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Abstract— In this paper, path following control and trajectory
tracking control of a mobile robot have been studied. Reference
convergence in a path following problem and time convergence
in a trajectory tracking problem are considered in the cost
function of the nonlinear model predictive control framework.
The benefit of path following control is that the path following
controller eliminates aggressiveness of the tracking controller
by forcing convergence to the desired path in a smooth way.
Thus, we incorporate this benefit to the trajectory tracking
problem to achieve smooth convergence to the reference and
to achieve time convergence of trajectory tracking. Furthermore,
by using nonlinear model predictive control, input constraints
can be handled straightforwardly in the optimization problem
so that the robot can travel safely. Our controller was validated
by simulation and real-world experiments with a unicycle-type
mobile robot were also conducted.

Index Terms— Path following, trajectory tracking, mobile
robot, nonlinear model predictive control

I. INTRODUCTION

Three generic problems of motion control of a vehicle

addressed in the literature can be described below [1]:

• point stabilization, where the objective is to stabilize a

vehicle at a desired robot posture,

• trajectory tracking, where the vehicle is required to track

a time-parameterized reference, and

• path following, where the vehicle is required to converge

to and follow a desired path-parameterized reference,

without any temporal specifications.

Point stabilization is very different from the problems of

path following and trajectory tracking. A central aspect of the

problem, which triggered much of the subsequent research

on the control of nonholonomic systems, is that asymptotic

stabilization of fixed points cannot be achieved by using

continuous feedbacks which depend on the state only. This

is a consequence of an important result due to Brockett in

1983 [2].

The trajectory tracking problem for fully actuated systems is

now well studied. However, when it comes to underactuated

vehicles, i.e., when the vehicle has less actuators than state

variables to be tracked, the problem is still a very active topic

of research.

In path following control, a path following controller should

look at (i) the distance from the vehicle to the reference path

and (ii) the angle between the vehicle’s velocity vector and

the tangent to the path, and then reduce both to zero, without

any consideration in temporal specifications. Pioneering work

in this area can be found in [3] as well as [4]. Typically,

smoother convergence to a path is achieved compared to

trajectory tracking controllers, and the control signals are less

likely pushed to saturation. The solutions of this path following

problem have been applied in a wide range of applications.

For example, Samson [5] described a path following problem

for a car pulling several trailers. In [6], Altafini addressed a

path following controller for an n trailer vehicle. Furthermore,

path following controllers for aircraft and marine vehicles have

been reported in [7] and [8], respectively.

Let Γ(s) ∈ R
2 be a desired geometric path parameterized by

the curvilinear abscissa s(t) ∈ R. We then have the freedom

to select a temporal specification for s(t). In particular, the

rate of progression (ṡ) of a virtual vehicle, considered as an

addition control input, has been controlled explicitly (e.g. [9,

10, 11, 12]). Stringent initial condition constraints that are

present in a number of path following control strategies have

been overcome, as stated in [9].

In this paper, we wish to achieve smooth spatial conver-

gence to the trajectory as well as time convergence using the

advantage of path following control. This is accomplished by

modifying the cost function of the model predictive control

framework through the addition of a time dependent penalty

term. Based on this concept, our controller is able to opti-

mize the reference point between the virtual vehicle (path-

parameterized) and the trajectory point (time-parameterized)

and also takes into account input constraints. Furthermore,

in the presence of obstacles, the controller deviates from the

reference by incorporating obstacle information from range

sensors into the optimization, while respecting motion con-

straints.

This paper is organized as follows: Section II describes the

mathematical model of a mobile robot and explains the basic

principle in path following and trajectory tracking. The control

law based on nonlinear model predictive control (NMPC) is

developed in Section III. In Section IV, simulation results are

shown, and then real-world experiments with a unicycle-type

mobile robot are given in Section V. Finally, our conclusions

and future work are drawn in Section VI.

II. PROBLEM FORMULATION

A simple kinematic model of a unicycle-type mobile robot

is the following:





ẋm

ẏm

θ̇m



 =





vm cos θm

vm sin θm

ωm



 , (1)
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where xm(t) = [xm, ym, θm]T is the state vector in the world

frame. vm and ωm stand of the linear and angular velocities,

respectively.

We first consider the path following control problem of a

mobile robot. We wish to find control law ṡ and ωm such

that the robot follows a virtual vehicle with position xd =
[xd, yd, θd]

T . The kinematic model of a mobile robot can be

formulated with respect to a Serret-Frenet frame moving along

the reference path. This frame plays the role of the body frame

of a virtual vehicle that must be followed by the real robot

as depicted in Figure 1(b), together with a spatial path Γ.

In the path following problem, we normally let the forward

velocity vm track a desired velocity profile vd, while the rate

of progression of a virtual vehicle ṡ converges to vm. The

error state vector xe between the robot state vector xm and a

virtual vehicle’s state vector xd can be expressed in the frame

of the path coordinate as follows




xe

ye

θe



 =





cos θd sin θd 0
− sin θd cos θd 0

0 0 1









xm − xd

ym − yd

θm − θd



 . (2)

Using (1) and (2), the error state dynamic model chosen in

a rotated coordinate frame becomes

ẋe = yeṡκ − ṡ + vm cos θe

ẏe = −xeṡκ + vm sin θe

θ̇e = ωm − ṡκ

, (3)

where κ is the path curvature and ṡ is the velocity of a virtual

vehicle, bounded by 0 ≤ ṡ ≤ ṡmax.

However, the robot’s translation velocity vm has to be

controlled in order to achieve trajectory tracking. Thus, we

introduce the acceleration control input am, where am = v̇m

and we then obtain

η̇e = am − v̇d, (4)

where ηe = vm − vd.

Similar to [20], we redefine the control signals

ue =





u1

u2

u3



 =





−ṡ + vm cos θe

ωm − ṡκ
am − v̇d



 . (5)

The control input vector ue is used as the control input in

our NMPC framework. When the open-loop optimal control

(a) (b)

Fig. 1. (a) A unicycle-type mobile robot (12 cm diameter) used in
experiments and (b) a graphical representation of a unicycle mobile robot
and a reference path.

problem is solved, the system control input signals ṡ, am, ωm

can be obtained by (5).

Subsequently, the error state dynamic model becomes

ẋe =









ẋe

ẏe

θ̇e

η̇e









=









0 ṡκ 0 0
−ṡκ 0 0 0
0 0 0 0
0 0 0 0

















xe

ye

θe

ηe









+









u1

vm sin θe

u2

u3









.

(6)

III. NONLINEAR MODEL PREDICTIVE CONTROL DESIGN

Nonlinear model predictive control (NMPC) is based on

a finite-horizon continuous time minimization of nonlinear

predicted tracking errors with constraints on the control inputs

and the state variables. It predicts system outputs based on

current states and the system model, finds an open-loop control

profile by numerical optimization, and applies the first control

signal in the optimized control profile to the system. However,

due to the use of a finite horizon, control stability becomes

one of the main problems. In general, the terminal region

constraint and/or the terminal penalty in the cost function are

employed to enforce stability. Basically, the terminal penalty

is assumed to be a control Lyapunov function for the system in

the terminal region, enforcing a decrease in the value function.

The terminal region constraint is added to enforce that if the

open-loop optimal control problem is feasible once, that it will

remain feasible, and to allow establishing the decrease using

the terminal penalty (see [13, 14, 15, 16] for more details).

Most model predictive controllers use a linear model of

mobile robot kinematics to predict future system outputs. In

[17, 18], a model-predictive control based on a linear, time-

varying description of the system was used for trajectory

tracking control. Generalized predictive control (GPC) was

used to solve the path following problem in [19]. The non-

linear predictive controller scheme for a trajectory tracking

problem was proposed in [20, 21]. Recently, Falcone et al.

[22] implemented an MPC-based approach for active steering

control design. They presented two approaches, i.e., MPC

using a nonlinear vehicle model and MPC based on successive

online linearization of the vehicle model. The differences of

this paper from other work are that this paper (i) deals with

path following control, which can provide the optimal velocity

of a virtual vehicle to be followed along the path, (ii) achieves

smooth convergence to the reference with time constraints, and

(iii) takes into account obstacle avoidance.

A nonlinear system is normally described by the following

nonlinear differential equation:

ẋe(t) = f(xe(t), ue(t)),
subject to: xe(t) ∈ X , ue(t) ∈ U , ∀t ≥ 0

(7)

where xe(t) ∈ R
n, ue(t) ∈ R

m are the n dimensional state

vector and the m dimensional input vector of the system,

respectively. X ⊆ R
n and U ⊆ R

m denote the set of feasible

states and inputs of the system, respectively. In NMPC, the

input applied to the system is usually given by the solution

of the following finite horizon open-loop optimal control

problem, which is solved at every sampling instant:

min
ue(·)

∫ t+Tp

t

F (xe(τ), ue(τ)) dτ + V (xe(t + Tp)), (8)
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subject to: ẋe(τ) = f(xe(τ), ue(τ))

ue(τ) ∈ U ∀τ ∈ [t, t + Tc]

xe(τ) ∈ X ∀τ ∈ [t, t + Tp]

xe(t + Tp) ∈ Ω

(9)

where F (xe, ue) = xT
e Qxe + uT

e Rue. Tc and Tp are the

control horizon and the prediction horizon, respectively, with

Tc ≤ Tp. V (xe(t + Tp)) is the terminal penalty and Ω is

the terminal region. The deviation from the desired values is

weighted by the positive definite matrices Q and R. Similar

to [20], a Lyapunov function for the terminal-state penalty can

be selected as follows:

V (xe(t + Tp)) = 1
2xe(t + Tp)

T Pxe(t + Tp), (10)

where P is a positive definite matrix, under the terminal-state

controller uL
e (t) such that the following condition is satisfied:

V̇ (xe(t)) + F (t, xe(t), ue(t)) ≤ 0, ∀xe(t) ∈ Ω. (11)

The terminal state feedback controller uL
e = [uL

1 , uL
2 , uL

3 ]T

is defined as follows:

uL
1 = −αxeT

uL
2 = −βθeT

uL
3 = −γηeT

, (12)

where α, β, γ > 0, and xe(t + Tp) = [xeT , yeT , θeT , ηeT ]T .

The subscript T denotes the terminal state. All weight param-

eters have to be selected such that (11) is satisfied.

The positive definite weight matrices of the F function in

(8) are selected as follows:

Q = diag(q11, q22, q33, q44), R = diag(r11, r22, r33) ,
(13)

and the positive definite weight matrix of the V function in

(10) is given by

P = diag(p11, p22, p33, p44) . (14)

Then, the stability condition becomes

V̇ (xe(t + Tp)) + F (t + Tp)

= p11xeT ẋeT + p22yeT ẏeT + p33θeT θ̇eT + p44ηeT η̇eT

+ F (t + Tp)

= p11xeT uL
1 + p22yeT vm sin θeT + p33θeT uL

2 + p44ηeT uL
3

+ F (t + Tp)

= p11xeT uL
1 + p22yeT vm sin θeT + p33θeT uL

2 + p44ηeT uL
3

+ q11x
2
eT + q22y

2
eT + q33θ

2
eT + q44η

2
eT

+ r11u
L2

1 + r22u
L2

2 + r33u
L2

3 .
(15)

Substituting the terminal state feedback controller (12) into

(15), we get

V̇ (xe(t + Tp)) + F (t + Tp) =x2
eT (−p11α + q11 + α2r11)

+ θ2
eT (−p33β + q33 + β2r22)

+ η2
eT (−p44γ + q44 + γ2r33)

+ p22yeT vm sin θeT + q22y
2
eT .

(16)

Similar to [20], to have a negative derivative of the value

function, the following conditions for the weight parameters

are required:

p11α − q11 − α2r11 ≥ q22

p33β − q33 − β2r22 ≥ 0

p44γ − q44 − γ2r33 ≥ 0

(17)

and the terminal-state region is defined as follows:

|xeT | ≥ |yeT |

p22yeT vmθeT < 0
. (18)

The terminal-state region is further bounded by the control

signal region. From (5) and (12), we have the following results

at the terminal state:




uL
1

uL
2

uL
3



 =





−αxeT

−βθeT

−γηeT



 =





−ṡL + vL
m cos θeT

ωL
m − ṡLκ
aL

m − v̇d



 . (19)

Then, the system control inputs ṡL, ωL
m, aL

m at the terminal

state can be obtained by




ṡL

aL
m

ωL
m



 =





αxeT + vm cos θeT

βθeT + ṡκ
−γηeT + v̇d



 , (20)

with the control input constraints
[

ωmin

amin

]

≤

[

ωL
m

aL
m

]

≤

[

ωmax

amax

]

. (21)

A. Time Parameterized Reference

In the trajectory tracking problem, the vehicle is required

to track a time parameterized reference. We normally feed a

desired posture xd,t to a tracking controller. In this work, we

wish to combine trajectory tracking behaviors in a path fol-

lowing control law, thus achieving smooth spatial convergence

to the trajectory as well as time convergence. We penalize the

cost function with

Ft = (xm(Tp) − xd,t(Tp))
T Kt(xm(Tp) − xd,t(Tp)), (22)

where Kt is a positive definite matrix. This matrix weighs

the relative importance of convergence in time over spatial

convergence to the path. If Kt = 0 is chosen, pure path

following is achieved.

B. Obstacle Avoidance

Typically, the desired reference is generated by a plan-

ning algorithm based on a map of the environment and this

reference is assumed to be collision-free. During the actual

motions it is possible that obstacles appear in the vehicle’s

path, which had not been present in the planning phase. This

may also happen because of imprecision in the map, or vehicle

localization errors. In this work, we assume that the simulated

sensors mimic infra-red sensors placed in a ring around the

robot, spaced by 30◦ and they have a distance range of 50

cm. The obstacle information is then incorporated into the

cost function, so that the computed control follows the desired

reference, while staying away from the obstacles. In case of
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moving obstacles, the information such as their position and

velocity can be used to predict the information over the next

Tp horizon and then the cost function can be computed. It has

to be noted that we consider only convex polygonal obstacles.

The obstacle points detected by sensors contribute to the

cost function with a term which penalizes states as follows

Fobs =

Np
∑

i=1

Ns
∑

j=1

Kobs

e−c1|θobs,ij |

ec2dobs,ij
, (23)

where Kobs, c1, and c2 are positive constants. Ns is the number

of range sensors. Np is the number of predictive steps, given

by Np = Tp/δ, where δ is the sampling time. θobs is the angle

of the obstacle with respect to the robot frame and dobs is the

distance between the robot and the obstacle.

IV. SIMULATION RESULTS

Our NMPC controller was first implemented in Matlab and

numerous simulations were performed. All the elements of our

NMPC framework were set as follows:

Q = diag(0.2, 2, 0.01, 0.01),
R = diag(0.0001, 0.0001, 0.0001),
P = diag(1, 1, 0.015, 0.015),
Kt = diag(1, 2, 0.01, 0.01),
Kobs = 1.5, c1 = 0.01, c2 = 10,

Np = 3, Tc = Tp = 0.15 s, δ = 0.05 s, s(0) = 0 m,

α = 2.5, β = 1, γ = 1.
The circle reference is

xd(t) = R cos s(t)
R

, yd(t) = R sin s(t)
R

,

where R = 1 m and the desired translation and rotation were

vd = 0.5 m/s and ωd = 0.5 rad/s, respectively. The maximum

and minimum control inputs were set to vmax = 2 m/s, vmin =
−2 m/s, ωmax = 2 rad/s, ωmin = −2 rad/s, amax = 2 m/s2 and

amin = −2 m/s2.

The performance achieved with pure path following, pure

trajectory tracking (see [20] for details), and for combined

trajectory tracking and path following was assessed. Fig-

ure 2(a) and Figure 2(b) show the simulation results of pure

path following control and pure trajectory tracking control,

respectively, with four different initial postures. The velocities

and the posture errors of pure path following are depicted in

Figure 3(a) and Figure 4(a), respectively, while those of pure

trajectory tracking are plotted in Figure 3(b) and Figure 4(b),

respectively when the initial posture of both cases was set to

(1.5,−0.5, π). Obviously, the control signals of path following

control were less likely pushed to saturation and motions were

less aggressive. However, time constraints were not achieved

in the path following control. Figure 2(c) shows the simulation

results of the combination of path following control and trajec-

tory tracking control, and the velocities and the posture errors

are shown in Figure 3(c) and Figure 4(c), respectively when

the initial posture was set to (1.5,−0.5, π). This controller can

achieve both reference convergence and time convergence with

smooth motions. As seen in the results, the robot converged

smoothly to the desired path and then it reacted to achieve

zero trajectory tracking error. Interesting enough, in case of

path following control, the predicted system states can reach

the terminal region in finite time with less effort than in case of

trajectory tracking control because the trajectory is the time-

parameterized reference and the conditions in (18), depending

on time, need to be satisfied.

Next, a convex polygonal obstacle was introduced in a

position which prohibited path following. As it is shown in

Figure 5, the controller deviated from the desired reference

in order to safely avoid the obstacle and time convergence

could still be achieved. In Figure 6, two moving obstacles

were present. The velocity of the first obstacle was 0.2 m/s at

−135◦, while the velocity of the second obstacle was 0.6 m/s

at 150◦. In the simulation results, the robot moved backward

to avoid the collision and waited until it could find a way to

stay away from the obstacles and to follow the reference.

V. REAL-WORLD EXPERIMENTS

A unicycle-type mobile robot, shown in Figure 1(a) was

used in real-world experiments in this paper. The robot con-

troller is an ATMEGA644 microprocessor with 64 KB flash

program memory, 16MHz clock frequency and 4 KB SRAM.

The robot orientation was measured by a Devantech CMPS03

compass. The localization was given by a camera looking

down upon the robot’s workplace and a PC was used to

compute the control inputs and then sent these inputs to the

robot via WLAN. The same reference used in simulation

was employed in this experiment, but with vd = 0.2 m/s,

ωd = 0.2 rad/s and δ = 0.1 s. The free package DONLP2

[23] was used to solve the online optimization problem.

However, incorporating the terminal penalty and the terminal-

state constraints degrades performance because of high com-

putational time. Therefore we did not include them in the

cost function in the real-world experiments. However, we still

penalized the cost function with the time dependent penalty

Fig. 5. The simulation results when a static polygonal obstacle was present.

Fig. 6. The simulation results when two moving polygonal obstacles were
present.
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Fig. 2. The simulation results with four different initial postures: (a) pure path following, (b) pure trajectory tracking, and (c) the combination of path
following and trajectory tracking.
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Fig. 3. The robot velocities when the initial posture was set to (1.5,−0.5, π): (a) pure path following, (b) pure trajectory tracking, and (c) the combination
of path following and trajectory tracking.
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Fig. 4. The posture errors when the initial posture was set to (1.5,−0.5, π): (a) pure path following, (b) pure trajectory tracking, and (c) the combination
of path following and trajectory tracking.
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Fig. 7. The experimental results by using our NMPC law: (a) the robot positions and its reference, (b) the posture errors, and (c) the robot’s velocities.

term in order to satisfy time constraints. Furthermore, obstacle

avoidance will be considered in our future work because of

high computational time demand under real-time constraints.

The results are shown in Figure 7.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a solution to the problem of

combined trajectory tracking and path following for a mobile

robot. Our approach based on the NMPC framework can

control a mobile robot to smoothly converge to a reference

with time and control input constraints.

However, the computation is one of the problems to use

NMPC in real-time systems. Improving the computation ef-

ficiency is still under our investigation. Since the initial

feasibility to the optimization has been assumed in order

that subsequent feasibility can be implied, feasibility analysis

is one of our further research. In addition, we will extend

our controller to accomplish coordination tasks with a larger

number of mobile robots in a complex environment.
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