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Abstract— To reduce production costs of current engines, car system for a diesel engine adapted from cylinder pressure
manufacturers strive to replace built-in sensors by software was introduced by Yang [9]. In his work, he adopted a hybrid
solutions. However, the limitations of current micro controllers genetic algorithm and kernel principle component analysis

require time and memory efficient algorithms. In this paper, we . L L .
propose a real-time framework for the detection of engine valve technique for distinguishing engine valve errors from othe

states based on wavelet analysis of in-cylinder pressure curves. machine faults.
Extracted wavelet features are then filtered out using mutual In this paper, in-cylinder pressure curves are employed to
information such that only the most relevant wavelet coefficients predict the state of engine valves. Since all computatioas a
become the input of the chosen support vector regressor. A narformed on a micro controller of low clock rate, we do
further speedup is achieved by an approximation of the support .
vector solution which comprises less support vectors. We show not only fpgus on the raw prediction performance, b‘%t_a'so
that the combination of relevant feature selection and the ©n the efficiency of the selected techniques. Here, effigienc
regressor model simplification results in a significant decrease of is related to both run-time complexity and memory usage.
the recall phase complexity while retaining good generalization |n our approach, the reduction of the prediction complexity
performance. is based on two different strategies: first, we represent the
signal by its most relevant features only, and second, the
regression function is approximated to give a model of
In automotive engines, the system state can actively beduced complexity. As shown in Section V, this novel
changed via engine actuators. For example, valves that arembined approach allows for real-time predictions of galv
part of the exhaust gas recirculation (EGR) scheme directitates on current micro controllers while maintaining good
influence the redirection of emissions by establishing generalization performance.
pressure gradient. To this date, the state of these valves CEhe rest of this paper is organized as follows: after presgnt
only be determined using sensors, resulting in an increbseaur proposed method in Section Il, we briefly introduce
production costs. Thus, a software solution is preferreithivh all employed preprocessing and regression techniques in
predicts valve states using data of already existing sensoBection Ill. Section IV comprises a detailed description
Recently, the pressure sensor glow plug was introduced @f how these methods can be applied to the problem of
lowing for cylinder pressure onboard monitoring with reyar valve state detection. Experimental results are presearidd
to combustion control [1]. In this paper, we employ in-discussed in Section V and summarized in the last section.
cylinder pressure curves acquired by this pressure seasor t
detect the state of engine valves. Il. METHOD OVERVIEW
Several authors have addressed the usability of in-cylinde The task of our proposed method is to estimate the state
pressure in the domain of engine control. At first, researabf two engine valves: the exhaust gas recirculation (EGR)
focused on establishing a model for in-cylinder pressurealve embedded in the EGR system described in [10] and
curves in various fields of applications [2], [3], [4]. Asthe variable turbine geometry (VTG) valve of a Garrett VTG
pointed out by Sellnau et al. [5], it does not only result irsystem. While the former valve regulates the exhaust gas flow
primary system benefits like an increased fuel economy @m the exhaust gas recirculation path, the latter valvecedfe
reduced NOx emmisions, but also in secondary effects likke exhaust gas flow through the turbine. The term VTG
air-fuel balancing or calibration assistance. valve comprises the VTG system consisting of the actuator,
With the advent of inexpensive cylinder pressure sensotlse mechanical drive component and the VTG vanes which
[6], [7] new opportunities for precise engine control andare regulated rotatorily. Valve state changes are induged b
fault detection have emerged. Park et al. [8] developed raodifying the control pulse which is represented by the duty
spark advance control strategy based on the cylinder peessaycle. The duty cycle is defined as the ratio between the
signal in spark ignition engines. Therefore, they predictepulse duration and the cycle duration. It is a dimensionless
the position of the peak pressure along with the hook-bagkarameter measured in percent and ranges from 0% to 100%.
at late burn-conditions using neural networks and employdoue to the more involved measurability of valve states in
this information to alter the spark advance. A fault diagaos comparison with the duty cycle, we rather predict the latter
Note that for VTG valve prediction this approach introduces
Ph. Komma and A. Zell are with the Chair of Computera potential error source since a well-defined relationship
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cycle varies depending on whether the current state of tilseale indexny and a succession of signal details from scales
VTG vanes was reached by an opening or closing movement, down to —oc:

Since the position of the VTG vanes influences the exhaust - o -

pressure this pressure difference indicates differingreval _

states for the same duty cycle. Valve state prediction 'ﬁssuef(t) = 2 Gmonfnon O 30 D, dmatima(t)
may arise since the difference in the exhaust pressure is
also reflected in the acquired in-cylinder pressure signahpproximation coefficientss,, , represent the signal at a
Hysteresis tests for the EGR valve revealed a more distingparser resolution, whereas wavelet coefficiests, de-
relationship between the valve state and the duty cycle. scribe the information lost when moving from an approx-
Valve state estimation is based on pressure curves acquitgtition of f at scalem to a coarser approximation at scale
in a single cylinder within a complete working cycle. Wem+1. Wavelet functions),,, ,,(t) are generated from a single
assume that all devices which are integrated in the air lindgnction+» by dilations and translations:

between the engine and the orifices influence the wave fb

propagation in the gas exchange path. Hence, we expect a Vrmm = |a|—%¢ ( — )
change of the pressure signal progression by modifying the a
valve settings._The_se changes_ are reflected in chara’rcieri% is denoted as the mother wavelet function. By choos-
features contained in the acquired pressure curve. Toatxtrahg a logarithmic discretization of parametess and b,
these features the Haar wavelet transform is applied. Bas&mm _ \/2*7’"1/1((15 —n2™)2-™), a dyadic grid arrange-

on a mutual information filter approach we then choose thgent is established, forming the basis of the discrete weavel
most relevant Haar wavelet coefficients. Wavelet Coemc'e'?ransform (DWT). ¢, . are denoted as scaling functions

selection is necessary to filter out those coefficients Whicé’moothing the signal. They have the same form as the
represent the noise or other interferences contained in thg,elet:

pressure signal. The remaining coefficients constitute the o—m/2  (o—mt—n

inputs for both, the model training and the recall phase. Pmn(t) =2 ¢(2 )-

Note that concentrating on the most important features, onlx
involves the acceleration of our framework in two differen WT using filters has been developed by Mallat [11]. It
ways: on the one hand, less wavelet coefficients have to Snsforms a given signat into two sets of coefficients:
determined during the feature extraction step. On the oth Bproximating coefficients, and detail coefficientsl, by
hand, valve state prediction complexity is decreased ak we§o

. h lexity d q he di ionality of nvolving s with a low-pass filter and a high-pass filter.
since the complexity depends on the dimensionality o th?he outputs of both filters are then downsampled by a factor
input vector (see Section IlI-C).

In th del i h th del | th of two resulting in an output stream of approximation and
n the model generation phase, the model Ieams e Cormega; coefficients that has the same lengtls.aBhis scheme
assignment of known valve states, given a selected set .

recursively repeated by applying the approximation coef
Haar wavelet coefficients. In our approach, the model 1 Ursvely rep Y appying bproximat

Beients as new inputs to the wavelet decomposition process.
represented by support vector machines (SVM). To meet P P P

real-time and memory constraints, we further simplify theB
established SVM by reducing the support vector set. In the
recall phase, acquired and preprocessed pressure cue/es afFeature selection techniques are necessary for reducing
applied to the simplified model in order to predict the statéhe input dimensionality to avoid unwanted effects like

n=—oo m=—00 n=—00

fast wavelet decomposition scheme that computes the

Feature Selection using Mutual Information

of engine valves. overfitting. One solution for the feature selection prodess
to assign each feature a statistical relevance measuiee If t
[ll. THEORETICAL BACKGROUND chosen measure is independent from the employed regression
A. Wavelet Analysis for Feature Extraction model this technique is referred to as the filter or feature

i . i ranking approach [12].
Internal combustion engine acoustic measurements giXf,tual information (MI) is a non-parametric measure of

information about the engine’s operating parameters and|eyance which can be derived from information theory. The
physical characteristics. However, the acquired signeds ay; of two random variables: andy is a measure of how

complex and superimposed by backward noise, demandingsng 4 depend on each other. It can be defined from the
accurate processing. entropy H(.):

In our approach, we employ the Haar wavelet transform for

feature extraction. As wavelets are localized in both spaceMl (z,y) = H(z) + H(y) — H(x,y) = H(y) — H(y|z),
(time) and scale (frequency) domains, they can detect local

features in a signal. Furthermore, wavelet analysis has-a ruvhere H(y|x) is the conditional entropy of; given z. It
time complexity ofO(n) making it feasible in our domain. measures the loss of uncertainty piwhen = is known. If
Mathematically, wavelet decomposition can be regarded asand y are independent, theH (z,y) = H(x) + H(y),
a multi-level representation of a functiof(¢) that consists H(y|x) = H(y) and as a consequence (Mly) = 0.
of a superposition of an approximation of itself at arbigrar For a continuous random variable mutual information



corresponds to the Kullback-Leibler distance between thgparse solution since these training points can then be left

joint distribution and the product of the marginals: out from (2) without altering the prediction result. The
M _ KL remainingn training points establish the predictive model
(@,y) = (p(z; y)llp(2)p(y)) and are denoted as support vectors. The simplified regressio
- //p(%y) In <p(x)p(y)) dady function becomes:
p(z,y) n_
In our work, we use the Kraskov MI estimatdf? [13] fla) = ZﬁjK(x’xj) +o. )
which is based on entropy estimation usingearest neigh- =1
bor statistics. Here, each support vectar; with weight 3; correspond to

a certain training point; for which eithera; or o # 0.
) i As shown in Section V, the evaluation of (3) forms the
In this section, we follow the results for support vectoljimiting factor of the proposed valve state detection schem
regression given by Smola and $tkopf [14]. Given a gince the prediction complexity is a function of support
training setT = (xz;,y:),i € [1;1], wherex; € R? and yector counts, the dimensionalityl of z; and the costs as-
y; € R, we establish a linear regression function of the formggiated with the employed kernel functiéf an increase in
F(z) = wT(z) +b 1) run-time performance involves the minimizat_ion of aI'I thre
parameters. Whereas the theory of mutual information was
on a feature spacé’. Here,w denotes a vector i’ and introduced to optimize parametér the following section is
¢(x) maps the input to a vector inF'. w andb are obtained aimed at reducing the number of support vectors.
solving the following optimization problem: _
D. Support Vector Reduction

l

1 . .
min P = ~wlw + CZ@ e Equation (3) reveals that a reduction pf the support v_ector
w,b 2 = count results in both a decrease of run-time complexity én th

Il phase as well as a decrease of memory requirements.
sty; — (wlo(x+ b)) <e+&, reca ; : o
vi = (w70 )< E: The choice has to be made carefully since the rejection
(@ +0) —y; S e+ &, of even a small number of support vectors can result in a
§i,& 2 0,i=1,...,1 significant decrease in generalization performance asrshow

The optimization criterion is chosen such that it penalizets)y Syed et al. [15]. In [16], Burges et al. reduced model

data points for whit — /()] > c. The slack variablesy G0l Y CEETC SECEE B0 O IR o
and¢*, correspond to the lower and upper bounds in whicgur es et a?l [17] E/efined fhpe method b determinin ' the
the functionf (z) = w? ¢(x) +b is allowed to deviate from a g ' y 9

predefined erroe and cosiC, wheree, C' > 0. The function reduced set from the original vector set. Although prongsin
$(z) maps features into a ,higher di’mensic.mal space their method sometimes results in a convergence towards a

: . o . local minimum as pointed out by Kwok and Tsang [18],
By introducing Lagrange multipliers and formulating therenderin it necessary to restart the process with mariglinit
corresponding Lagrangian the following dual optimization 9 y P ?

problem can be stated: guesses. .
In our framework, we adopt the technique of Downs et

C. Support Vector Regression

. 1< al. [19]. In their work, they remove those support vectors
g}}ﬁD = 3 ZQij(ai —a7)(ai —aj) + that can be expressed as a linear combination of other ones
i=1j=1 in feature space. By modifying the SVM weights, the
! ! generalization performance is preserved while the conitglex
EZ(% —oy) - Zyi(o‘i — o) of the regressor is decreased.
i=1 i=1 Let z;, ¢ € [1;n], be the set of support vectors. In the

following, we assume that this set consists soflinear

; independent support vectors afd— ) support vectors that
Z(O" —af) =0 depend linearly on thg other ones. Given that .the ordering
— ¢ ¢ ’ of the support vectors is chosen such that the firstpport
B vectors are linearly independent, the regression functioh

whereQ;; = ¢(x:)" ¢(z;) = K(x;,2;) and K denotes the (3) can be formulated as:

kernel function. Given the solution of the dual optimizatio n .

problem, the regression function of (1) can be written as:  ¢(z) = ZB’?K(Z’@) + Z Bj Z ci; K(2,%) +b, (4)
=1

sto<a,a <Cji=1,...,1

1 j=r+1  i=1
fl@) =Y BiK(z,x;) +b, (2)  where K denotes the kernel function and is the support
=1 vector matrix, M € R"*", given by M = K(Z;,z;). Here,

where 3, = «; — . It turns out that for a fraction of z; andz; represent the set of support vectors and the set
training pointsz;, «; and o equal 0. This results in a of [ training samples, respectively. The coefficient matix



describes how the linear dependent columns of the kernel IV. EXPERIMENTAL SETUP
matrix can be expressed using linear independent ones.Alt pata Acquisition

can be shown [19] that (4) is equivalent to: Although the state of engine valves is to be estimated

T from pressure curves, we performed data acquisition the
f(x) = ZﬂiK(L@) +b, (5) reverse way. That is, given a set of operating points and
i=1 valve positions the corresponding pressure curve taken fro
where a single cylinder was sampled. Here, an operating point is
I noo determined by the number of revolutions per minute and
Bi = Bi + Z Bjcij- the brake mean effective pressure value. The chosen set
j=r+1 of operation points constituted an adequate representatio

The application of the introduced support vector reductioﬂflthe co_rr?plet.e ebngl_ne map. FLrl]rther, we conzldheéeddthree
scheme requires both, the determination of linear dependé’ﬁ ve positions: a basis position t at_ r_epresente t_ ateln
vectors and the coefficient matrig = ¢;;, Vi, j. Adopting position of an actuator and two positions that deviated from

) 1 J

the technique of [20] we therefore use QR factorizatiort{:e ste}ndard one by 3?1% up a“?‘ dowp. By varying both
with column pivoting. It allows for the decomposition of (ne valve setting and the operation point, we obtained a

a matrix M into an orthogonal matrixQ and an upper data set containing 500 observations. Given a fixed operatin
triangular matrixR, MTI = QR. II is a permutation matrix, point and valve setting, the pressure curve of 100 working
that sorts the columns of the matrix/ according to the cycles was recorded after the engine reached its steady stat

degree of their relative linear independence in decreasiJ§e samphng: rate of (tjhe m—cylmdir prelssurehsenslor W"’}S f‘et
order. Given that the rank of the kernel matfif is r, the [© WO samples per degree crank angle. The value of the

permuted kernel matri2/TI can be decomposed into a set Otsampling rate was F:hosen 'to fulfill the Nyquist Theorem,
r linear independent columna/,, and into another sefi/s, i.e. not to lose any information due to undersampling. The

whose elements can be expressed as a linear combinatﬁ?rm%“ng of a conllpletel eng'rde (\;vorkmg cyclel consisting of
of columns of M, . Reformulating the QR factorization, we /20 degrees crank angle yielded 1440 samples representing
have: the pressure progression.
Along with the pressure curve we measured three other en-
_ Ri1 Raz gine parameters: the engine speed, the air flow value, and the
[ My My |=[Q1 Q2] . ,
0 Ro amount of fuel added during the combustion process. Note
The coefficient matri>xC is then determined using the resultsthat all three parameters were excluded from -the following
o feature extraction and selection process, but directlyl ase
of the QR decomposition:

inputs for the regressor.
M, C = M, (6) B. Feature Extraction

My = @QiRn (7) For data preprocessing we implemented the DWT using
_ ) ) _ ) . the Haar basis, given by:
Solving (6) forC' and inserting (7) into the resulting equation L
: . 1 0<t< 5
yields: i) =4 -1 l<t<i
1T = - 5 S

O =Ry @ M, 0 elsewhere
The simplified regression function is an exact representati and
of (3) as long as the size of the reduced support vector set o(t) = { L 0<t<l
does not fall below the rankof the support vector matrix/. 0 elsewhere
In our experiments, the support vector count of the simplifieBesides the three engine parameters mentioned above the
models proved to be still too large to be applicable on a re&ature vector representing a specific pressure curve stensi
engine controller, both in terms of run-time complexity andf the concatenation of the approximation coefficient at
memory requirements. Hence, we did not consider the/firstscalem = [log, 1440] and wavelet coefficients of scales
columns of the permuted support vector matvidI, but the m € [1; [log, 1440]]. Note that this is only the preliminary
first u columns instead. The reason of choosing this subsfgature vector since irrelevant coefficients are removed in
is to select those columns of the support vector matix the succeeding step. The removal of irrelevant features als
which have the highest degree of linear independence andntributes to the real-time applicability of the Haar wave
thus are most difficult to express by other columns. In thigansform (HWT). By formulating a modified version of
manner, (5) turns into an approximation of the exact satutiothe HWT which only determines the remaining coefficients
as the value of. decreases. Note, however, that the rejectede obtain a preprocessing scheme of low computational
support vectors still influence the result of the approxedat complexity. In comparison with the costs associated with
regression function as their weights, v < i < n are used valve state prediction the HWT run-time complexity proved
to modify the weights?;, 1 < i < u of the remaining support to be insignificant, rendering it unnecessary to include the
vectors. Haar wavelet transform in further complexity considenasio



TABLE |
GENERALIZATION ERROR(MEAN ABSOLUTE ERROR E,,4p) OF (&) THE
The aim of feature selection is twofold. At first, it partiall UNMODIFIED LOW ENERGY APPROACH AND(b) THE UNMODIFIED
solves the curse of dimensionality [21] by reducing the  MUTUAL INFORMATION APPROACH. FOR EACH APPROACH THE
length of feature vectors significantly. Secondly, withaxely RESPECTIVE SUPPORT VECTOR COUN(#SVS), THE DIMENSIONALITY OF
to (3) the complexity of target value prediction is also a THE FEATURE VECTOR(feat), THE ESTIMATED NUMBER OF CLOCK
function of the feature vector length. This means, that byvcLes (cycles), AND MEMORY REQUIREMENTS(mem) ARE PRESENTED

C. Feature Sglection

the sole selection of relevant feature components we do not (a) unmodified low energy approach
only increase the possibility of obtaining a regressor rhode [valve J| Enap | feat | #SVs | cycles | mem (kB) |
with a better generalization behavior, but we also increase etvm || 2.64 | 20 | 395 | 970269 32.4
the possibility of determining the results of the prediatio vig || 560 | 24 | 357 | 932127] 349
faster. This is particularly important in this domain sirtbe (b) unmodified mutual information approach
transformed input signal consists of 2048 features. [valve [[ Emap [ feat [ #SVs [ cycles [ mem (kB) |
The easiest way of feature selection would be to perform an [ evm || 1.70 | 52 | 375 | 1747022] 77.6

vig 492 | 32 | 343 | 1095246| 442

exhaustive search over all possible feature subsets. Haowev
there are22%48 subsets for this problem and therefore a
brute force search is computationally infeasible. Hence, w
used a filtering approach based on mutual information as )
described in Section I1I-B. Wavelet coefficients were rahkeF SuppOrt Vector Reduction

according to their mutual information with the target value For each feature set sizew € [0;64] with step size

in decreasing order. Based on this ranking the ddsatures 4 e chose a support vector machine that provided a
were selected during the following model selection. In theage-off between generalization performance and rue-tim
next section, we compare this method against a low energ¥mplexity. Therefore, we did not simply use the SVM with
selection approach, whefecomponents are selected, reprétne pest generalization performance, but the one with the
senting coefficients with lowest energy (largest scale)s Thsmajlest run-time complexity during valve state predictio
choice is based on the assumption that the most relevagich resulted in a decrease of generalization performance
information is concentrated in the low energy content of thgt |ess than 1%. In our investigations, the generalization
signal, whereas high energy coefficients only represent th@rformance is expressed in terms of the mean absolute error

signal’s noise components. (Epas). It is the absolute difference between the real and
o predicted target value, averaged over all test patterns and
D. Data Normalization cross-validation folds. The estimation of the computatlon

Given the matrix of all transformed pressure curves whe/g@@MPlexity is based on operation counting and assigning a
each row represents a single observation, the columns w&gtain cost factor to each operation. Since cost factors we

scaled to have a mean of zero and a standard deviatiBR! provided for the present automotive micro controllers
of 1. This avoids numerical problems during calculation¥ve chose an alternative which resembled the reference most.

Ip our experiments, run-time complexity analysis was per-
formed on the basis of an Intel 386/87SX micro processor
working at 25 MHz.
Finally, we applied the support vector reduction scheme (se
Section 11I-D) to the selected support vector machines. By
Model selection describes the process of determining thgstematically reducing the support vector count giveniisp
free parameters for the selected regressor. For the suppefta certain dimensionality, we obtained an error function
vector machine this includes the specification of the kernelhich yielded an estimate for the generalization perforcean
function K along with its parameters, the dimensionality/  depending on the chosen support vector count and feature set
of the input space, the predefined erepand the cost value size. In a further step, we then chose the support vector ma-
C. In our experiments, we used a Radial Basis Functioghine which met defined accuracy or complexity constraints.
Kernel K (z,y) = exp(—|lz —y|* /20), wherez and y
denote two feature vectors. Parametersl, ¢, andC were G
tuned to minimize the generalization error by a grid search.’
Each candidate parameter vector on the @sigd; C; €) was Whereas the SVM training was performed using averaged
evaluated by a 10-fold cross-validation. pressure curves of 100 cycles, the prediction of targeteglu
To accelerate the model selection phase, model trainingas based on all recorded cycles. This gives rise to a
was performed using a reduced data set. We achieved datare realistic testing procedure taking cyclic combustion
reduction by averaging the 100 pressure curves acquired faariability, outliers, and noise into account. For measyiri
a fixed operating point and valve setting. This significantlynodel quality the predicted target values were renormélize
reduced the time spent on model training whilst retainingnd the mean absolute error was determined over all training
good prediction results. patterns.

and prevents wavelet coefficients of large magnitudes fro
dominating the training.

E. Model Selection

Target Value Prediction



TABLE Il
ESTIMATED RUN-TIME COMPLEXITY MEASURED IN CLOCK CYCLES(CYLCES) RELATED TO THE GENERALIZATION ERROR(MEAN ABSOLUTE ERROR
FEnab) FOR THE ENGINE VALVE EGR USING THE LOW ENERGY(I€) AND THE MUTUAL INFORMATION APPROACH (mi). FOR EACH GENERALIZATION
ERROR BOUND THE PARAMETERS OF THE MINIMUM SUPPORT VECTOR MAGNE COMPRISING OF#SVS SUPPORT VECTORS OF DIMENSIONALIT Yeat
ARE PRESENTED ALL RELATIVE VALUES REFER TO THE RESULTS OF THE UNMODIFIED LOVENERGY APPROACH(PRESENTED IN THE THIRD ROV
AND DENOTE THE PERCENTAGE OF REMOVED SUPPORT VECTORS AND CC® CYCLES, RESPECTIVELY.

| Ema inc || EGR (le) I EGR (mi) \
abs rel|| cycles % rem| feat | #SVs % rem|| cycles % rem| feat| #SVs % rem
2.64 0| 970269 0| 20| 395 0| 970269 0| 20| 395 0
2.64 0| 522900 46.1] 20| 249 40.5| 86676 911 4 93 73.9
2.70 25| 310780 68.00 12| 205 51.0|| 82948 915 4 89 75.1
2.77 5| 262268 73.00 12| 173 58.7|| 82948 915 4 89 75.1
2.90 10|l 206856 7871 8| 169 59.6| 75492 92.2| 4 81 77.3
3.15 20| 153000 84.2| 8| 125 70.1|| 68036 93.0] 4 73 79.6
3.96 50| 89352 90.8| 8 73 82.6| 45668 953 4 49 86.3

TABLE Il
ESTIMATED RUN-TIME COMPLEXITY MEASURED IN CLOCK CYCLES(CYLCES) RELATED TO THE GENERALIZATION ERRORE),, 4, FOR THE ENGINE
VALVE VTG USING THE LOW ENERGY (I€) AND THE MUTUAL INFORMATION APPROACH (mi). FOR AN EXPLANATION OF THE EMPLOYED
ABBREVIATIONS SEETABLE II.

| Emas inc | VTG (le) I VTG (mi) \
abs rel|| cycles % rem| feat| #SVs % rem| cycles % rem| feat| #SVs % rem
5.60 0| 932127 0| 24| 357 0| 932127 0| 24| 357 0

5.60 0| 547768 41.2 24| 229 35.9| 327248 649 16| 181 49.3
5.74 25| 286524 69.3] 12| 189 47.1) 177372 81.0f 12| 117 67.2
5.88 5] 256204 725 12| 169 52.7|| 153116 83.6/ 12| 101 71.7
6.16 10| 167688 82.0 8 137 61.6| 140988 84.9] 12 93 73.9
6.69 20| 123624 86.7 8 101 71.7| 116732 87.5 12 77 78.4
8.40 50| 41940 95.5| 4 45 87.4] 59976 93.6/ 8 49 86.3

V. RESULTS AND DISCUSSION B. Prediction under Complexity Constraints

Tables 1l and Il show the results when establishing a
o trade-off between generalization performance and predic-
A. Velve Sate Prediction Performance tion complexity. Given a reference mean absolute error we
searched for the reduced SVM model of lowest complexity
We begin our discussion by comparing the best resulthat deviated from the reference by a predefined percentage
obtained after applying the proposed feature and modedseléF,, ., inc,rel). As reference we chose the mean absolute
tion schemes without further simplification of the genedateerror of the unmodified low energy approach. The prediction
SVM models. The approach which employs mutual informacomplexity was estimated using the procedure introduced in
tion filtered wavelet coefficients as input is denoted as th®ection IV-F taking both the number of features and the num-
unmodified mutual information approach in the following.ber of support vectors into account. Beside presenting the
Using the low energy wavelet coefficients only, this apphoacabsolute values for the estimated cycle count and the stppor
is referred to as the unmodified low energy approach. Tablesector count, the relative decrease of both values is given
shows that support vector machines are capable of preglicti(® rem). The decrease denotes the percentage of removed
the state of engine valves. Thereby, the mutual informaticsupport vectors and clock cycles, respectively. Again, we
feature selection approach results in an increase of gi@dic use the results of the low energy approach as reference. We
performance as compared to the low energy approach (55.3u6ther differentiate between the reduced low energy (te) a
for the EGR valve and 13% for the VTG valve). Notethe reduced mutual information (mi) approach representing
however, that both feature selection approaches generatgport vector machines of reduced support vector set size.
models of high computational costs rendering it impossiblEor the reduced low energy feature selection approach, the
to achieve the required prediction frequency of 50 Hzapplied support vector reduction technique already resove
This statement particularly holds for the mutual inforroati 46.1% of all support vectors without losing any general-
approach where more features are necessary to establishitagion performance. Yet, the number of employed features
model with the largest generalization performance. is still large resulting in a significant prediction comptgx



TABLE IV
THE ABSOLUTE GENERALIZATION ERROR(MEAN ABSOLUTE ERROR E,;,45) AND THE RELATIVE INCREASE IN GENERALIZATION ERROR(inc)
RELATED TO CALCULATION CAPACITY (usage) WHICH IS AVAILABLE FOR EGR VALVE STATE PREDICTION(l€ft) AND VTG VALVE STATE PREDICTION
(right). ALL RELATIVE VALUES REFER TO THE RESPECTIVE MEAN ABSOLUTE ER@R OF THE UNMODIFIED LOW ENERGY APPROACHPRESENTED IN
THE THIRD ROW). NEGATIVE VALUES INDICATE AN INCREASE IN GENERALIZATION PERFORMANCE.

’ H EGR (le) \ EGR (mi) ‘ ’ H VTG (le) \ VTG (mi) ‘
usage (%) Emab (%) inc (%) Emab (%) inc (%) usage (%) E'mab (%) inc (%) Emab (%) inc (%)
194 2.64 0 2.64 0 186 5.60 0 5.60 0
100 2.66 0.87 1.80 -31.85 100 5.67 1.18 5.32 -5.10
50 281 6.62 190 -27.98 50 5.91 5.57 5.61 0.22
30 3.18 20.47 197 -25.15 30 6.27 12.00 5.89 5.16
20 3.80 43.93 233 -11.58 20 6.72 19.99 7.11 26.87
TABLE V

THE ABSOLUTE GENERALIZATION ERROR(E,,,45) AND THE RELATIVE INCREASE IN GENERALIZATION ERROR(iNC) RELATED TO THE MEMORY (mem)
REQUIRED FOR STORING THE SVM MODEL WHEN PREDICTING EGR VALVBTATES (left) AND VTG VALVE STATES (right). ALL RELATIVE VALUES
REFER TO THE RESPECTIVE MEAN ABSOLUTE ERROR OF THE UNMODIFIELOW ENERGY APPROACH(PRESENTED IN THE THIRD ROW.

] H EGR (le) \ EGR (mi) \ ] H VTG (le) \ VTG (mi) \
mem (KB) || Eap (%) inc (%) | Enas (%)  inc (%) mem (KB) || Enap (%0) InC (%) | Enap (%)  inc (%)
32.4 2.64 0 2.64 0 34.9 5.60 0 5.60 0

32 2.65 0.38 1.70 -35.54 32 5.65 0.83 492 -12.18

16 2.70 2.22 1.82 -30.89 16 5.67 1.18 5.44 -2.92

8 2.80 6.32 1.90 -27.99 8 5.91 5.44 5.61 0.22

4 3.21 21.69 191 -27.52 4 6.14 9.66 6.32 12.75

2 4.28 62.43 2.36 -10.43 2 6.72 19.99 7.38 31.68

in the recall phase. As for the reduced mutual informatioabsolute error by 50% the reduced low energy approach
approach, we obtain a reduction of the estimated cycle couist faster than the reduced mutual information approach.
by more than 91% while maintaining the same generalizatiofable 11l indicates that the reduced complexity of the restlic
performance as compared to the unmodified low enerdgw energy approach is attributed to the smaller dimen-
approach. The decrease in complexity arises from the @ecligionality of the feature vector. In the case of VTG valve
of both the number of employed features and the number sfate prediction, the mutual information feature selectio
support vectors. Already a set size offeatures suffices to scheme identifies relevant features which yield improved
adequately predict the EGR valve state. Further improvegeneralization performance when they are applied as a whole
ments of the computational complexity at the expense of yet the generalization performance decreases if the chosen
slight increase of the generalization error are achieved tspbset of relevant features becomes too small.

the reduction of the support vector count. A reduced support

vector machine which is composed of more than 95% less, CPU Load Considerations

support vectors as compared to the unmodified low energy . .
feature selection approach yields absolute predictioarerr We expect tha_t only a fract|or_1 of th? complete processing
of approximately 4%. power _of the micro controller is a\_/allable_ for valve state
For the VTG valve we examine a similar behavior of theoredlctlon. Based on our complexﬂy_estlmates, _Table v
computational complexity in relation to a chosen generap.resents the generahz_atlpn err.ors_whlch are obtained for a
ization error bound if the generalization performance & th9IVen CPU Ioa_d. In this investigation, we assume a micro
unmodified low energy approach should be maintained. HerE?ntroller working at 25 MHz. . .

the reduced mutual information approach requires a small Pr_the EGR valve, the_red_uced mutual information approach
feature set as well as less support vectors as compared to ﬁ%neves good generalization performance even at high CI_DU
reduced low energy approach. This results in a decreaseI ds. At.a CPU load of 80% the mean absolute error 1S
computational complexity by 40.3%. If we allow for a IargerStIII more than 11% smaller.as compared to the .unmodn‘.led
generalization error, however, the difference in compiexi low energy approach. In this case, the mutual information

becomes smaller and at a relative increase of the megﬁpr;%?ghtﬁio G%lgperforms the reduced low energy approach
0.



If the available calculating capacity is higher than 20%n further work, we will investigate the robustness of oug{pr
VTG valve state prediction benefits from mutual informatiordiction framework with regard to various factors of influenc
feature selection. Only at a CPU load of 80% the reduced loim this context, we will address issues arising from engine
energy approach outperforms the reduced mutual informatidransients, production-based vehicle-to-vehicle veaseand
approach. As stated in the previous section the decreasempine aging. Later research will also focus on an enlarged
performance of the reduced mutual information approach &cceleration of the SVM recall phase. Using optimization

primarily based on the enlarged feature set size relatduketo talgorithms we will identify the set of support vectors which

reduced low energy approach.

D. Memory Requirements

From Table V it can be derived that valve state prediction
based on unmodified support vector machines involves &l
memory usage oB4.9kB-77.6kB per valve. Since micro
controllers are memory bounded to a great extent we nowp]
consider reduced support vector machines of low memory
requirements only. Note that all tests have been performeg]
using 32 bit floating point numbers. This yields memory
requirements od(d-n+n+1) bytes in size, wheré denotes
the dimensionality of a support vector andis the support
vector count. [4]
As regards to the EGR valve a reduced support vector ma-
chine occupyin@ kB in memory yields best generalization
performance if the mutual feature selection procedureas us
In comparison with the unmodified low energy approach we
obtain a decrease in memory requirements of more tha
94%. For the VTG valve, strict memory constraints result
in a loss of generalization performance. Given a memory
of 4kB the mean absolute error rises by 9.7% and 12.754]
for the reduced low energy approach and the reduced mutual
information approach, respectively. Again, the geneadilin  [8]
performance of the unmodified low energy approach is
defined as the reference. [9]

[10]

In this paper, we showed that engine valve states can be
predicted by in-cylinder pressure curves along with threpi]
additional engine parameters. To enable real-time plied&t
even on limited micro controllers we adopted a frameworq
based on an effective preprocessing strategy using aeceler
ated Haar wavelet analysis, a mutual information relevandt’!
measure that filtered out irrelevant wavelet coefficients| a ;4
a simplified support vector solution. In comparison with the
low energy feature selection technique, which only select$®]
wavelet coefficients of low energy, the mutual information
feature selection yielded the best generalization perdooa [16]
given no memory and run-time constraints. For the EGR
valve this finding also holds true if memory or the calculgtin [17]
capacity is limited. As for the VTG valve, the low energy fea-
ture selection approach resulted in a more compact soluti 1%]
in the case of a considerably constrained setting. In coabin
tion with the presented support vector reduction scheme the
complexity of the recall phase was decreased by an order [&f]
a magnitude without significantly effecting the generdlaa
performance. The obtained prediction results for botheslv [20]
leave us optimistic that our valve state detection fram&wor
using in-cylinder pressure curves can be adopted for cbntr@ll
purposes on automotive micro controllers.

(5]

VI. CONCLUSION

allows for a tighter approximation of the support vector
regression function.
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