
The EvA2 Optimization Framework

Marcel Kronfeld, Hannes Planatscher and Andreas Zell

Wilhelm-Schickard-Institute for Computer Science, University of Tübingen, Germany
{marcel.kronfeld,hannes.planatscher,andreas.zell}@uni-tuebingen.de

Abstract. We present EvA2, a comprehensive metaheuristic optimiza-
tion framework with emphasis on Evolutionary Algorithms. It presents
a modular structure of interfaces and abstract classes for the implemen-
tation of both optimization problems and solvers. End users may choose
among several layers of abstraction for an entrance point meeting their
requirements on ease of use and access to extensive functionality. The
EvA2 framework has been applied successfully in several academic as
well as industrial cooperations and is extended continuously. It is freely
available under an open source license (LGPL).

1 EvA2: Introduction and Basic Features

EvA2 (an Evolutionary Algorithms framework, revised version 2) is a compre-
hensive metaheuristic optimization framework with emphasis on Evolutionary
Algorithms (EA) implemented in Java. It is a revised version of the JavaEvA
[1] optimization toolbox and it is available under the open source LGPL li-
cense1. EvA2 integrates several derivative-free optimization methods, preferably
population-based, such as Evolution Strategies, Genetic Algorithms, Di�erential
Evolution, Particle Swarm Optimization, as well as classical techniques such
as Nelder-Mead-Simplex or Simulated Annealing (Tab. 1). Due to the modular
structure, heuristic operators can readily be interchanged between optimization
methods and applied to any optimization problem at hand. Enhanced techniques
for multimodal and multiobjective optimization methods are implemented. Stan-
dard benchmark functions for real-valued, noisy, dynamic and multiobjective as
well as well-known combinatorial problems are included.
EvA2 aims at two groups of users. Firstly, the operative user who does not know
much about the theory of metaheuristics, but wants to solve a speci�c application
problem. To this end, EvA2 may be easily extended by a user-de�ned problem
class or interfaced with executable target functions. A slim interface to MATLAB
is provided as well. Secondly, EvA2 aims at the scienti�c user who wants to
investigate the performance of di�erent optimization algorithms or wants to
compare the e�ects of heuristic operators. The latter usually knows more about
metaheuristics and is able to extend EvA2 in detail for his purposes.
1 http://www.ra.cs.uni-tuebingen.de/software/EvA2

The EvA2 framework provides an extensible, object-oriented Java architecture
relying on a client-server structure (Fig. 1). By abstracting over components of
a general optimization loop, new implementations can quickly be added using
Java interfaces or inheritance. Fig. 1 (right) outlines the main processing loop
and indicates the most important interface classes provided by EvA2.

Table 1. List of some popular optimization strategies implemented in EvA2.

Evolution Strategies Order-based GA Multiobjective EA PBIL
Di�erential Evolution (IPOP-)CMA-ES NSGA II,PESA II,SPEA II PSO
Genetic Algorithms CHC Adaptive Search Cluster-based niching EA Tribes

Genetic Programming Scatter Search Island-model EA Niche PSO
Memetic Algorithms Nelder-Mead-Simplex Simulated Annealing ...

Fig. 1. Sketch of the EvA2 architecture (left) and a dynamic process diagram (right).

The Java GUI provides access to all main components, which can be easily con-
�gured (Fig. 2). Employing the Java Re�ection API, instance �elds are displayed
in the GUI directly from the class de�nition. The generic viewer displays even
compound class objects in an integrated manner. The accessibility and direct
coupling of Java instances and GUI elements make the handling intuitive and
allow for short development cycles, as shown exemplary in speci�c use cases.

2 Use Cases

GUI usage with simple self-de�ned target function: Peter is faced with
a minimization problem f : Rn → R that can feasibly be implemented in
Java. To tackle it with EvA2, he implements PetersProblem inheriting from
SimpleProblemDouble. Its method double eval(double[] x) realizes f . From
the EvA2 GUI, his new class can be directly selected as the target problem and
optimized with an arbitrary built-in optimization strategy. He selects the Evolu-
tion Strategy (ES) with self-adaptive mutation and performs 30, 000 evaluations.
As he assumes that his problem has multiple local optima, the cluster-based

Algorithm 1 Setting up a run through the EvA2 API.
1 GOParameters esParams = OptimizerFactory . standardES (new F6Problem (2 0)) ;
2 esParams . setTerminator (new EvaluationTerminator (50000)) ; // stopping c r i t e r i on
3 // se t evo lu t ionary operators and p r o b a b i l i t i e s to the template i nd i v i dua l
4 AbstractEAIndividual . se tOperators (fm0 . get Indiv idualTemplate () ,
5 new MutateESSuccessRule () , 0 . 8 ,new SpenglerCrossover () , 0 . 2) ;
6 Evo lu t i onS t ra t eg i e s es = (Evo lu t i onS t ra t eg i e s) esParams . getOptimizer () ;
7 es . s e tP lusSt ra t egy (true) ; // access the ES and se t a p lus s e l e c t i o n s t r a t e g y
8 // run opt imiza t ion and r e t r i e v e be s t i nd i v i dua l found
9 I nd i v i du a l I n t e r f a c e s = OptimizerFactory . optimizeToInd (esParams , null) ;

10 System . out . p r i n t l n (" Sol . : " + AbstractEAIndividual . getDefau l tDataStr ing (s)) ;

niching ES is another interesting approach [2]. Checking o� the post-processing
option, the niching ES run delivers two dozen optima re�ned by local search.

Fig. 2. Screenshot with plot and some parameter settings.

API usage and constrained optimization: Egon is keen on developing his
own evolutionary optimization variant by implementing a sophisticated crossover
operator and creates the SpenglerCrossover class implementing the prede-
�ned InterfaceCrossover. Within a simple method, he tests the new operator
(Alg. 1). Egon is very content when he �nds out that his operator works well on
Rastrigin's function. For further tests, he starts the GUI and switches the ES
default crossover operator with his own implementation to run tests on numer-
ous benchmarks. For a real challenge, he adds a generic constraint to Rastrigin's,
typing +(-(5,sum(X)),sin(x0)) into the constraint string �eld, requiring that
5 − ∑n

i=1 xi + sinx0 < 0 for solutions x to be feasible. After a few tests he is
astonished to �nd that his new operator has more problems on the constrained
problem than an out-of-the-box DE method.

Optimization from MATLAB: Ray has implemented a sophisticated prob-
lem in MATLAB as rays.m. He adds EvA2Base.jar to the classpath and extracts

the MATLAB interface class JEInterface to his working directory. He de�nes a
search range R with lower and upper bounds as R=[[-30 0 8];[-10 100 16]]
and creates an interface instance by typing JI=JEInterface(@rays, R). After
listing the available optimizers (showOptimizers(JI)), he selects PSO (ID=4)
and types JI=optimize(JI,4) to start the optimization. A graphical box with a
cancel button pops up. As soon as PSO has converged, Ray types getResult(JI)
to retrieve the solution vector. Using two analogous commands, he estimates
that the simple hill-climbing technique needs about ten times as long to deliver
a comparable solution. He therefore runs PSO again with a stricter convergence
criterion, retrieves the solution and continues to work with it in MATLAB.

3 Summary

We presented a short overview over the EvA2 optimization framework. EvA2
has originated from earlier packages EvA and JavaEvA [1], and it is freely
available under the LGPL license. Applications tackled with EvA2 cover di-
verse �elds such as bioinformatics [3], robotics [4], agriculture [5], as well as
industrial cooperations such as the optimization of combustion engines. Due to
the platform independence of Java, EvA2 reaches wide audiences ranging from
private to academic and industrial research or applications. Through the instan-
taneous GUI integration of user-de�ned classes, development cycles are short.
Various optimization strategies covering most current families of metaheuristics
are provided with the base package, and external interfaces allow for the op-
timization of external target functions. Extensions are added continuously by
researchers active in the �eld.

References
1. Streichert, F., Ulmer, H.: JavaEvA - A Java Framework for Evolutionary Algo-

rithms. Technical Report WSI-2005-06, Center for Bioinformatics Tübingen, Uni-
versity of Tübingen (2005)

2. Streichert, F., Stein, G., Ulmer, H., Zell, A.: A clustering based niching EA for
multimodal search spaces. In: Proceedings of Evolution Arti�cielle (LNCS 2935,
Springer-Verlag (2003) 293�304

3. Kronfeld, M., Dräger, A., Ascho�, M., Zell, A.: On the Bene�ts of Multimodal
Optimization for Metabolic Network Modeling. In: German Conference on Bioin-
formatics (GCB 2009). Volume P-157 of Lecture Notes in Informatics., German
Informatics society (2009) 191�200

4. Kronfeld, M., Weiss, C., Zell, A.: Swarm-supported outdoor localization with sparse
visual data. Robotics and Autonomous Systems 58(2) (2010) 166�173

5. de Paly, M., Zell, A.: Optimal Irrigation Scheduling with Evolutionary Algorithms.
Applications of Evolutionary Computing: EvoWorkshops 2009, Proceedings 5484
(2009) 142�151

