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Abstract. A control strategy for coordinated path following of multi-
ple mobile robots is presented in this paper. A virtual vehicle concept is
combined with a path following approach to achieve formation tasks. Our
formation controller is proposed for the kinematic model of unicycle-type
mobile robots. It is designed in such a way that the path derivative is
employed as an additional control input to synchronize the robot’s mo-
tion with neighboring robots. A second-order consensus algorithm under
undirected information exchange is introduced to derive the control law
for synchronization. Our controller was validated by simulations and ex-
periments with three unicycle-type mobile robots.

1 Introduction

Compared with a single mobile robot, multi-robot systems (MRS) offer many
advantages, such as flexibility of operating the group of robots and failure toler-
ance due to redundancy. Coordination and formation control has been a popular
topic of study in multi-robot systems [1]. The problem is defined as the coor-
dination of multiple mobile robots to follow given references and to maintain a
desired spatial formation. In the literature, there have been roughly three strate-
gies to formation control of multiple robots: leader-following [2], virtual structure
[3], and behavior-based [4]. Each approach has its own advantages and disadvan-
tages. In this paper, we develop a control law based on a virtual vehicle approach
for coordinated path following of a group of N mobile robots. The controller is
designed in such a way that the derivative of the path parameter is used as an
additional control input to synchronize the formation motion. This coordinated
path-following problem can be divided into two subproblems, i.e., the path fol-
lowing control problem and the coordination problem. In the first subproblem, a
desired geometric path is parameterized by the curvilinear abscissa s(t) ∈ R and
a path following controller should look at (i) the distance from the robot to the
path and (ii) the angle between the robot’s velocity vector and the tangent to
the path, and then reduce both to zero, without any consideration in temporal
specifications. Pioneering work in this area can be found in [5] and references
therein. In contrast to trajectory tracking, we have the freedom to select a tem-
poral specification for s(t) in path following. The reference point on the path is
the location of a so-called virtual vehicle. The path derivative can be considered
as an additional control input, as seen in [6,7].

In the second subproblem, the robot’s motion has to be synchronized with its
neighbors in order to achieve a desired formation configuration. In [8], synchro-
nized path following is solved by using passivity-based designs and is validated by



simulation with marine surface vessels. Ghabcheloo, et al. [9] derive the control
law for autonomous underwater vehicles (AUVs). Some approaches for coordi-
nated path following control of multiple wheeled mobile robots are proposed in
[10,11]. In this work, we derive our control law based on a Lyapunov function
candidate and a consensus algorithm for a simplified kinematic model of mobile
robots. Both path errors and coordination errors are considered in the Lyapunov
function and the path parameter is used to synchronize coordination motions via
a second-order consensus protocol with a reference velocity.

2 Problem Statement

We consider a group of N mobile robots, each of which has the following kine-
matic equations
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 , (1)

where xi(t) = [xi, yi, θi]
T denotes the state vector in the world frame of the i-th

robot. vi and ωi are the linear and angular velocities, respectively.
We first consider path following for each mobile robot in the formation, i.e.,

we wish to find control law vi and ωi such that the robot follows a virtual vehicle
with position xdi = [xdi, ydi, θdi]

T and inputs vdi and ωdi. A unicycle-type mobile
robot is depicted in Fig. 1, together with a spatial path Γi to be followed. The
path error with respect to a robot frame is given by
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Then, the error dynamics are

ẋei = yeiωi − vi + ṡi cos θei

ẏei = −xeiωi + ṡi sin θei

θ̇ei = κiṡi − ωi

(3)

where κi is the path curvature and ṡi is the velocity of a virtual vehicle. It is
bounded by 0 ≤ ṡi ≤ ṡmax,i.

Next, we consider the coordination problem. To maintain the motion coor-
dination of the whole group, each robot requires an individual parameterized
path so that when all path’s parameters are synchronized, all robots will be in
formation. The velocities at which the mobile robots are required to travel can
be handled in many ways. In this paper, there are three velocities to be syn-
chronized, i.e., the velocity v0 (or vdi in the robot frame) specifying how fast
the whole group of robots should move, the velocity ṡi denoting how fast an
individual virtual vehicle moves along the path, and the velocity vi determining
how fast an individual real mobile robot travels (see Fig. 2).



Fig. 1. A graphical representation of a
mobile robot and a path.

Fig. 2. A graphical representation of
coordinated path following.

As well known, the formation graph can be used to describe the relationship
among members in the group. It is defined as G = (V, E), where V = 1, ..., N
is the set of robots and E ⊂ VxV is the set of relative vectors between robots.
Two robots i and j are called neighbors if (i, j) ∈ E , and the set of neighbors of
robot i is denoted by Ni ∈ V. All graphs considered in this paper are undirected
and we assume that the undirected G is connected. In this case, the Laplacian

matrix L, constructed from L = D − A, where the adjacency matrix A = (aij)
and the diagonal degree matrix D, is symmetric positive semi-definite. It has a
simple zero eigenvalue and all the other eigenvalues are positive if and only if the
graph is connected [12]. This matrix forms the basis for distributed consensus
dynamics and captures many properties of the graph (see [12]).

3 Controller Design

Define the following variable

˙̃si = ṡi − vdi , (4)

where ˙̃si represents the formation speed tracking error of robot i. Let us choose
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(5)

as a candidate Lyapunov function, where k4, k5, and k6 are positive gains. s̄i =
si − sj − sdij , j ∈ Ni is the coordination error of robot i and sdij is the desired
distance between two neighbors i and j. The function δi can be interpreted
as the desired value for the orientation θei during transients [5]. It is assumed
that limt→∞ v(t) 6= 0, δi(0, v) = 0, and yeiv sin (yei) ≤ 0,∀yei∀v. The function
δi(yei, v) taken from [6] is δi(yei, v) = −sign(vdi)θa tanh yei with θa = π

4 .
The derivative of V can be computed to give
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xeiẋei + yeiẏei +
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We first design a controller to stabilize the xei, yei, and θei dynamics. Substi-
tuting (4) into (3), adding yeivdi sin δi − yeivdi sin δi to (6), the time derivative
along the solutions of (3) yields
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(7)

Let the control laws for vi and ωi be defined as

vi =k1xei + vdi cos θei (8)

ωi =k2(θei − δi) + ωdi − δ̇i + k4yeivdi

[

sin θei − sin δi

θei − δi

]

, (9)

where k1 and k2 are positive gains, and ωdi = κivdi. Then
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To make the derivative of the Lyapunov function V negative, we choose the
following consensus controller with a reference velocity

s̈i =v̇di − k3 (ṡi − vdi) − xei cos θei − yei sin θei −
1

k4
(θei − δi) κi

− 2k5

∑
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(ṡi − ṡj), (11)

where k3 > 0. Then we can achieve
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− k6ṡ
T Lṡ ≤ 0, (12)

where ṡ ∈ R
N is the stack vector of the robots’ path derivative. We now state

the main result of the coordinated path-following control for the mobile robots.

Theorem 1. Assume that the undirected formation graph is connected. The con-

trol inputs vi, ωi, and s̈i given in (8), (9), and (11), respectively, for robot i solve

the coordinated path-following objective.

Proof. From (12), we have that V̇ ≤ 0, which means that

V ≤ V (t0), ∀t ≥ t0. (13)



From the definition of V , the right hand side of (13) is bounded by a positive
constant depending on the initial conditions. Since the left hand side of (13)
is bounded, it implies the boundedness of xei, yei, (θei − δi), ˙̃si and s̄i for all
t ≥ t0 ≥ 0. We also assume boundedness of ṡi and vdi, implying the boundedness
of the the overall closed-loop coordination system on the maximal interval of
definition [0, T ). This rules out finite escape time so that T = +∞.

From the above argument on the boundedness of xei, yei, (θei − δi), ˙̃si and
s̄i, applying Barbalat’s lemma [13] to (12) results in

lim
t→∞

(xei, θei − δi, ˙̃si, ˙̄si) = 0. (14)

To satisfy path-following tasks, we have to show that yei converges to zero as
t → ∞. In the closed loop of the θei dynamics

θ̇ei =κi
˙̃si − k2(θei − δi) − yeivdi

[

sin θei − sin δi

θei − δi

]

,

we can conclude that limt→∞(yei) = 0 since limt→∞(θei − δi, ˙̃si) = 0 and vdi

does not converge to zero.
Since L is positive semidefinite, it follows that Lṡ = 0. L has a single

zero eigenvalue with corresponding eigenvector
−→
1 . It follows that ṡ belongs to

span{
−→
1 }. Hence ṡi = ṡj ,∀i, j ∈ N , and ṡi converges to vdi, which in turn,

implies that s̈i = v̇di. From this fact, we can get

lim
t→∞

(si − sj − sdij) = 0. (15)

Define sdij = sdi − sdj , where sdi and sdj are the path’s desired parameters of
robot i and robot j, respectively. We then have si−sj−sdij = si−sj−(sdi−sdj) =
(si − sdi) − (sj − sdj) = ŝi − ŝj . Then we obtain Ls + sd = 0 ⇒ Lŝ = 0. Thus,
all ŝi are equal to a common value, i.e., si − sj = sdij , j ∈ Ni,∀i, j. We conclude
that the robots converge to the desired configuration. ut

4 Results

Simulations and real-world experiments of the control system as established in
the previous section were carried out to evaluate the performance of our control
law. Regarding more realistic situations in robot motions, we took into account
the maximum velocities: |vi| ≤ 0.5 m/s, |ωi| ≤ 1.0 rad/s. We performed a
velocity scaling given in [14] so as to preserve the curvature radius corresponding
to the nominal velocities. The control gains were set to k1 = 0.25, k2 = 1.0,
k3 = 0.2, k4 = 5.0, k5 = 0.5, k6 = 0.2 and the desired speed for the whole group
of robots was v0 = 0.2 m/s.

4.1 Simulations

Six mobile robots were required to follow a lemniscate curve given by

xd(t) = 2.3 cos θd(t)
1+sin2 θd(t)

, yd(t) = 2.3 sin θd(t) cos θd(t)
1+sin2 θd(t)

,



and to maintain a desired formation described by the following elements of the
adjacency matrix: a14 = a13 = a36 = a56 = a25 = 1. The superimposed snap-
shots are shown in Fig. 3 and the coordination errors converging to zero are seen
in Fig. 4. The velocity tracking errors and the path errors of each robot also
converge to zero, satisfying the path-following objective. Due to lack of space,
those errors are not shown in this paper.

4.2 Real-World Experiments

The mobile robots, shown in Fig. 5, were used in real-world experiments in
this paper. The robot controller is an ATMEGA644 microprocessor with 64 KB
flash program memory, 16MHz clock frequency and 4 KB SRAM. The robot
orientation was measured by a Devantech CMPS03 compass. The localization
was given by a camera looking down upon the robot’s workplace and a PC was
used to compute the control inputs and then sent these inputs to the robot via
WLAN. The lemniscate curve similar to the path in the simulation was employed
in the first experiment. Each robot was required to maintain a column formation
described by sd12 = sd23 = 75 cm. The elements a12 = a21 = 1, a23 = a32 = 1
in the adjacency matrix represented the information exchange in the formation
graph. The experimental results are plotted in Fig. 6. As seen in Fig. 7, the
coordination tasks are satisfied. The coordination errors are less than 10 cm and
the virtual vehicle of each robot can travel at the desired speed v0 = 0.2 m/s.
Likewise, the path-following tasks are attained as seen in Fig. 8. In the second
experiment, each robot followed its own path, i.e., a sinusoidal curve for robot
1 and robot 3, and a straight line for robot 2. sdij was set to 0 and the elements
of the adjacency matrix were set to a12 = a21 = 1, a23 = a32 = 1. The results
are depicted in Fig. 9. The coordination errors and the velocity of each virtual
vehicle are seen in Fig. 10. The experimental results show the effectiveness of
our proposed control law: the group of robots can travel at the desired speed
v0 while keeping a desired formation. The main sources of disturbances during

Fig. 3. Simulation: the superimposed
snapshots.
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Fig. 4. Simulation: the coordination
errors and the velocities of virtual ve-
hicles.



Fig. 5. The mobile robots (12 cm
diameter) used in experiments.

Fig. 6. Exp. 1: the superimposed snapshots
at t = 0 s, t = 10.4 s, and t = 20.8 s.
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Fig. 7. Exp. 1: the coordination errors
and the velocities of virtual vehicles.
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Fig. 8. Exp. 1: the position errors of
robot 1.

experiments include sensor distortion, vision-system delays, and communication
delays.

5 Conclusions and Future Work

In this paper, we developed a new control law for coordinated path following
of mobile robots. Each mobile robot can be steered along a set of given spatial
paths, while it can keep a desired inter-vehicle coordination pattern. The solution
adopted for coordinated path following built on Lyapunov function techniques
and consensus algorithms. The desired formation pattern was achieved by con-
trolling the path derivative such that the coordination error converges to zero.

Future research includes the extension of our results to robots in more com-
plex environments. For example, communication can introduce time-delays in
signal propagation among members, the information exchange topology is not
necessarily fixed, and obstacles may appear in the robot’s path.
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