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Abstract
Global image features are well-suited for the visual self-localization of mobile robots. They are fast to compute, to
compare and do not require much storage space. Especially when using small mobile robots with limited processing
capabilities and low-resolution cameras, global features can be preferred to local features. In this paper, we compare
the accuracy and computation times of different global image features when localizing small mobile robots. We test the
methods under realistic conditions, taking illumination changes and translations into account. By employing a particle
filter and reducing the image resolution, we speed up the localization process considerably.

1 Introduction

Self-localization is a key ability of mobile robots. It is of-
ten done visually, since cameras are inexpensive and flexi-
ble sensors. In this paper, we compare different efficient
global image features for the visual self-localization of
small mobile robots. We here use a c’t-Bot developed by
the German computer magazine c’t [1]. This size class of
robots has been shown to be useful in many cases: The
well-known Khepera robot has been widely used in a vari-
ety of tasks, e.g., [2, 12]. The e-puck robot serves for ed-
ucational purposes [7]; and also in swarm robotics, small
mobile robots nowadays play a major role [8, 13].
Yet, the use of small mobile robots is challenging due to
their limited processing power and restricted sensing capa-
bilities. If cameras are used, only low image resolutions
can be processed. Thus, the focus of this paper lies in the
investigation of how small mobile robots can be enabled to
localize themselves visually indoors in an efficient manner.
Vision-based positioning is often performed using image
retrieval techniques, which store images in a database. For
localization, a new image is taken and compared to all or
a subset of previously recorded images. The computed
similarity then leads to an estimate of the robot’s position.
Mostly, this task is performed by extracting features from
the images. Such features often promise to be robust to
changes in the environment and the viewpoint of the ob-
server.
The existing approaches to visual self-localization often
differ in the type of features they extract from images.
Local features, like the Scale-Invariant Feature Transform
(SIFT) [11] or the Speeded-up Robust Features (SURF) [4],
describe patches around interest points in an image, while

global features describe the whole image as one single
fixed-length vector. This implies the advantages and draw-
backs of the two approaches: As the number of local fea-
tures in an image can be large, it may take a long time to
find, match and store these features. Many kinds of local
features are invariant to scale and rotation, which global
features can hardly provide. By contrast, global image fea-
tures are fast to compute and have also shown good local-
ization accuracy [6, 18, 21]. Because of the limited pro-
cessing capabilities of small mobile robots, we decided to
use global image features in this work.
Our paper is organized as follows: In the next section, we
present related research. In Sect. 3, we introduce the em-
ployed robot. Then, we explain the compared image fea-
tures in Sect. 4. The localization process, which is com-
posed of image matching and particle filtering, is described
in Sect. 5. In Sect. 6, we present the setup of our experi-
ments and the corresponding results. Section 7 concludes
the paper and recapitulates our contribution.

2 Related Work
In the following, we present approaches to visual self-
localization relying on image-retrieval techniques. Ulrich
and Nourbakhsh [17] established place recognition using
color histograms. They applied a nearest-neighbor algo-
rithm to all color bands and combined it with a simple vot-
ing scheme based on a topological map of the environment.
Zhou et al. [21] extended this approach to multidimen-
sional histograms, taking features such as edges and tex-
turedness into account. Wolf et al. [20] performed visual
localization by combining an image retrieval system with
a particle filter. They used local image features which are



invariant to image rotations and limited scale [14]. These
features are also the basis for the global Weighted Grid In-
tegral Invariants, which are employed in this paper.
In former work, we investigated the self-localization with
tiny images on two different platforms: a small wheeled
robot and a flying quadrocopter [9]. This approach to
reduce the image resolution was inspired by Torralba et
al. [16], who built on psychophysical results showing a re-
markable tolerance of the human visual system to degra-
dation in image resolution. They stored millions of images
in a size of 32×32 pixels and performed object and scene
recognition on this dataset. Self-localization with small
images was earlier performed by Argamon-Engelson [3].
He used images with a resolution of 64×48 pixels and
applied measurement functions based on edges, gradients,
and texturedness. As described in his paper, he simplified
the localization process by recognizing topological places
only.
The computation time of our localization process can
roughly be divided into the extraction of the image features
and the feature comparison. To speed up the feature extrac-
tion, we reduce the image size and investigate to what ex-
tent this reduction influences the localization accuracy. To
speed up the feature matching, different approaches have
been proposed. In [5], Beis and Lowe presented the best-
bin-first algorithm as a variant of the kd-tree for efficient
search in high-dimensional spaces. Jegou et al. improved
large scale image searches based on weak geometric con-
sistency constraints in the Hamming space [10]. In this
work, we decided to use a particle filter to limit the number
of feature comparisons as in [18], since this approach in-
cludes a number of other advantages: Particle filters com-
pute a probabilistic estimate of the robot’s position by in-
cluding specific models for perception and motion. In this
way, arbitrary probability distributions can be handled that
make the estimation robust, since they allow recovering
from possible localization failures. Furthermore, particle
filters are easy to implement and to adapt for small mobile
robots.

3 Hardware Components
We use one of 13 c’t-Bots (see Fig. 1) of our lab to per-
form the experiments. These robots have a diameter of
12 cm, are 19 cm high and were developed by the German
computer magazine c’t [1]. They are equipped with an AT-
mega644 microprocessor with 64 KB flash program mem-
ory, a clock frequency of 16 MHz and 4 KB SRAM. The
most capable sensor is a POB-Eye color camera that in-
cludes an image processing module. This module permits
to perform all image processing directly on it and to send
the extracted image features to the robot via I2C. The cam-
era provides a resolution of 120×88 pixels and possesses
an ARM7TDMI processor at 60 MHz with 64 KB RAM.
Furthermore, the robot has a WLAN interface to send data
to a PC. For localization, we additionally use a Devantech

CMPS03 compass with a specified accuracy of 3-4∘ (sic),
and a low-cost SD card to store the image features. Our
algorithm runs on the robot itself. The WLAN interface is
only used for debugging and monitoring purposes. Since
the c’t-Bot is part of a swarm of 13 identical such robots,
having all robots sent their images via WLAN to an exter-
nal server is not desirable.

Figure 1: c’t-Bot and example image taken by the on-
board camera.

4 Efficient Global Image Features

The selection of image features results from the compu-
tational limitations of small mobile robots. Color and
greyscale histograms are simple and fast methods for com-
puting the feature vectors. More complex methods are
Weighted Gradient Orientation Histograms (WGOH) and
Weighted Grid Integral Invariants (WGII). They yielded
good results in earlier research, especially under illumina-
tion changes [18, 19]. Additionally, we employ the pixel-
wise comparison of images.
All selected features, except the pixelwise image compar-
ison, are based on a grid which divides the image into a
number of subimages. This makes the features more dis-
tinctive through adding local information. Changes within
one subimage only influence a small part of the feature
vector. We tested the methods at different grid sizes and
experimentally found out that a 4×4 grid is a good trade-
off between efficiency and retrieval accuracy, even when
reducing the image resolution, as mentioned in Sect. 4.4.

4.1 Color/Greyscale Grid Histograms

For the color and greyscale histograms, we use eight bins
for each subimage. Through concatenation we get a 1×128
feature vector of the 16 subimages. In case of the color
histogram we use the hue value of the HSV color space.
This choice of space promises to be robust to illumination
changes.



4.2 Weighted Gradient Orientation
Histograms

Weighted Gradient Orientation Histograms (WGOH) were
proposed by Bradley et al. [6] and were originally intended
for outdoor environments because of their robustness to
illumination changes. They were inspired by SIFT fea-
tures [11].
Bradley et al. first split the image into a 4×4 grid of subim-
ages. On each subimage, they calculate an 8-bin histogram
of gradient orientations, weighted by the magnitude of the
gradient at each point and by the distance to the center of
the subimage. In our implementation of WGOH, we use a
2D Gaussian for weighting, where the mean corresponds to
the center of the subimage and the standard deviations cor-
respond to half the width and the height of the subimage,
respectively [19]. This choice is similar to SIFT, where a
Gaussian with half the width of the descriptor window is
used for weighting. The 16 histograms are concatenated to
a 1×128 feature vector, which is normalized subsequently.
To reduce the dependency on particular regions or some
strong gradients, the elements of the feature vector are lim-
ited to 0.2, and the feature vector is normalized again.

4.3 Weighted Grid Integral Invariants
The key idea of integral invariants is to design features
which are invariant to Euclidean motion, i.e., rotation and
translation [14, 20]. Therefore, all possible rotations and
translations are applied to the image. In our case, two rela-
tive kernel functions are applied to each pixel. These func-
tions compute the difference between the intensities of two
pixels p1 and p2 lying on different radii and phases around
the center pixel. The described procedure is repeated sev-
eral times, where p1 and p2 are rotated around the center
up to a full rotation while the phase shift is preserved. By
averaging over the resulting differences we get one value
for each pixel and kernel. We experimentally found out
that the following radii for p1 and p2 lead to the best re-
sults: radii 2 and 3 for kernel one and radii 5 and 10 for
kernel two, each with a phase shift of 90 ∘. One rotation is
performed in ten 36 ∘ steps.
Weiss et al. [18] extended the basic algorithm by dividing
the image into a set of subimages to add local information.
Each pixel is then weighted by a Gaussian as with WGOH
to make the vector more robust to translations. The result
is a 2× 8 histogram for each subimage and a 1× 256 his-
togram for the whole image.

4.4 Downscaled Images and Pixelwise Image
Comparison

The resolution of an image has a large effect on the compu-
tation time of its feature vector. We downscale the images,
preserving their aspect ratio, to a tiny resolution of 15×11
pixels by interpolating the pixel intensities. This allows
also for comparing the image data in a pixelwise fashion

rather than extracting first the features. Therefore, the im-
age data are treated as a vector. To keep the amount of data
small, we only compare the normalized greyscale image
and discard color information.

5 Localization Process

5.1 Overview

Our localization process consists of two steps, the map-
ping phase and the retrieval phase. In the mapping phase,
training images are recorded and feature vectors are ex-
tracted. These vectors are saved together with their current
global position coordinates, which are manually measured.
In the retrieval phase, test images are recorded and features
are again extracted. These features are subsequently com-
pared to all other previously saved feature vectors as it is
described in Sect. 5.2. By using a particle filter, the test
images are only compared to a subset of previously saved
features. This procedure is presented in Sect. 5.3.

5.2 Image Comparison

We calculate the similarity sim(Q,D) of two images Q
and D from their corresponding normalized feature his-
tograms q and d through the normalized histogram inter-
section

∩
norm

(q, d):

sim(Q,D) =
∩
norm

(q, d) =

m−1∑
k=0

min(qk, dk). (1)

Here, m is the number of histogram bins and qk denotes
bin k of histogram q. The advantage of normalized his-
togram intersection is its short computation time as com-
pared to other similarity measures such as cosine similarity
or dissimilarity measures such as Jeffrey divergence.
For the pixelwise image comparison, the normalized his-
togram intersection did not yield satisfactory results. In
this case, we use the L1-norm with the normalized images
Q∗ and D∗:

L1(Q
∗, D∗) =

r−1∑
k=0

∣Q∗
k −D∗

k∣, (2)

where r is the number of pixels and Q∗
k denotes pixel k of

image Q∗. The similarity sim(Q,D) of two images can
now be computed as:

sim(Q,D) = 1−min(1, L1(Q
∗, D∗)). (3)

Note that in general 0 ≤ L1(Q
∗, D∗) ≤ 2 (although

L1(Q
∗, D∗) > 1 rarely happens for images). The image

with highest similarity is then the best match.



5.3 Combination with a Particle Filter

If the number of training images is large, the matching step
can be time-consuming. Especially with small robots, it
may take a long time to compare the test image against all
training images. To limit the number of image compar-
isons and speed up this process, we use a particle filter for
self-localization [15].
Particle filters approximate the belief Bel(xt) of the robot
about its position xt by a set of m particles. Each particle
consists of a position (x, y) together with a nonnegative
weight, its importance factor. The estimated position of
the robot is given by the weighted mean of all particles.
The inital belief is represented by particles which are ran-
domly distributed over the robot’s global coordinate sys-
tem. All importance factors are set to 1

m . The particles are
updated for each test image iteratively, according to the
following three steps:

1. Resampling: After the first iteration, m random
particles x

(i)
t−1 are drawn from Bel(xt−1) accord-

ing to the importance factors w(i)
t−1 at time t − 1.

This step is only performed if the estimate ñeff =

1/(
∑n
i=1(w

(i)
t )2) of the effective sample size falls

below the threshold m/2.

2. Prediction: The sample x
(i)
t−1 is updated to sample

x
(i)
t according to an action ut−1. In our case, we up-

date the particles according to odometry and com-
pass measurements. The odometry values measure
the translation � between two image recordings. The
direction � of the straight line motion is determined
by the compass.

For each particle, Gaussian noise is added to � with
zero mean and standard deviation �trans = � ⋅ 0.1.
Additionally, Gaussian noise is added to � with zero
mean and �rot = 21∘. We assigned a relatively high
value to �rot due to the imprecise rotations of our
robot, the limited compass accuracy and the mag-
netic deflections that appear indoors. Finally, each
particle is moved according to � and �.

3. Correction: The sample x
(i)
t is weighted by the ob-

servation model p(yt∣x(i)
t ), i.e., the likelihood of

the measurement yt, given the sample x
(i)
t . In our

method, we first search the nearest training image
D(x

(i)
t ) to each particle. The current test image Q

and the training image D(x
(i)
t ) are then matched by

means of one of the abovementioned methods.

The new weight is then computed as w(i)
t = w

(i)
t−1 ⋅

sim(Q,D(x
(i)
t )). This method is referred to as stan-

dard weighting in the following.

An alternative way of updating the particle’s weight
is w(i)

t = w
(i)
t−1 ⋅ sim(Q,D(x

(i)
t ))�, with � > 1.

This method is referred to as alternative weight-
ing in the following. By potentiating the original
similarity, the differences between the weights be-
come more distinctive [18]. This makes the particle
cloud converge faster and focus on the particles with
the largest weights. In our implementation, we set
� = 20.

After the correction step, we normalize the importance fac-
tors and calculate the estimated position.

6 Experimental Results

6.1 Setup
We conducted several experiments in an office environ-
ment. Since the robot did not have the ability to determine
its ground truth position through GPS or other accurate
sensors like laser scanners, we manually grabbed images
every 0.5 m in an area of appr. 75 m2. Our dataset consists
of 190 training images, that were grabbed facing west (de-
termined by the compass) with a manually oriented robot.
Due to magnetic deflections of, for instance, furniture, the
direction indicated by the compass was not always true but
repeatable, thus it can be seen as a function of the position.

6.2 Comparison of Image Features
To compare the accuracy of the various image features,
we grabbed 200 test images at randomly chosen positions
under different conditions. 100 images, in the following
called test data A, were grabbed at stable illumination.
Another 100 images, in the following referred to as test
data B, were grabbed at different lighting conditions with
and without ceiling lights, at shining sun or dull daylight.
In both datasets, the robot rotated autonomously towards
west by means of the compass. Because of the weak odom-
etry, the robot’s rotation is affected by errors which appear
approximately as horizontal translations in the images.
Figure 2 shows the localization accuracy of the examined
methods at different image resolutions. The localization
error is the distance between the actual recording position
of the test image and the corresponding best match, that
is, the image with the highest similarity. To compare the
accuracy of the image features, we calculated the median
localization error, since it is less affected by outliers than
the mean localization error. We use the latter in combina-
tion with the particle filter in the next section.
The smallest median localization errors we obtained are
0.42 m on test data A and 0.50 m on test data B using
WGOH. Generally, the results of WGOH and WGII are
mostly similar and outperform the common color and grey
grid histograms, especially under illumination changes.
Having a look at the pixelwise image comparison, we find
that in our scenario this straightforward approach lead to
surprisingly high accuracies in all cases. Even under the
illumination changes of test data B WGOH and WGII,
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Figure 2: Median localization errors of the image features on test data A and B at different image resolutions are shown
in (a),(b), respectively. The pixelwise image comparison is referred to as image comparison. The time which was required
to extract the features of the images is shown in (c). The extraction time of WGII at 120×88 pixels is 7.03 s and had to be
cut off for better visibility. (d) shows test images at different illumination conditions.

which are expected to be more robust, could hardly out-
perform the pixelwise image comparison. Only at resolu-
tions of 44×60 and 88×120 pixels, they achieved a smaller
localization error (0.22 m at most). At smaller image res-
olutions, the pixelwise image comparison provided equal
or better results. A localization was not possible with the
color grid histograms. The reason for this may be the poor
color quality of the camera and the lack of meaningful
color information in the environment.
Another unexpected result was that the reduction of the im-
age resolution has only little influence on the localization
error. By reducing the resolution to up to 22×30 pixels, the
localization error is only increasing slowly: 0.14 m in case
of WGII and 0.27 m in case of WGOH (round 2). In case
of the pixelwise image comparison, no change of localiza-
tion accuracy was observed at all. Further open research
questions are the influence of changing environments and
therewith occlusions in the images on the localization ac-
curacy.
When working with small mobile robots, computation
times are an important issue besides the accuracy of the
localization process. Figure 2 (c) depicts the required time
to extract the features. The reduction of the image resolu-
tion speeds up the process especially in case of WGOH and

WGII. This is because both methods perform more com-
plex computations on each pixel than simple histograms.
The values that are denoted for the pixelwise image com-
parison are composed of the time to grab a frame, to con-
vert it to greyscale and to resize it. These computations
are performed in all methods, except the greyscale conver-
sion in case of the color histograms, and are included in
the measured computation times of Fig. 2 (c).
Furthermore, the use of a compass attested to be an ade-
quate way for localizing the small robots despite their rel-
atively large rotation error.

6.3 Localization with a Particle Filter
To test the particle filter presented in Sect. 5.3, we steered
the robot arbitrarily on two rounds through the environ-
ment as depicted in Fig. 3 (f). To grab an image, the
robot was rotated facing west by means of the compass
and was afterwards rotated back to continue its path. Be-
tween the image recordings, the robot was steered straight
ahead. Round 1 consists of n = 97 images and was con-
ducted at stable illumination conditions. Round 2 consists
of n = 62 images and was taken at varying illumination.
Then, we ran the particle filter on these rounds, processing
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Figure 3: Rounds 1 (a),(b) and 2 (c),(d) and their mean localization errors using a particle filter with 40 particles. In
(a),(c) we applied the standard weighting to the particle filter, in (b),(d) we applied the alternative weighting (potentiating
the similarity with 20) referring to Sect. 5.3. The pixelwise image comparison is referred to as Img. Comp..

each round four times. To get the mean localization er-
ror over time, we conducted this experiment n times; each
cycle started at a different test image.
Since our aim in using the particle filter was to keep the
matching time short, we compared two different methods
for this experiment: the pixelwise image comparison on
the 15×11 images and WGOH on the full-size images. We
chose the pixelwise image comparison with small-size im-
ages, because it was the fastest method according to the
feature extraction time while providing good accuracy.
To compare the results, we used WGOH since it revealed
the smallest localization error and a feature extraction time
that was smaller than WGII. We had to limit the number of
particles to m = 40 because of the restricted memory of
the c’t-Bots.
Figure 3 shows the mean localization errors for the two
rounds over the cycles with the different particle weighting
methods (referring to Sect. 5.3). The alternative weight-
ing (potentiating the similarity with 20) achieved a higher
localization accuracy than the standard weighting. By us-
ing the pixelwise image comparison at 15×11 pixels, we
achieved a reasonable localization accuracy, even if it was
always slightly worse than WGOH at full resolution.
The mean localization error ± standard deviation over the
388 (248) images in case of WGOH is 0.52 m±0.27 m

(0.60 m±0.23 m) and with the pixelwise image compari-
son 0.74 m±0.27 m (0.67 m±0.24 m), in rounds 1 and 2
respectively, using the alternative weighting. The overall
localization error by using the particle filter is in case of
WGOH 0.32 m (0.06 m) smaller and in case of the pix-
elwise image comparison 0.56 m (0.54 m) smaller than
matching all images and using only the best match, in
rounds 1 and 2 respectively. Figure 4 reveals the influ-
ence of the number of particles on the mean localization
error and depicts the trajectories of the two rounds.

WGOH 120×88 Img. Comp. 15×11
50 Images 3.76 s 2.89 s
100 Images 4.96 s 4.14 s
190 Images 7.13 s 6.56 s

PF 20 3.87 s 2.63 s
PF 40 4.81 s 3.84 s

Table 1: Computation times of the localization process by
matching different numbers of images and by using a par-
ticle filter with 190 training images and 20 (PF 20), 40 (PF
40) particles.

The computation times of the matching process with and
without the particle filter are shown in Tab. 1. While the
matching step of one test image to all 190 training images
needs 6.56 s in case of the pixelwise image comparison at
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Figure 4: (a) reveals the influence of the number of particles on the mean localization error in round 1, using WGOH at
a resolution of 88×120 pixels with the alternative weighting method. (b) depicts the true trajectories of the two rounds.

15×11 pixels, it can be speeded up to 3.84 s by using the
particle filter. This is still quite slow, but we also have to
keep in mind the limitations of small mobile robots. Fur-
ther speedup can be achieved by reducing the number of
particles.

7 Conclusion

In this paper, we compared different global image fea-
tures for localizing small mobile robots with limited com-
putation and sensing capabilities. We investigated the al-
gorithms with respect to localization accuracy and com-
putation time at different image resolutions. Best results
could be achieved employing WGOH, but even the sim-
plest method, the pixelwise image comparison, lead to rea-
sonable results at shortest computation times. This method
became feasible by reducing the image resolution.
In our medium-sized indoor test bed, the image resolu-
tion had only little influence on localization accuracy. Tiny
greyscale images of 15×11 pixels contained enough infor-
mation to provide an accurate self-localization and helped
saving computation time.
Additionally, a particle filter attested to be a good exten-
sion in our scenario. It enhanced localization accuracy and
reduced computation time. By varying the number of par-
ticles, the approach could easily be adapted to robots that
are further miniaturized.
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