grid Integral Invariants

The key idea of integral invariants was to design features which are invariant to
Euclidean motion, i.e., rotation and translation [7,8]. In order to achieve that,
all possible rotations and translations are applied to the image. In our case, two
relational kernel functions are applied to each pixel. These functions compute the
difference between the intensities of two pixels p1 and p2 lying on different radii
and phases around the center pixel. The described procedure is repeated several
times, where p1 and p2 are rotated around the center up to a full rotation while
the phase shift is preserved. By averaging the resulting differences, we get one
value for each pixel and kernel. We experimentally found out that the following
radii for p1 and p2 lead to the best results: radii 2 and 3 for kernel one and radii 5
and 10 for kernel two, each with a phase shift of 90◦. One rotation is performed in
ten 36◦ steps. Weiss et al. [4] extended the basic algorithm by dividing the image
into a set of subimages to add local information. Each pixel is then weighted by
a Gaussian as with WGOH (see Sect. 4.1) to make the vector more robust to
translations. The output is a 2 × 8 histogram for each subimage and a 1 × 1024
histogram for the entire image.

4.3 Color/Grayscale Grid Histograms

For the color and grayscale histograms, we use eight bins for each subimage.
Through concatenation we get a 1×128 feature vector of the 16 subimages. In
case of the color histogram we process the hue value of the HSV color space. This
choice of space promises to be more robust to illumination changes. As stated
above, we weight each pixel by a Gaussian to make the vector more robust to
translations and normalize it afterwards.

4.4 Pixelwise Image Comparison

The reduction of the image resolution permits also to compare the image data
in a pixelwise fashion rather than extracting first the features. In this way, com-
putation time may be saved. Therefore, the image data is treated as a vector.
To keep the data small, we only compare the normalized grayscale image and
discard color information.

5 Localization Process

Our localization process consists of two steps, the mapping phase and the local-
ization phase. In the mapping phase, training images are recorded and feature



vectors are extracted. These vectors are saved together with their current global
position coordinates. In the localization phase, test images are recorded and fea-
tures are again extracted. These features are subsequently compared to all other
previously saved feature vectors. The mapped position of the vector with the
highest similarity is then chosen to become the current position estimate of the
robot.

To perform the image comparison, we calculate the similarity sim(Q, D) of
two images Q and D from their corresponding normalized feature histograms q

and d through the normalized histogram intersection
⋂

norm

(q, d):

sim(Q, D) =
⋂

norm

(q, d) =

m−1∑

k=0

min(qk, dk). (1)

Here, m is the number of histogram bins and qk denotes bin k of histogram
q. In [4], this method showed good results. For the pixelwise image comparison,
the normalized histogram intersection did not yield satisfactory results. In this
case, we use the L1-norm with the normalized images Q∗ and D∗:

L1(Q
∗, D∗) =

r−1∑

k=0

|Q∗

k − D∗

k|, (2)

where r is the number of pixels and Q∗

k
denotes pixel k of image Q∗. The

similarity sim(Q, D) of two images can now be computed as:

sim(Q, D) = 1 − min(1, L1(Q
∗, D∗)). (3)

Note that in general 0 ≤ L1(Q
∗, D∗) ≤ 2 (although L1(Q

∗, D∗) > 1 rarely
happens for images).

6 Experimental Results

We conducted our experiments with the c’t-Bot in an office environment. Since
the robot does not have the ability to determine its ground truth position through
GPS or other accurate sensors like laser scanners, we grabbed images every 0.5m
in an area of appr. 75m2. To limit possible viewpoints and thus faciliate the lo-
calization, we employed a compass. Our dataset consists of 190 training images,
that were grabbed facing west (determined by the compass) with a manually
oriented robot. Due to magnetic deflections of furniture etc., the direction indi-
cated by the compass was not always true but repeatable, thus it can be seen
as a function of the position. The test data were grabbed at randomly chosen
positions. 100 images, in the following called test data A, were grabbed at stable
illumination. Another 100 images, test data B, were grabbed at different lighting
conditions with and without ceiling lights, at shining sun or dull daylight. In
both datasets, the robot rotated autonomously towards west by means of the
compass. Because of weak odometry and compass errors, the robot’s rotation is
affected by errors which appear approximately as translations in the images.
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Fig. 2. Localization results in case of the c’t-Bot (a,b) and quadrocopter (c,d). Shown
are mean localization errors of the image features at different image resolutions. The
pixelwise image comparison is referred to as image comparison. No measurements were
taken for the pixelwise image comparison under high resolutions because of database
restrictions.

To perform the experiments with the quadrocopter, we steered it at altitudes
around eight meters, flying rounds of appr. 180m in a courtyard. The view of the
camera pointed in course direction. In total, we grabbed 1275 images in several
rounds at a frequency of appr. one image per second. Each round consisted of a
different number of images due to the different velocity of the quadrocopter. In
the mapping phase we grabbed 348 images at dull daylight. For the localization
phase we used two different datasets: Test data C consists of 588 images (four
rounds) at similar lighting conditions, test data D of 369 images (three rounds)
at sunny daylight.

Figure 2 shows the localization accuracies of the examined methods. The
mean localization error is measured in 2D only; in case of the quadrocopter
we tried to keep the flying altitude constant. The smallest mean localization
error we obtain is in case of the c’t-Bot 0.84m and in case of the quadrocopter
11.55m, using WGOH. Further experiments showed that by using a particle
filter to compute a probabilistic position estimate, the localization errors can



be reduced to about 0.50m on the c’t-Bot and about 6m on the quadrocopter.
However, in this paper we focus on feature extraction techniques.

Looking at the different methods in detail, we find out that in most cases
WGOH lead to best results. The results of WGII are worse, even if it also
computes differences of pixel intensities. It provides rotation invariance, but
that comes with the cost of losing orientation information. The straightforward
pixelwise image comparison yielded surprisingly high accuracies. This may be
because the normalization helps to cope with illumination changes and the use
of wide-angle lenses limits the influence of translations. A localization was not
possible with the color grid histograms. The reason for this may be the poor
color quality of our cameras and the lack of meaningful color information in the
environments. As it could be expected, the overall accuracy on test data B and
test data D was worse, due to the different lighting conditions. The grayscale
grid histograms did not perform well here. Generally, despite the reduction of the
image resolution we achieved a reasonable localization accuracy. While WGOH
and WGII may have suffered from averaging over the subimages at small image
resolutions, the pixelwise image comparison provided constant localization rates
at all resolutions.

We also examined the computation times of the whole localization process
on the training data (see Table 1). We chose WGOH since it revealed a good
accuracy at a reasonable feature extraction time and the pixelwise image com-
parison on the small size images since it is the fastest method of all with respect
to feature extraction time.

Table 1. Computation times of the localization process at different resolutions using
WGOH and the pixelwise image comparison (referred to as Img. Comp.).

WGOH (full res.) WGOH (smallest res.) Img. Comp. (smallest res.)

c’t-Bot 4.812 s 3.841 s 4.002 s
Quad. 0.639 s 0.267 s 0.397 s

By the use of tiny images, we achieve a speed up of 20.2 % in case of the c’t-
Bot and in case of the quadrocopter of 58.2 %, comparing WGOH at the highest
and the smallest resolution. The localization process can roughly be divided into
feature extraction and feature matching.The pixelwise image comparison is not
the fastest method since the corresponding vector has a higher dimensionality
than the WGOH vector and thus requires more time to be compared. On the
c’t-Bot, the localization time is highly affected by the matching step and needs
3.841 s, which is quite long, but we should also keep in mind the computational
limitations of small mobile robots. To further speed up the feature matching,
different approaches could be employed in the future, e.g. a kd-tree for a more
efficient search or a particle filter to limit the number of feature comparisons.



7 Conclusion

In this paper, we examined to what extent a reduction of the image resolution
affects accuracy and computation time in the visual self-localization process.
Therefore, we compared four well-known global image features in an indoor and
outdoor scenario where computation power is restricted. The reduction of the
image resolution made it also possible to apply a straightforward pixelwise image
comparison. Generally, WGOH provided good performance with relatively low
computation times.

We state that in our medium-sized indoor and outdoor test beds, tiny grayscale
images of 15×11 and 20×15 pixels contained enough information to establish ef-
ficient self-localization at satisfactory accuracy. In this way, we could speed up
the localization process considerably. These results are especially interesting for
researchers working on systems with restricted computation power to achieve
visual self-localization in similar environments in a fast and efficient way.
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