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Abstract: Research on small mobile robots is challenging due to the low computational power
and limited sensing of the robots. In this paper, we present a method that enables these types
of robots to localize themselves visually in indoor environments. Our approach uses a compass
to cope with the restricted visual content that a low-resolution image can provide. Therefore,
in the localization phase the robot orients itself towards a given direction and uses global image
features to determine its position. Also, the robot’s rotation impreciseness is included in the
way the mapping is done. By real-world experiments we show that our method works despite
of the restricted processing capabilities and the low resolution of the images.

1. INTRODUCTION

Small mobile robots in the dimension of around 15 cm
have shown to be useful in many cases. A variety of
different designs has been developed: Mondada et al. [1993]
presented the well-known Khepera robot, which has been
used in various scenarios, e.g., to simulate biologically
inspired behaviour in a group of robots (Martinoli and
Mondada [1995]). Further notable are for instance the e-
puck, which is intended to be used for educational purposes
(Cianci et al. [2007]), and the Swarm-Bot for the self-
organization and self-assembling of multiple robots (Mon-
dada et al. [2003]). In mobile sensor networks, inexpen-
sive small robots, which have the ability to autonomously
change their position, will be able to play an important
role in the future.

In this paper, we use one of 13 c’t-bots 1 of our lab to
realize the experiments. Since our future plans are to build
up a swarm of robots, we had to decide in favor of small
and inexpensive robots. This implies the challenging part
of the work: we have to cope with poor odometry, highly
inaccurate motion and restricted computational power. As
a result, our method works also on robots that are further
miniaturized, provided that they possess a similar camera
resolution and comparable processing capabilities.

Self-localization is a fundamental problem for mobile
robots and has been studied by researchers now for many
years. A variety of sensors has been examined to solve this
task, ranging from laser range finders to GPS sensors. In
this paper we consider the problem of vision-based self-
localization since cameras are cheap and flexible sensors.
The existing approaches to visual positioning often differ
in the features they use to match images. On the one hand,
there are local image features, like the well-known Scale-
Invariant Feature Transform (SIFT, by Lowe [2004]),
which describe only patches around points of interest in
an image. As the number of interest points in an image

1 http://www.ct-bot.de

is usually large, extracting features and matching them
is very computation-intensive and therefore not feasible
in our context. Examples of vision-based localization with
local image features were presented by Barfoot [2005], Se
et al. [2001], Wolf et al. [2005] and e.g., Tamimi and Zell
[2005].

On the other hand, there are global image features, which
describe an image as one single fixed-length feature vector.
Usually, global features are more sensitive to illumination
changes than local features. However, the global methods
are faster, because matching two images by comparing two
vectors is very efficient. Common global features for robot
localization are color histograms (Ulrich and Nourbakhsh
[2000]) or Global Integral Invariants (Weiss et al. [2007a]).
Bradley et al. [2005] further presented Weighted Gradient
Orientation Histograms (WGOH). Tamimi [2006] gave an
overview of local and global techniques for vision-based
robot localization.

One problem arises with the use of global image features
in combination with a camera that is not omnidirectional:
they are sensitive to translations. This comes from the fact
that the whole image information is included in the feature
vector. This means that, if the robot is not standing at the
same position and is not exactly oriented towards the same
direction, the content of an image changes considerably
and thus also the feature vector. Furthermore, the problem
gets even worse when using low-resolution images indoor,
where the distance between the camera and the objects is
smaller than in an outdoor environment. This makes the
content of an image change a lot easier.

In this paper, we propose a method that enables small
robots to localize themselves with global image features at
a reasonable accuracy. The reason for using global image
features arises from the low computational power that
small robots often only have, making it difficult to compute
and match local features.



Fig. 1. c’t-bot and example images by the on-board cam-
era.

This paper is organized as follows. In the next Section
we describe our method including a description of the
robot we used and the employed type of image features. In
Section 3, we present our real-world results and in Section
4, we finally draw a conclusion and present ideas for future
work.

2. APPROACH

2.1 Overview

Our method works as follows: in the mapping phase,
images have been grabbed on reference points in different
specified directions. For localization, the robot rotates
towards on of these known directions. It grabs an image,
computes the feature vector and matches it to all feature
vectors that have been grabbed in the same direction
before. The vector with the highest similarity is assumed
to represent best the current position of the robot. This
method is feasible despite of the poor odometry and
inaccuracy of the robot’s drive because of the use of a
compass module which provides reliable information on
the robot’s orientation. Due to magnetic deflections of
furnishings etc. the orientation which was indicated by the
compass was not always true, but repeatable. Thus it could
be seen as a function of the position.

2.2 Robot

The c’t-bots1, which were developed by the German com-
puter magazine c’t, have a diameter of 12 cm and are 19 cm
high (see Fig. 1). Their sensor system consists of two Sharp
GP2D12 infrared distance sensors, an optical mouse sensor
for motion estimation and infrared reflex light barriers
for the detection of steps and lines. The wheel encoders
provide a resolution of 60 counts per wheel. A Devantech
SRF08 ultrasonic sensor is used for more accurate distance
measurements than the infrared sensors can provide.

Additionally, our robot is equipped with a POB-Eye color
camera. This camera has an image processing module
which allows to compute all the image processing directly
on it and to send the extracted image features via I2C
bus to the robot. The camera provides a resolution of
120×88 pixels and possesses an ARM7TDMI processor
with 60MHz and 64KB RAM. The angle of view of the
used 2.5 mm lens is 64 ◦ horizontally and 41 ◦ vertically.
Furthermore, the robot has a WLAN interface to send
data to a PC. To store the image features, our robot

contains a low-cost SD card. The ”heart” of the robot is
an ATmega644 microprocessor with 64 KB flash program
memory, 16 MHz clock frequency and 4 KB SRAM. For
localization, we also use a Devantech CMPS03 compass
with a declared accuracy of 3-4 ◦.

Our algorithm runs on the robot itself. The WLAN inter-
face is only used for debugging and monitoring purposes.

2.3 Image Feature Extraction

The Weighted Gradient Orientation Histograms (WGOH)
were presented by Bradley et al. [2005], originally for
outdoor environments. WGOH were inspired by SIFT
features (Lowe [2004]) and are similar to features presented
by Kosecka and Li [2004].

Bradley et al. first split the image into a 4×4 grid of subim-
ages. On each subimage, they calculate an 8-bin histogram
of gradient orientations, weighted by the magnitude of the
gradient at each point and by the distance to the center
of the subimage (see Fig. 2). In our implementation of
WGOH, we use a 2D Gaussian for weighting, where the
mean corresponds to the center of the subimage and the
standard deviation corresponds to half the width and the
height of the subimage, respectively (Weiss et al. [2007b]).
We took these parameters from SIFT, where a Gaussian
with half the width of the descriptor window is used
for weighting. The 16 histograms are concatenated to a
1×128 feature vector, which is normalized subsequently.
To reduce the dependency on particular regions or some
strong gradients, the elements of the feature vector are
limited to 0.2, and the feature vector is renormalized.

We decided to use global image features, in which a single
feature is extracted from the whole image, instead of
local features. This decision is based on the fact that
our computational power is restricted. We chose WGOH
features, because they are fast to compute and also have
the advantage to be robust to illumination changes.

Fig. 2. WGOH computation steps.

2.4 Image Matching

To calculate the similarity between two images Q and
D, we compare their feature histograms q and d using
normalized histogram intersection⋂

norm

(q, d) =

∑
k∈{0,1,...,m−1} min(qk, dk)∑

k∈{0,1,...,m−1} qk
, (1)

where m is the number of histogram bins. The position of
the image with the highest similarity is then chosen to be
the current position of the robot.



Fig. 3. Mapping directions of experiments 1 and 2.

3. EXPERIMENTAL RESULTS

Our experiments were held in an office environment. Since
the robot did not have the ability to determine its ground
truth position through GPS or other accurate sensors
like laser scanners, we manually took measurements every
0.3m in an area of 3 m × 1.8m. We defined correct matches
as the ones where the test image was matched successfully
to one of the four nearest training images, similarly to a
match within 0.43 m. A more detailed information about
the preciseness of our method gives the mean localization
error in Fig.4 and Fig.5.

Experiment 1 In the first experiment, we took 4 images
at each position in the directions north, west, east, and
south (see Fig. 3). This corresponds to a total of 240
images at 60 positions as training data. Then, we put
the robot at arbitrary positions and oriented it by hand
exactly towards one of the above mentioned directions. In
this way, we recorded 33 images as test data.

Then, we matched the images of the test data against all
images of the training data. As a result, we got correct
matches in 29 out of 33 images, which corresponds to
a localization rate of 88 %. As mentioned before, in the
first part of this experiment we put the robot by hand
towards the specified directions. However, since our aim
was to let the robot move and localize itself autonomously,
we also had to consider the properties of its motion
model, especially its ability to rotate towards a specified
direction. Thus we teleoperated the robot approximately
0.3m through the area and, if it was not oriented in a
range of ±20 ◦ to one of the directions north, west, east
or south, we made it rotate autonomously towards one
of these directions, allowing an orientation error of ±20 ◦.
We determined the orientation by means of the compass.
Then, we grabbed a test image for localization and rotated
the robot back to continue its path.

Because of the imprecise rotations of our robot we got
correct matches in only 6 of 27 images, which corresponds
to a localization rate of 22 %. It turned out that, if the
robot was exactly oriented towards the directions in which
the training data had been recorded, the localization rate
was high. But, if not precisely oriented to one of the
mentioned directions, the robot was not able to localize
itself properly. Fig. 4 gives an overview of the results.

Experiment 2 This led to our second experiment. First,
we measured the rotation standard deviation of the robot’s
motion model for a rotation of 180 ◦ and came to a value of

matches loc. rate MLE±SD
Oriented exactly 29/33 88 % 0.21±0.14

Oriented imprecisely 6/27 22 % 0.84±0.61

Fig. 4. Results of experiment 1. Shown are correct matches,
localization rates, mean localization errors (MLE) and
standard deviations (SD) in meters.

σrot = 13.38 ◦. To overcome these imprecise rotations, we
mapped five images at each reference point in the room:
one in the direction north and the others with a rotation
difference of 10 ◦ (see Fig. 3). Altogether, we grabbed 300
images at 60 measuring points as training data. Then,
we acquired test data from two different rounds in the
mapped area (see Fig. 6). Therefore, we made the robot
move approximately 0.3 m in an arbitrary direction. Then,
if the robot was not oriented in the range of ±20 ◦ towards
north, we rotated it autonomously to grab an image and
after this rotated it back to continue its path. Note that we
teleoperated the robot to simulate autonomous movements
and did not move the robot by hand. We even used the
compass for this experiment.

The test data of round 1 was grabbed directly after the
mapping process, while the test data of round 2 was
grabbed in a slightly changed environment to test the
robustness of the method.

In round 1 we got 24 correctly matched images out of 27
images. This corresponds to a localization rate of 89 %.
In round 2 we got 21 correctly matched images out of 29
images, which corresponds to a localization rate of 72 %.
This is a lower rate as in round 1, but if we take a look at
the results in detail, we discover that only 3 test images are
matched totally wrong while the rest (90 %), even though
not correctly matched to one of the four nearest training
images, have a maximum localization error of 0.45 m. See
also the mean localization error in Fig. 5.

Generally, we can conclude that, if the area is mapped
with respect to the rotation impreciseness of the robot, an
autonomous localization is possible.

The computation of a WGOH feature vector from one
image took 0.87 s on the robot camera. The comparison of
one feature vector with 100 vectors which had been saved
on the SD card took 6.9 s, with 200 vectors 11.0 s and with
300 vectors 15.0 s. A particle filter could help to speed up
this matching process by reducing the number of images
which have to be matched.

matches loc. rate MLE±SD
Round 1 24/27 89 % 0.21±0.16
Round 2 21/29 72 % 0.32±0.21

Fig. 5. Results of experiment 2. Shown are correct matches,
localization rates, mean localization errors (MLE) and
standard deviations (SD) in meters.

Repeatability Test To test whether the results of our
localization method are statistically significant, we per-
formed cross-validation. Therefore, we divided the 300
training images of experiment 2 into five folds. Each fold
consisted of 60 images which were now declared as test
data. Remember that the images had been mapped as



(a) (b)

Fig. 6. True robot paths of experiment 1 (a) and experiment 2 (b).

shown in Fig. 3. All images were taken from different
positions such that no position appeared more than once in
each test data. The orientation of the images was chosen
randomly. In this way, we got five independent random
datasets as samples, each consisting of 60 test images and
the 240 remaining images, which served now as training
data. Then we matched the test data against the training
data. The mean localization errors of the five datasets are
shown in Fig.7. These results are significant with 95 %
confidence interval from 0.29 m to 0.33m.

Dataset MLE
1 0.3010
2 0.3197
3 0.3186
4 0.3381
5 0.2936

Fig. 7. Mean localization errors (MLE) in meters of the
different datasets.

4. CONCLUSION AND FUTURE WORK

In this paper we presented a method for small mobile
robots to localize themselves autonomously in indoor
environments. We used global image features and low-
resolution images. A prerequisite is that the rotation
impreciseness of the robot is included into the way the
mapping of the environment is done. Our real-world ex-
periments verify that the proposed solution works at a
good accuracy.

Clearly, the drawback of our method is the relatively high
number of images one has to map in a comparatively small
area. But we also have to keep in mind the small size of
the robots and their limitations.

Our next steps will be to evaluate and compare different
image features for the use on small mobile robots. We will
also take into account the robustness to illumination and
translation changes.
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