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Abstract—The scaling properties of multimodal optimization
methods have seldom been studied, and existing studies often
concentrated on the idea that all local optima of a multimodal
function can be found and their number can be estimated a
priori. We argue that this approach is impractical for complex,
high-dimensional target functions, and we formulate alternative
criteria for scalable multimodal optimization methods. We sug-
gest that a scalable niching method should return the more local
optima the longer it is run, without relying on a fixed number
of expected optima. This can be fulfilled by sequential and semi-
sequential niching methods, several of which are presented and
analyzed in that respect. Results show that, while sequential local
search is very successful on simpler functions, a clustering-based
particle swarm approach is most successful on multi-funnel func-
tions, offering scalability even under deceptive multimodality, and
denoting it a starting point towards effective scalable niching.

I. INTRODUCTION

Metaheuristic optimization methods are a class of general

search mechanisms applicable to almost any problem instance

which can be expressed through computational means. An

optimization problem is formulated on a target function f :
D → M for an ordering relation ≤ as the problem of finding
the minimum x0 ∈ D of f : ∀x ∈ D : f(x0) ≤ f(x). In
the more specific area of single-objective, real-valued function

optimization, we assume that f operates on R, f : R
n → R.

Metaheuristic approaches are especially useful when facing

non-linear, non-convex or non-continuous optimization prob-

lems, which are difficult to handle using classical optimization.

They are often inspired by natural processes such as the

Darwinian theory of evolution. They can also be extended to

work robustly on noisy or time-dependent target functions.

A frequent challenge for heuristic optimization is the non-

convexity of the target function, which implies the existence of

local optima. A local optimum can be defined using a notion

of neighborhood within the domain of f . x0 is defined as

a local minimum of f if ∀x ∈ U(x0) : f(x0) ≤ f(x) for
an open neighborhood set U(x0). However, in the continuous
domain, the number of neighbors is usually infinite, so that

local optimality in general can only be assessed with some

probability. Hence often a degree of local smoothness of f is

assumed, which can be exploited by a local search method to

converge on a local optimum if initialized in its vicinity.

Assuming that local optimality can be assessed, most global

direct search methods concentrate on finding a single best

solution, hoping it to be the global optimum of f . Quite

often, however, practitioners are interested in a larger set

of relatively good solutions, or even all local solutions if
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their number is small enough. Examples are applications from

physics [1] or bioinformatics [2]. In Metaheuristic Multimodal

Optimization (MMO), this task is tackled by either iterative or

parallel search for multiple local optima. From the context of

evolutionary inspired metaheuristics, MMO is often related to

the notion of niching. An ideal niche can be defined in relation

to a local search operator m as the largest neighborhood within

which x0 is locally optimal, Ûm(x0) = {x ∈ D|∃k ∈ N ∀j ≥
k : mj(x) = x0}, meaning that any local search initialized
within that niche (or neighborhood) will converge on the same

center of attraction, x0. Therefore, Û(x0) is also called a
basin of attraction. A niching method in MMO now seeks

to estimate or identify several such basins of attraction, which

is a prerequisite to identify several local optima.

Iterative global search, also called sequential or temporal

niching, since niches are identified sequentially in time, mainly

bares the risk of finding the same local optimum several times,

thus wasting valuable optimization time. In addition to that, a

global search run is, practically by definition, expected to visit

several basins of attraction during a run. Since only the single

best solution is returned in the end, all but one of them will

be discarded. This indicates that a niching variant of a global

search metaheuristic will most probably be more efficient in

finding multiple optima than the simple iterated approach in

terms of evaluations required.

While current MMO approaches usually require a good

estimate on the number of true local optima, we presume this

to be difficult for unknown target functions. In practice, the

number of local optima can be very high, making it infeasible

to find all of them. MMO methods should instead provide

the best-so-far local optima even if only a short optimization

time can be afforded. Thus, this work approaches the idea of

anytime-criteria in MMO, without the necessity of an a priori

estimate on the number of local optima.

A. Related Work

Multimodal optimization has been a front topic of research

in metaheuristic optimization for some time. Initially, tech-

niques for finding multiple optima in parallel were concerned

with keeping up diversity in Genetic Algorithms (GAs). GAs

are a typical metaheuristic optimization method, working on

binary strings that represent a set of candidate solutions. This

population is iteratively improved taking into account the

quality (fitness) of the candidates. The heuristic GA operators

are in analogy to Darwinian evolution: fitness-based selection,

genetic mutation and recombination. Evolution Strategies (ES)

and Differential Evolution (DE) are similarly based on evolu-

tionary schemes. Others, such as Particle Swarm Optimization



(PSO), simulate swarming behavior in animals and variate

candidate solutions by attraction towards better neighbors.

All of these methods iteratively improve the population

hoping to converge on a solution which is at least locally

optimal. In taking several candidates in parallel into account,

metaheuristics have a higher chance of the found solution be-

ing globally optimal when compared to local search methods.

A detailed introduction to metaheuristics is presented in [3].

Fig. 1. Visualization of a niching approach, from [4].

Niching in GA probably started with the crowding technique

[5], which requires a new candidate solution to replace a very

similar, worse solution in the population to maintain diversity.

The sharing approach [6] reduces the selection probability of

similar individuals by taking the number of close-by solutions

into account. The more individuals are gathered within a

distance of σ, the worse is their chance for survival. The

distance threshold σ can be interpreted as an early appearance

of a niche definition: individuals within a σ-environment are

assumed to occupy one niche, and by limiting the number of

individuals per niche, several niches can implicitly be covered.

Next to several extensions to sharing and crowding, such as

iterative clearing [7], deterministic crowding [8], and restricted

tournament selection [9], iterative niching with modification of

the search space has also been presented [10], [11]. Techniques

of explicit parallel niching by building sub-populations or

dividing the search space were brought up in several variants

[12], [13] and have been introduced into other branches of

metaheuristic optimization, such as ES [14], DE [15], and

PSO [16], [17]. A general approach has been presented in [4],

which allows the use of generic optimizers on sub-populations

formed by clustering (Fig. 1).

II. SCALABILITY CRITERIA FOR MMO

This work aims at a discussion of the behavior of current

niching methods in higher dimensions and an evaluation on

some exemplary benchmarks. Parallel multimodal optimiza-

tion methods are often designed and tested on low dimensional

functions in the expectation of finding all local optima of

the target function. Upscaling to higher dimensions is tackled

seldom, and if so, holding up this expectation. Exemplary is

the work by Brits et al. [18], [19], where dimensions of two

benchmark functions are increased from n = 1 to n = 4,
and the population size is increased exponentially in n with

the number of local optima. Population boosting was done

similarly in [20]. Other approaches, such as that by Shir and

Bäck in [14], have been scaled up to n = 40 dimensions
assuming that a limited number of optima is to be found, e.g.,

the best q = 81 on a 40-dimensional function.
Both approaches have worked out well in the tested scenar-

ios. However, we suggest that, in practice, (i) the number of

interesting optima can hardly be easily estimated, and (ii) it

is infeasible to search for all the local optima of a complex

target function. We therefore formulate two criteria we would

pose on an MMO method concerning scalability:

1) A scalable MMO method should work sequentially in

the sense that, for a highly multimodal target function,

increasing the iterations T of the MMO method in-

creases the number k of local optima returned. If the

number of local optima is large in relation to k, k should

behave approximately linearly to T : T1

T2

≈ k1

k2

.

2) For a scalable MMO method, the minimal number of

iterations required to identify a first subset of local

optima should be small, or be adjustable to be small.

Both points are related to each other, bearing the consequence

that the population size cannot be increased with the (often

exponentially) increasing number of local optima, because this

would increase the runtime until any local optimum can be

found to the same extent, which is impractical. The first point

aims at loosening the assumption that the number of solutions

needs to be predefined. It requires an MMO method to work

at least semi-sequential, meaning that optimum identification

and exploration phases occur in parallel or are triggered within

a single optimization run by the algorithm itself. These prop-

erties can also be interpreted as anytime requirements towards

the MMO concerning monotonicity and interruptibility: A

scalable niching method should provide a reasonable set of

solutions at any time it is halted by the user, who expects to

receive more results after longer runtimes.

Sequential niching methods realize these criteria in a

straight-forward way, since they iterate global search and

convergence phases ad infinitum. For this class of MMO

methods, collision avoidance mechanisms that avoid finding

the same optimum again and again have been considered [10],

[11]. However, for high dimensions, their merit is questionable

unless there are predominant niches, in which the optimizer

gets trapped repeatedly. For highly multimodal target functions

without such predominant basins, the probability of finding

the same local optimum several times is very low for typical

runtimes. Thus, although collision avoidance methods are

appropriate in some circumstances, they are not regarded here.

For parallel niching methods, the scalability criteria can be

fulfilled by introducing automatic restarts. As soon as a local

optimum has been identified, it is stored and the corresponding

search capacity is reused. This has also been called niche

deactivation in [4], [2], where converged individuals are

reinitialized across the search space and resume exploration.

A. Algorithms under Study

In the following, we will present several MMO methods

and analyze and compare their abilities to fulfill the scalability



criteria. Among basic sequential methods, we chose to com-

pare Iterative Nelder-Mead-Simplex (INMS) and IPOP-CMA-

ES. INMS is simply the iteration of a Nelder-Mead-Simplex

search [21] which is reinitialized as soon as the current

solution has converged for a fixed number of evaluations.

IPOP-CMA-ES [22] is a very successful ES with covariance

matrix adaption with restarts. If the ES converges during a run,

it is automatically reinitialized, at the same time increasing the

population size by a given factor c. We try both a moderate

and the standard increase factor (c ∈ {1.2, 2}).
Among specialized MMO algorithms, we tested two niching

swarm methods, NichePSO [16] and ANPSO [17]. NichePSO

treats single PSO particles as local searchers. As soon as a

singular particle has converged, a subswarm is formed with

its closest neighbor. The subswarms are expected to merge in

more promising areas, but such events will be infrequent with

limited population sizes (cf. criterion 2). As NichePSO also

lacks a global exploration component, we expect it to be infe-

rior in higher dimensions. ANPSO, an adaptive extension of

NichePSO, reintroduces a main swarm for global exploration

and forms subswarms based on an adaptive distance parameter

computed from the population diversity. This allows both

for larger subswarms and a better explorative behavior. Both

techniques were extended by subswarm-deactivation to being

able to conform to the scaling MMO criterion 1. Therefore,

population sizes were selected relatively small (λ = 50).
As a second type of MMO algorithms, we employed the

generic Clustering-based EA (CBN-EA) [4]. The CBN-EA

uses a clustering method on the current population to identify

niches, and optimizes each sub-population with an instan-

tiation of a generic metaheuristic. Those individuals which

cannot be assigned to a cluster make up the main population

which explores the search space. CBN-EA also reinitializes

converged sub-populations to the main population. Combining

density-based clustering with DE [23], PSO [24], GA [25]

and CMA-ES [26], four variants of the CBN-EA were tested.

Since most metaheuristics are infeasible to be run with small

populations, which can occur due to the clustering in a CBN

run, we limited the sizes of sub-populations within [10, 15]. If
a cluster Si grows larger, namely si = |Si| > 15, the si − 15
worst individuals are reinitialized to the main population. The

clustering method from [4] was applied with a density param-

eter of σ = 0.1 relative to the problem range, which implies
that local optima lying closer than σr = 10−1(ru − rl) for
the problem domain [rl, ru]n can not be distinguished by the
CBN-EA. This resolution seems coarse, yet due to the curse

of dimensionality, the hyper-cube of side-length σr covers

only a 10−n-th of an n-dimensional search space, making the

resolution sufficiently fine-grained in higher dimensions. Also

note that, due to the PSO variation mechanism working based

on attraction towards earlier positions, the CBN-PSO variant

employed the clustering on those memorized positions per

individual, and not on the current particle positions. Otherwise,

the CBN-EA variants work analogously. The following list

subsumes the employed MMO algorithm configurations. All

methods employed a population size of λ = 50, except for the

IPOP-ES which started with λ = 4 + ⌊3ln(n)⌋ , µ =
⌊

λ
2

⌋

.

1) NPSO: NichePSO with φ1 = 1.2, φ2 = 0, ω(t) =
0.7− t

tmax
0.5, fully connected constricted GCPSO (φ1 =

φ2 = 2.05, χ = 0.73, ρ = 0.1) for subswarms [16].
2) ANPSO: NichePSO with adaptive niche radius and

constricted PSO (φ1 = φ2 = 2.05, χ = 0.73) for the
main swarm (grid neighborhood) [17].

3) 1.2-IPOP: CMA-ES with increasing population size (in-

crease factor c = 1.2) [22].
4) 2-IPOP: IPOP-CMA-ES with c = 2.
5) CBN-PSO: clustering-based niching PSO (φ1 = φ2 =

2.05, χ = 0.73, grid neighborhood).
6) CBN-DE: clustering-based niching DE/current-to-best/2

(F = 0.8, k = λDE = 0.6).
7) CBN-ES: clustering-based niching CMA-ES with µ

λ
=

3
10 , pmut = 1, no crossover.

8) CBN-GA: real-valued, elitist GA with tournament-of-

four selection, uniform self-adaptive mutation (pmut =
1), 1-point crossover (pco = 0.5).

9) INMS: Iterative Nelder-Mead-Simplex, automatic restart

if NMS stagnates for 15 iterations (15 · λ evaluations).

B. Performance Measurement

As to measuring performance in MMO, the Maximum Peak

Ratio (MPR) measure is widely used. It assumes knowledge

of all local optima X̂ = {x̂i}1≤i≤q of f , and is defined for

maximization problems on a set of candidate solutions P :

MPR(P, X̂) =

∑

(xj ,x̂i)∈assoc(P,X̂) f(xj)
∑q

i=1 f(x̂i)
(1)

The set assoc(P, X̂) ⊂ P × X̂ consists of associated pairs of

candidate solutions with local optima x̂i, which are formed by

selecting the closest candidate from P for each x̂i. Note that

|assoc(P, X̂)| < |X̂| is allowed if several candidates occupy
the same optimum while other optima are not covered at all.

The MPR lies in [0, 1] and is the closer to 1 the more accurate
all optima are covered. Also, it rates better optima higher due

to their higher contribution to the summed-up fitness values.

Because neither the number nor the location of local optima

are necessarily known for complex, high dimensional target

functions, we suggest an alternative performance measure.

Instead of assuming full knowledge of local optima, we

select a threshold interval [θl, θu] for minimization, covering
all function values which are regarded as interesting. While

θl is a lower bound to the reachable fitness values, which can

often be estimated in practice, θu gives an upper bound below

which values are judged to be interesting results, e.g., by an

expert in the application. Such an approach has been chosen

in [2], for example, for an application from bioinformatics.

Given the θ-interval, Eq. 2 shows a simple way to calculate

a population score within [0, smax], where smax is unknown

as long as the number of local optima is unknown.

sc’(P, θl, θu) =
∑

{xi∈P |f(xi)<θu}

θu − f(xi)

θu − θl

(2)



TABLE I

THE APPLIED BENCHMARK FUNCTIONS.

Name Formula Domain Thresh. [θl, θu] at n = 10, n = 30

Rastrigin’s fRs(~x) = 10n +
P

n

i=1
(z2

i
− 10cos(2πzi)); ~z = (~x − ~o)MRs [−5, 5]n [−0.5, 15.5] [−0.5, 79.5]

Schwefel’s Sine-root fS(~x) = 418.9829 · n −
P

n

i=1
(xisin

p

|xi|) [−512, 512]n [0, 800] [0, 3200]

Rana’s fRn(~x) =
P

n−1

i=1
[(zisin(ai)cos(bi) + (zi+1 + 1)cos(ai)sin(bi))] [−512, 512]n [−5000,−3400] [−15000,−8600]

ai =
p

|zi+1 − zi + 1|, bi =
p

|zi + zi+1 + 1|, ~z = ~xMRn

One disadvantage of Eq. 2 on unspecific collections P is

that it is prone to be mislead by redundancy: if all candidates

in P1 are gathered closely around the same local optimum,

while P2 consists of few distinct local optima, Eq. 2 could

still score P1 much higher than P2. This is opposed to the fact

that P2 contains more information, as P1 is highly redundant.

As an alternative variant, Eq. 3 requires a clustering and a

binning step on P , sorting the solutions into k bins B1 . . . Bk

covering the interval [θl, θu]. Specifically, we employ density-
based clustering with parameter σ to remove redundancy.

sc(P, θl, θu) =
∑

Bj∈Bink(clustσ(P ),θl,θu)

wj |Bj | (3)

In Eq. 3, each bin Bj is assigned a weighting factor wj used

to weigh the quality of the optima found against each other.

Typically, the number of inferior optima (near θu) is much

larger than that of high quality (near θl). If this distribution is

known, the weights in Eq. 3 can be adapted accordingly. For

our analysis, we employ equidistant binning with k = 16 and
set wj = k−j+1

k
for 1 ≤ j ≤ k. Thus, any solution in B1,

which is the best bin, has a value of 1, while solutions in the
worst class Bk add values of

1
k
to the score. In Eq. 2, candidate

solutions close to θu are widely ignored, especially for larger

ranges of [θl, θu]. Thus, although being more coarse-grained,
Eq. 3 complies better with the notion that even optima near θu

are seen as interesting, contributing a fixed value to the score.

While this score rates the combined quality of the found

candidate solutions, their accuracy remains in question. A

solution is the more accurate the closer it lies to an actual local

optimum of the target function f . Accuracy is hard to evaluate

if the true local optima are unknown. One possibility to assess

it is the use of a post-processing step refining the candidate

solutions through local search. A solution can be considered

accurate with respect to a local search method and a threshold

ǫ if the local search process converges within the ǫ-vicinity

of the candidate solution. If an optimizer finds numerous

optima which are not accurate, the score results are potentially

overrated, since many of the candidate solutions may lie within

the same basin of attraction, which other optimizers may have

identified and assigned only one local solution.

We thus look at the accuracy of a candidate solution

by refining it with NMS performing 100n steps for an n-

dimensional problem f with different threshold values ǫ ∈
{0.01, 0.001, 0.0001}. The ǫ-values are interpreted relatively

to the problem range, which, for the benchmarks considered,

are always of the form R = [rl, ru]n. For the NMS refinement,

a local search population of size n + 1 is created around the
candidate solution ~xi by perturbing each component of ~xi by
ǫ
2 (ru − rl) for the threshold ǫ. If NMS fails to find a better

position ~x′
i with d(~xi, ~x

′
i) > ǫ(ru − rl), the candidate solution

~xi is regarded as a local optimum within accuracy ǫ. As the

online score from Eq. 3 is based on a clustered, but unrefined

population, it produces optimistic values. By comparing the

last online score to a final score of refined solutions, the

discrepancy of the online score of an optimizer can be judged.

C. Experiments

In order to rate niching methods concerning the scalability

criteria presented in Sec. II, we conducted empirical tests on

eight popular multimodal benchmark functions. Next to Rastri-

gin’s, Schwefel’s and Rana’s functions (Tab. I), we considered

the L-function, Griewank, Fletcher-Powell, Bohachevsky [27],

and the Levy function [28]. Especially for Bohachevsky and

Griewank, the interesting optima are in very close vicinity

compared to the problem range, shifting the difficulty to the

niche-radius problem ([17], [27]), consisting in the problem-

specific discrimination of local optima, which is not part of

this work. Therefore, these two functions will not be regarded.

Furthermore, due to space restrictions, we concentrate on three

especially challenging benchmarks (Tab. I) and relate to the

results on the rest of the benchmarks in Sec. III.

The well-known Rastrigin’s function fRs is a modulated

hyper-parabola with a large number of local optima. It is

“single-funnel”, meaning that it provides a global basin of

attraction of second order: of two local optima, the dominant

one is always closer to the global optimum. In that sense, fRs

is non-deceptive. Rastrigin’s function is shifted in its domain

and rotated according to [29]. The similarly popular sine-root

function fS by Schwefel is more difficult in that it does not

provide a global basin of attraction: there are various dominant

local optima spread throughout the search space, prominently

at combinations of xi ∈ {−512.0,−312.52, 420.97}, for
which any neighboring local optimum is worse in quality. fS

is separable, but it is also deceptive compared to fRs.

As Rana’s function fRn has its dominant optima close to

the corners of the search space, which provided systematic

advantages to specific optimizer implementations, it is rotated

by M such that ~u
|~u|M = ~e1, where ~u = (1, 2, 3, ..., n) and

~e1 = (1, 0, 0, ..., 0). The Rana function fRn is deceptive as

well, and it is also non-separable. Fig. 2 shows 2D illustrations

of the benchmark functions. Tab. I also shows the domains and

the threshold intervals [θl, θu] within which candidate solutions



Fig. 2. Illustrations of the benchmark functions in 2D. From left to right: Rastrigin’s, Schwefel’s and Rana’s.

are seen as interesting. They were selected by testing several

global optimizers (DE, PSO, GA, CMA-ES, NMS) on the

function and selecting the upper bound in such a way that

at least two optimizers find interesting solutions consistently.

For the empirical evaluation, we performed two series of

experiments setting n ∈ {10, 30}, with 5000n and 20000n

evaluations per run. The short runs were repeated 50 times

with different random seeds, the long runs 25 times.

III. RESULTS AND DISCUSSION

Figures 3 and 4 show averaged results of the online scores

achieved in the short runs. On FRs, the global basin of

attraction can be exploited, visible in the success of INMS in

10-D. The global correlation is also of great help for CMA-

ES, which achieves the best scores both online and after

refinement in 30-D (Fig. 4, left). CBN-GA achieves the next-

best results, probably due to the symmetric mutation operator

employed being advantageous on FRs. However, CBN-GA

lacks accuracy compared to IPOP-CMA-ES (Fig. 5 a). On

the long-run experiment in 30-D, CBN-PSO is the only other

niching method showing scalability on FRs (Fig. 9, left).

INMS and IPOP-CMA-ES are much less successful on FS ,

where there is no global basin of attraction and the optima

are near the bounds. In 30-D, they widely fail to find any

solutions below the desired threshold (Fig. 4, middle); among

the standard solvers, only PSO and DE reach interesting

function values robustly, and hence only ANPSO and CBN-

PSO/DE deliver noteworthy scores (Figs. 3-4, middle). CBN-

PSO achieves best scores after final refinement (Fig. 5 b,e),

where it shows that ANPSO and CBN-DE are not as accurate.

In case of NPSO/ANPSO, we ascribe this to the tendency to

allocate relatively few individuals per niche, which hinders

local convergence. Similarly, DE typically requires larger

populations to achieve close convergence. On the long run,

ANPSO and CBN-PSO show best scalability properties on FS

(Fig. 10 b,e). For a notion of the distribution of local optima

found on FS-30D, Fig. 6 shows the averaged resulting his-

tograms of the successful algorithms with increasing accuracy

(ǫ1 = 0.01, ǫ2 = 0.001, ǫ3 = 0.0001, relative to [rl, ru]).
The discrepancy between online and refined score is most

prominent on the rotated fRn (Figs. 3-4, right, vs. Fig. 5

c,f). Despite some good online scores, most algorithms lack

accuracy (Fig. 5 c,f). As to the long-run results, CBN-PSO

proves most successful on fRn (Figs. 8-9, right, and 10 c,f).

Fig. 7 exemplary shows the averaged histograms for the most

successful algorithms on 30-D FRn. On the Fletcher-Powell

problem as well as rotated Levy’s, results look similar to fRs,

meaning that the sequential methods perform best, followed

by CBN-PSO. On the rotated L-function, results were similar

to fS and fRn, with superior performance of CBN-PSO.

Table II shows numerical values for the mean refined scores

after the long run experiments on fRs, fS and fRn in 10 and

30 dimensions. In addition, the method’s ranks per benchmark

are noted. Both ranks and scores are averaged for a condensed

view. We attribute the success of CBN-PSO mainly to two

facts: Firstly, PSO is known to work well even with relatively

small populations, which will, on the other hand, be a major

handicap for DE in the CBN-DE variant. Secondly, PSO has

a relatively good exploratory behavior, which is also steered

towards new areas whenever a sub-swarm gets reinitialized.

The CBN-GA algorithm is competitive in some cases,

however it often shows inferior accuracy. The INMS approach,

as a sequential variant of local search, does not scale well on

more complex functions. NichePSO, too, is not competitive

considering the scalability criteria, as expected earlier. And

although ANPSO is competitive in some cases, it does not per-

form well in general without boosting the swarm size. Because

ANPSO controls its niche radius based on swarm diversity,

which is disturbed by the niche reinitialization employed, a

more specialized mechanism might have to be considered. On

the downside, this would add more complexity compared to

relatively simple approaches such as CBN-PSO.

While CMA-ES is highly efficient on functions with large-

scale correlations, such as FRs, it seems less apt on multi-

funnel functions, a finding also reported in [30], for example.

The clustering-based CMA-ES did not perform well, possibly

due to the clustering step interfering with the self-adaptive

CMA method. Still, good results on some benchmarks indicate

sequential CMA-ES to be a notable candidate as a scalable

MMO method, and a worthy task lies in a comparison of

the behavior of the dynamic niching ES framework [14]

considering the multimodal scalability criteria. The question

on how to pre-select the number of expected niches could

be answered similarly to the IPOP-idea, by increasing it

automatically during a run. This would lead to ever-more

explorative phases in the niching ES run. In analogy, any semi-
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Fig. 3. Online scores on 10-D for FRs, FS and FRn.
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Fig. 4. Online scores on 30-D for FRs, FS and FRn.
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Fig. 5. Final refined scores for FRs, FS and FRn for 10-D and 30-D with increasing accuracy; ǫ ∈ {0.01, 0.001, 0.0001}.
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Fig. 6. Averaged final fitness histograms on FS in 30D of CBN-PSO (left), ANPSO (middle) and CBN-DE (right).

sequential niching variant might benefit from the concept of

shifting weights between exploration and exploitation during a

run, so as to arrive at a diverse set of potential local optima. For

example, the convergence-restart criterion in semi-sequential

methods is critical. With a dynamic restart criterion depending

on the quality of local optima already identified earlier during

a run, a CBN-EA could invest more exploitative effort later

in the run to increase the probability of finding better optima.

For CBN-PSO, this can be connected to the minimal sub-

population size and the clustering parameter σ. Varying σ may

also serve as an approach to solve the niche-radius problem.

IV. SUMMARY

Niching methods are dedicated to the problem of finding

multiple high quality solutions of a complex objective function

within a single optimization run. Many niching methods have

been developed and tested on functions of very low dimension-

ality. The scalability to higher dimensions has seldom been
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Fig. 7. Averaged final fitness histograms on FRn in 30D of CBN-PSO (left), CBN-GA (middle) and 2-IPOP-CMA-ES (right).
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Fig. 8. Long-run online scores on 10-D for FRs, FS and FRn.
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Fig. 9. Long-run online scores on 30-D for FRs, FS and FRn.
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Fig. 10. Long-run final refined scores for FRs, FS and FRn for 10-D and 30-D with increasing accuracy; ǫ ∈ {0.01, 0.001, 0.0001}.

discussed, and if so, mostly under the assumptions that the

number of local optima is known and the population size of

the optimization method can be boosted accordingly.

This work introduced new criteria for the scalability of

niching methods, consisting mainly of the idea that a scalable

optimizer should – without external preconfiguration – deliver

an increasing amount of local optima with an increasing num-

ber of target function evaluations. This may also be interpreted

as an anytime property for metaheuristic, multimodal opti-

mization. For a comparison of niching methods considering

these properties, a scoring method based on a fitness threshold

and clustered refining was employed. Using this score, several

sequential and semi-sequential niching methods were analyzed

with respect to the scalability criteria, including iterative

Nelder-Mead-Simplex, IPOP-CMA-ES, NichePSO and its ex-

tension ANPSO, as well as four clustering-based approaches,

namely CBN-ES, CBN-GA, CBN-DE, and CBN-PSO.

On the considered benchmarks, CBN-PSO showed consis-



TABLE II

OVERVIEW OF THE LONG-RUN REFINED SCORES AND ALGORITHM RANKING.

NPSO ANPSO 1.2-IPOP 2-IPOP CBN-PSO CBN-DE CBN-ES CBN-GA INMS

Sc R Sc R Sc R Sc R Sc R Sc R Sc R Sc R Sc R

FRs, 10-D .01 8 .45 7 10.40 2 4.14 5 5.45 3 0 9 1.44 6 4.83 4 16.46 1

FRs, 30-D 0 6 0 6 12.88 1 5.13 2 1.80 4 0 6 0 6 4.36 3 .01 5

FS , 10-D .09 8 1.73 2 1.15 4 1.30 3 9.90 1 .36 5 .06 9 .23 6 .11 7

FS , 30-D 0 6 8.60 1 .25 4 .26 3 5.80 2 .20 5 0 6 0 6 0 6

FRn, 10-D .35 6 2.79 2 .54 5 .67 4 12.40 1 .04 9 .12 8 1.24 3 .32 7

FRn, 30-D .03 8 .04 7 .24 5 .37 2 1.44 1 .01 9 .15 6 .32 3 .27 4

Mean rank 7.00 4.17 3.50 3.17 2.00 7.16 6.83 4.17 5.00

Mean score 0.08 2.27 4.24 1.98 6.13 0.10 0.30 1.83 2.86

tent scalability with good accuracy. CBN-GA, ANPSO and

IPOP-CMA-ES showed scalable behavior in some cases, with

IPOP-CMA-ES being generally the most accurate method. We

assume that the success of CBN-PSO mainly comes from

PSO’s potential to work well even with rather small population

sizes, which are prone to come up in parallel niching due to

the distribution of search capacity among several niches.

For future work, the evaluation of other current niching

methods is considered. Moreover, an extension of CBN-PSO

to dynamically change its exploration-exploitation behavior

would aim at increasing the probability of finding not just

more, but also better local optima with increasing runtime.
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