
Path Following with an Optimal Forward Velocity

for a Mobile Robot

Kiattisin Kanjanawanishkul, Marius Hofmeister, and Andreas Zell

Department of Computer Architecture, University of Tübingen, Sand 1, 72076
Tübingen, Germany

(e-mail: {kiattisin.kanjanawanishkul, marius.hofmeister,
andreas.zell}@uni-tuebingen.de)

Abstract: In this paper, we present a novel solution for a path following problem in partially-known
static environments. Given linearized error dynamic equations, model predictive control (MPC) is
employed to produce a sequence of angular velocities. Since the forward velocity of the robot has to be
adapted to environmental constraints and robot dynamics while the robot is following a path, we propose
an optimal solution to generate the velocity profile. Furthermore, we integrate an obstacle-avoidance
behavior using local sensor information with a path-following behavior based on global knowledge. To
achieve this, we introduce new waypoints in order to move the robot away from obstacles while the robot
still keeps following the desired path. Extensive simulations and experiments with a physical unicycle
mobile robot have been conducted to illustrate the effectiveness of our path following control framework.

Keywords: Robot control, autonomous mobile robots, obstacle avoidance, path following, model
predictive control.

1. INTRODUCTION

Fundamental problems of motion control of autonomous mo-
bile robots can be roughly classified into three groups (Morin
and Samson, 2008), namely point stabilization, trajectory track-
ing, and path following. In this paper, we focus on the path
following problem. Pioneering work in this area can be found
in (Micaelli and Samson, 1993). The underlying assumption
of this problem is that the robot’s forward velocity tracks a
desired velocity profile, while the controller determines the
robot’s moving direction to drive it to the path without any con-
sideration in temporal specifications. Typically this controller
eliminates the aggressiveness of the tracking controller by forc-
ing convergence to the path in a smooth way (Al-Hiddabi and
McClamroch, 2002).

The path following problem has been well studied and many
solutions have been proposed and applied in a wide range of
applications. Samson (Samson, 1995) described a path follow-
ing problem for a car pulling several trailers. Altafini (Altafini,
2002) addressed a path following controller for an n trailer
vehicle. Path following controllers for aircraft and marine ve-
hicles were reported in (Al-Hiddabi and McClamroch, 2002)
and (Encarnação and Pascoal, 2000), respectively.

In this work, we wish to achieve three objectives: static obstacle
avoidance, path following, and forward velocity selection. An
illustrative example for these objectives is car driving. A driver
controls a car to follow a road using a steering maneuver.
The driver may decelerate the car if he or she sees obstacles
blocking the road or is making a sharp turning, or is driving
on an icy road. Besides all these situations, safety concerns and
human comfort also influence the desired forward velocity.

We separate our problem into three parts as shown in Fig. 1.
The MPC block produces a sequence of angular velocities.

Its detail is given in Section 2. The velocity selection block,
described in Section 3, adapts the forward velocity of the robot
to environmental constraints and robot dynamics. The reference
path generator block, explained in detail in Section 4, provides
the desired reference for path following control and replans
the path if the robot moves close to obstacles. Simulation
and experimental results are shown in Section 5. Finally, our
conclusions and future work are given in Section 6.

2. THE PATH FOLLOWING PROBLEM

In this section, the model predictive control (MPC) framework
is used to generate a sequence of angular velocities. MPC
has become an increasingly popular control technique used in
industry (Kwon and Han, 2005; Mayne et al., 2000). It is based
on a finite-horizon continuous time minimization of predicted
tracking errors with constraints on the control inputs and the
state variables. At each sampling time, the model predictive
controller generates an optimal control sequence by solving
an optimization problem. The first element of this sequence is
applied to the system. The problem is solved again at the next
sampling time using the updated process measurements and a
shifted horizon.

Most model predictive controllers use a linear model of mobile
robot kinematics to predict future system outputs. In (Lages

and Alves, 2006; Klančar and Škrjanc, 2007), model-predictive
control based on a linear, time-varying description of the system
was used for trajectory tracking control. Generalized predictive
control was used to solve path following control in (Ollero and
Amidi, 1991). A nonlinear predictive controller for a trajectory
tracking problem was proposed in (Gu and Hu, 2006). An
MPC-based approach for active steering control was imple-
mented in (Falcone et al., 2007). The differences of this paper
from other work are that (i) this paper deals with a linearized
model for path following control, (ii) we take into account

Fig. 1. The block diagram describes our solution for the path following control problem.

obstacle avoidance, and (iii) the forward velocity selection is
introduced.

In general, a linear MPC framework is computationally effec-
tive and can be easily used in fast real time implementations.
To apply this framework, we first formulate our problem. The
kinematics of a mobile robot, depicted in Fig. 2 together with a
spatial path Γ to be followed, can be described by

ẋ
ẏ

θ̇

 =

[

v cos θ
v sin θ
ω

]

(1)

where x(t) = [x, y, θ]T denotes the state vector in the world
frame. v and ω are the linear and angular velocities, respec-
tively. We wish to find control law ω such that the robot con-
verges to the path while v tracks velocity profiles. The path
error with respect to the path frame is given by

[

xe

ye
θe

]

=

[

cos θd sin θd 0
− sin θd cos θd 0

0 0 1

][

x− xd

y − yd
θ − θd

]

(2)

where the state vector of the reference point, [xd, yd, θd]
T , is

computed by using a numerical projection from the robot’s
current state onto the path.

Then, the linearized version of the error dynamics xe =
[ye, θe]

T (the lateral and angular deviations, respectively) re-
sults in

ẏe = vdθe

θ̇e = ω − ωd

(3)

where vd and ωd are the desired linear and angular velocities,
respectively. We can transform the optimization problem of
MPC to a quadratic programming (QP) problem by using this
linearized model. Since it becomes a convex problem, solving
the QP problem leads to global optimal solutions. Equation (3)
can be given in the state-space form ẋe = Acxe + Bcue. To
design the MPC controller for path following, the linearized
system (3) will be written in a discrete state space system as

xe(k + 1) = Axe(k) +Bue(k) (4)

where A ∈ R
n × R

n, n is the number of state variables and
B ∈ R

n×R
m, m is the number of input variables. The discrete

matrices A and B can be obtained as follows:

A = I +AcTs

B = BcTs
(5)

Fig. 2. A graphical representation of a mobile robot and a path.
A small circle ◦ denotes a distance sensor.

where Ts is a sampling time.

Given a state space model (4) of a system, it is possible to
use MPC to control it. To achieve this, we have to minimize a
quadratic objective function by solving a quadratic program in
order to obtain control-variable values. The quadratic objective
function with a prediction horizon N is given by

J(k) =

N
∑

j=1

{xT
e (k + j|k)Qxe(k + j|k)

+ uT
e (k + j − 1|k)Rue(k + j − 1|k)}

(6)

where Q ∈ R
n × R

n and R ∈ R
m × R

m are the weighting
matrices, with Q ≥ 0 and R ≥ 0. The double subscript notation
(k+j|k) denotes the prediction made at time k of a value at time
k+j. Furthermore, the matrix Q is adapted to lateral deviations
as follows

Q(1, 1) =
c1

1 + c2|ye|
(7)

where c1 and c2 are positive. When the robot is far away from
the path, the weighting gain for lateral deviations will become
smaller, resulting in more importance in angular errors. When
the robot moves closer to the path, Q(1, 1) becomes larger,
leading to more importance in lateral errors, as seen in Fig. 3.

After some algebraic manipulations, we can rewrite the objec-
tive function (6) in a standard quadratic form:

J̄(k) =
1

2
UT (k)H(k)U(k) + fT (k)U(k) (8)

where U(k) = [uT
e (k|k),uT

e (k+1|k), . . . ,uT
e (k+N−1|k)]T .

The matrix H(k) ∈ R
m·N × R

m·N is a Hessian matrix and it
is always positive definite. It describes the quadratic part of the
objective function and the vector f(k) ∈ R

m·N describes the
linear part. The unconstrained control law can be obtained by
minimizing the objective function with respect to U as follows

∂J̄(k)

∂U(k)
= H(k)U(k) + f(k) (9)

and the control vector becomes

U(k) = H−1(−f(k)) . (10)

This control vector contains a sequence of angular velocities.

3. FORWARD VELOCITY SELECTION

Besides steering the robot to the desired path, assigning a ve-
locity profile to the robot can be an additional task, in which
the forward velocity is used as an extra degree of freedom. For
example, in (Bak et al., 2001), the forward velocity decreases as
the robot rotates around a sharp corner by scaling the forward
velocity. In (Lapierre et al., 2007), the forward velocity is con-
trolled when an obstacle is detected. In this paper, the velocity
profile is shaped to comply with environmental constraints and
robot dynamics along some lookahead distance corresponding
to the N -step prediction horizon of the MPC framework. We
consider bounds on the forward velocity as follows:

−0.4 −0.2 0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0 0.2 0.4 0.6 0.8 1 1.2
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

(b)

0 0.2 0.4 0.6 0.8 1 1.2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

(c)

Fig. 3. The path following results by using the MPC framework, where (a) Q = diag(100, 1), (b) Q = diag(10, 1), and (c) the
adapted matrix Q with c1 = 1000 and c2 = 100.

• Environmental constraints: These constraints can be self-
imposed due to desired behaviors based on high-level
tasks, safety concerns, obstacle avoiding, sharp turning,
slippery floors, or human comfort. In this work, the de-
sired forward velocity, which satisfies high-level tasks,
safety, and human comfort, is given by an operator. To
take into account obstacle avoidance, we determine the
velocity as follows

v =

vmin if dobs < dmin
vd − vmin

dmax − dmin

(dobs − dmin) + vmin

if dmin ≤ dobs ≤ dmax and |θobs| < θobs,max

vd otherwise
(11)

where dobs is the distance between the robot and the
obstacle, and θobs is the angle of the obstacle with respect
to the robot frame. dmin is the minimum safe distance.
dmax and θobs,max are the distance and the angle, which
the obstacle can influence robot motions, respectively.
Equation (11) means that when the robot moves close
to the obstacle, the robot will slow down and then the
orientation command will push it away from the obstacle.
Moreover, to prevent slippage, we impose the following
constraints

aT,min ≤ aT =
dv

dt
≤ aT,max

aL,min ≤ aL = κv2 ≤ aL,max

(12)

where aT and aL are the longitudinal and lateral accel-
erations, respectively. κ is the curvature and the dynamic
limitations are the maximum (minimum) longitudinal ac-
celeration aT,max (aT,min) and the maximum (minimum)
lateral acceleration aL,max (aL,min). For the constant linear
velocity, the smaller the curvature is, the smaller the lateral
acceleration is induced. This constraint forces the robot to
slow down in sharp turns. Note that the acceleration and
deceleration constraints may not be the same and aT is
also the physical constraint of the robot.

• Robot dynamics: The physical constraints are due to the
actual limitations such as currents and voltages in the
motors, resulting in maximum wheel velocities and ac-
celerations. The limitations are derived from the wheel
velocities: v = (vr + vl)/2, ω = (vr − vl)/(2b), where
vr and vl are the linear velocities of the right and left
wheels, respectively, and 2b is the distance between the
left wheel and the right wheel. The maximum rotation and
translation can be decoupled to obtain vmax and ωmax. The
authors in (Bak et al., 2001; Indiveri et al., 2007) proposed
an approach to maximize feasible linear velocity, resulting
in less conservative bounds. However, we focus on the
different objective, i.e., we wish the robot to converge
to the reference path by reducing the lateral and angular

deviations to zero while traveling at a desired forward ve-
locity. This desired forward velocity must satisfy both the
environmental constraints and the robot dynamics. Thus,
the maximum translation can be completely decoupled
from the maximum rotation.

Given the environmental constraints and the robot dynamics,
we utilize one of the advantages from the MPC framework, i.e.,
the future information of the reference path can be incorporated
into the MPC framework. The N -step prediction horizon can be
seen as a lookahead distance in the path following problem. In
general, the slower a desired forward velocity is, the shorter
a lookahead distance can be determined. After the velocity
selection module receives sensor information and a sequence
of control inputs from the MPC framework, the following
procedure is employed to generate the velocity profile with
respect to the constraints mentioned above.

Procedure 1: Velocity selection

(1) Calculate the actual orientation commands ω along the N -
step prediction horizon by using (3)

(2) Perform the velocity scaling in order to preserve the
curvature radius

if |ω(k + j|k)| > ωmax then

vp(k + j|k) = v(k + j|k)ωmax/|ω(k + j|k)|

ωp(k + j|k) = sign(ω(k + j|k))ωmax

else

vp(k + j|k) = v(k + j|k)

ωp(k + j|k) = ω(k + j|k)

end if

where j ∈ [0, N − 1]
(3) With the profile given in Step (2), the objective function

to be minimized is

min
a,ε

(N
∑

j=1

γ1‖vp(k + j|k)− vm(k + j|k)‖2 + γ2‖ε‖

)

s.t. 0 ≤ ε
|κv2m(k + 1|k)| − aL,max ≤ ε

a(k + j|k) =
vm(k + j + 1|k)− vm(k + j|k)

Ts
|a(k + j|k)| ≤ aT,max

where γ1 and γ2 are positive weights
(4) vp(k + 1|k) and ωp(k + 1|k) are sent to control robot

motions

The hard constraint of the lateral acceleration may lead to the
infeasible solution. To soften the constraint, the slack variable
ε is introduced. However, we impose this softening constraint
only on the first element of the velocity profile in order to
decrease computational time. As seen in Fig. 4, the optimal

(a)

0 5 10 15
−0.1

0

0.1

0.2

0.3

time (s)

m
/s

0 5 10 15

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

ra
d
/s

(b) (c)

0 5 10 15
−0.1

0

0.1

0.2

0.3

time (s)

m
/s

0 5 10 15

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

ra
d
/s

(d)

Fig. 4. The path following results with aT,max = 0.2 m/s2, aL,max = 0.2 m/s2, ωmax = 0.5 rad/s, v0 = 0.2 m/s, and N = 50
steps (the lookahead distance = 0.5 m and Ts = 0.05 s): (a) using the optimal velocity strategy, (b) the velocity profiles
corresponding to (a), (c) using the constant forward velocity, and (d) the velocity profiles corresponding to (c).

velocity selection module can reduce the lateral deviations be-
cause the robot moves at a lower velocity (see Fig. 4(b)) while it
is making a sharp turning. Obviously, the lateral deviations in-
crease, if the constant velocity is chosen, as shown in Fig. 4(c).

4. THE PATH REPLANNING STRATEGY

Typically, the desired reference is generated by a planning algo-
rithm based on a map of the environment and this reference is
assumed to be collision-free. During the movement in partially
structured environments, an obstacle can suddenly appear on
the robot’s path, which had not been present in the planning
phase. To avoid the obstacle, a sensory system should detect the
obstacle, measure its distance and orientation for replanning the
robot’s path. In (Lapierre et al., 2007), an obstacle avoidance
algorithm based on the use of a continuous Deformable Virtual
Zone (DVZ) is combined with a path following controller. In
(Maček et al., 2009), global path planning, path following, and
a collision avoidance scheme are integrated in a unified frame-
work, namely the Traversability-anchored Dynamic Path Fol-
lowing (TADPF). In this paper, we combine a path-following
behavior using global knowledge with an obstacle-avoidance
behavior based on local sensor information. Furthermore, we
keep tracking the curvilinear abscissa s(t) ∈ R, which is used
to parameterize the reference path. This path’s parameter s can
be used to detect whether the robot is stuck in a loop and to lead
the robot back to the path when the obstacle-avoidance behavior
becomes inactive.

The obstacle-avoidance behavior becomes active as the robot
moves closer to obstacles than dmax and one of these obstacles
blocks the robot. The path replanning module then locally
generates new waypoints to deform the reference path in order
to bring the robot away from the obstacle. These new waypoints
are tangential to the edges of the obstacle with an offset dr.
Procedure 2 below describes our solution in detail.

Procedure 2: Path replanning strategy

(1) Receive sensor information, estimate the edges of all de-
tected obstacles, and evaluate the number of the detected
obstacles. If the distance between two detected points is
larger than the distance ds, a new obstacle is introduced.
If it is smaller, it means the robot cannot get through.

(2) Create convex hulls around the obstacle edges with an
offset distance dr. If two polygons overlap, they are com-
bined into one convex polygon (see Fig. 5(b) as an exam-
ple).

(3) Evaluate the relevant obstacles, which influence robot
motions and then make a decision based on the generated

polygons around the detected obstacles and the reference
path to make a right turn or a left turn in order to avoid the
obstacles.

(4) From Step (3), keep following on that side along the edges
of the convex polygon toward the first visible vertex (see
Fig. 5(a) and Fig. 5(b) as examples) until that obstacle no
longer influences robot motions.

Note that the distances ds and dr are dependent on the robot
size and the sensor accuracy.

Fig. 6 illustrates the results from applying Procedure 2. “×”
represents a detected point by a range sensor and dashed lines
indicate the convex polygons around the detected points. How-
ever, the robot may make a wrong decision in some situations
because of insufficient sensor information. For example, the
robot may move far away from the reference path because
it keeps following the boundary of the obstacle. In this case,
global knowledge may be needed to solve this problem.

5. SIMULATION AND EXPERIMENTAL RESULTS

Our path following control framework has been evaluated in
both computer simulations written in MATLAB and a physical
unicycle mobile robot. To show the effectiveness of our ap-
proach, the simulations were first conducted using an arbitrarily
constructed environment including obstacles. We assume that

(a) (b)

Fig. 5. Two cases are shown as examples. A robot detects
an obstacle and convex hulls are then created around
the edges of the detected obstacle. The robot will follow
the first visible vertex along the edges of the convex
polygon. (a) A convex polygon is constructed around an
obstacle, and (b) a convex polygon covers two detected
obstacles because their convex polygons overlap. Dashed
lines represent the replanned path and dotted lines are part
of the convex polygons around the detected obstacles.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

t=0

x (m)

y
 (

m
)

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

t=0

x (m)

y
 (

m
)

(b)

Fig. 7. The simulation results by using our path following control framework: (a) The robot starting at [4.5,−1.7, 2π/3]T is
required to follow a reference path represented by thick lines, and (b) the robot starting at [0, 0.75,−π/4]T is required to
follow an eight-shaped curve. The polygons are obstacles while the small circles are snapshots of robot location every 2.5 s.
The robot trajectories are shown as dashed curves.

prior knowledge of the workspace was available but the location
of all the static polygonal obstacles in the workspace were un-
known to the robot. The robot was modeled as a small circle (12
cm in diameter) and 12 virtual sensors mimic infra-red sensors
placed in the form of a circle along the circumference of the
robot. They were spaced by 30◦ and they had a distance range
of 30 cm. In our implementation, we also applied hysteresis to
the state transition in order to avoid a chattering situation when
switching between two behaviors occurs.

The user-defined parameters in the simulation were set as
follows

aT,max = 0.5 m/s2, aL,max = 0.5 m/s2, ωmax = 2 rad/s,
v0 = 0.2 m/s, N = 50 steps, Ts = 0.05 s, dr = 0.2 m,
dmax = 0.2 m, dmin = 0.1 m, θobs,max = 75◦, ds = 0.5 m,

Q(1, 1) =
1000

1 + 100|ye|
, Q(2, 2) = 1, R = 0.01.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x (m)

y
 (

m
)

(a)

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x (m)

y
 (

m
)

(b)

Fig. 6. (a) The obstacle-avoidance behavior becomes active
because sensor information indicates that there are three
obstacles detected and the one in front of the robot can
influence the robot motion. Then, the path replanning
module needs to decide that the robot should turn left or
turn right. (b) The planner selects right turning. The robot
keeps following that obstacle on the right until no relevant
obstacle is detected. When no obstacle is detected, the
path-following behavior becomes active; the robot keeps
following the reference path.

The simulation results obtained in complex scenarios with
different obstacle configurations are presented in Fig. 7. As seen
in the results, it can be concluded that the robot successfully
follows the reference path and avoids all obstacles. Notice
that in Fig. 7(a), the robot at coordinate (−4, 0) decided to
turn left and then it was going to be caught in a trap. The
trap was discovered by monitoring the path’s parameter. If
the path’s parameter before the obstacle-avoidance behavior
becomes active is greater than the path’s parameter after the
obstacle-avoidance behavior becomes inactive, this implies that
the robot is very likely about to run in a closed loop. To avoid
trap-situations, the robot followed the obstacle at its right at this
time (see Fig. 7(a)).

To show the usefulness of our approach, the unicycle-type mo-
bile robot, shown in Fig. 8(a), was used in real-world experi-
ments. The robot controller is an ATMEGA644 microprocessor
with 64 KB flash program memory, 16 MHz clock frequency
and 4 KB SRAM. The robot orientation was measured by a
Devantech CMPS03 compass. The localization was given by
a camera looking down upon the robot’s workplace and a PC
was used to compute control inputs and then sent these inputs
to the robot via WLAN. An eight-shaped curve similar to the
path in the second simulation was employed in this experi-
ment. Gaussian noise with a fixed variance was added to all
distance measurements, given by virtual distance sensors. Due
to high computational time in optimization solving, only 10
steps were used for the prediction horizon and the cycle time
was set to 0.1 s. Our software was developed in C++ with the
additional use of some geometrical calculations from CGAL
(Computational Geometry Algorithms Library - online avail-
able: http://www.cgal.org). The free package DONLP2 (Spel-
lucci, 1998) was used to solve the optimization problem.

The experimental results are plotted in Fig. 8(b). As depicted
in Fig. 8(c), the robot was able to travel at the desired speed
v0 = 0.2 m/s in case of no obstacle or no sharp turning curve.
The velocity selection module optimized the forward and rota-
tional velocities, if environmental and/or robot constraints were
violated, while the path replanning module locally handled ob-
stacle avoidance.

(a) (b)

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

translation

time (s)

(m
/s

)

0 5 10 15 20 25 30 35 40 45
−2

−1

0

1

2

rotation

time (s)

(r
a

d
/s

)

(c)

Fig. 8. The experimental results by using our path following control framework: (a) the mobile robot (12 cm in diameter) used
in our experiments, (b) the robot trajectories (dashed curves), the reference path (solid curves), and the obstacles (hatched
rectangles), and (c) the robot’s velocities.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach to satisfy our three
objectives, i.e., path following, obstacle avoidance, and forward
velocity selection. It integrates an obstacle-avoidance behavior
using sensor information with a path-following behavior based
on global knowledge and then applies this solution to partially-
known static environments. Using sensor information, the path
replanning module generates new waypoints to bring the robot
away from the obstacles. The MPC law is used to produce a
sequence of angular velocities and the forward velocity selec-
tion module provides a forward velocity by taking into account
robot dynamics and environmental constraints. Simulation and
experimental results clearly show that our strategy is able to
control a robot to follow a reference path in complex environ-
ments.

Currently, we are integrating more realistic sensor models to
our framework including global path planning for complex
environments. One problem in our strategy is that an abrupt
change of path orientation and curvature causes the angular
commands to be non-smooth. This situation can be improved
by connecting smoothly the current reference position with the
next waypoint, which is the topic of future work. Furthermore,
we will extend our approach to accomplish the path following
task in a dynamic environment with moving obstacles.

REFERENCES

Al-Hiddabi, S.A. and McClamroch, N.H. (2002). Tracking
and maneuver regulation control for nonlinear non-minimum
phase systems: application to flight control. IEEE Trans. on
Control Systems Technology, 10(6), 780–792.

Altafini, C. (2002). Following a path of varying curvature as
an output regulation problem. IEEE Trans. on Automatic
Control, 47(9), 1551–1556.

Bak, M., Poulsen, N.K., and Ravn, O. (2001). Path following
mobile robot in the presence of velocity constraints. Techni-
cal report, Informatics and Mathematical Modeling, Techni-
cal University of Denmark.

Encarnação, P. and Pascoal, A. (2000). 3d path following for
autonomous underwater vehicle. In Proc. of the IEEE Conf.
on Decision and Control, 2977–2982. Sydney, Australia.

Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., and Hrovat, D.
(2007). Predictive active steering control for autonomous ve-

hicle systems. IEEE Trans. on Control Systems Technology,
15(3), 566–580.

Gu, D. and Hu, H. (2006). Receding horizon tracking control
of wheeled mobile robots. IEEE Trans. on Control Systems
Technology, 14(4), 743–749.

Indiveri, G., Nüchter, A., and Lingemann, K. (2007). High
speed differential drive mobile robot path following control
with bounded wheel speed commands. In Proc. of IEEE Int.
Conf. on Robotics and Automation, 2202–2207. Roma, Italy.

Klančar, G. and Škrjanc, I. (2007). Tracking-error model-based
predictive control for mobile robots in real time. Robotics
and Autonomous Systems, 55(6), 460–469.

Kwon, W.H. and Han, S. (2005). Receding horizon control:
Model predictive control for state models. Springer-Verlag,
London.

Lages, W.F. and Alves, J.A.V. (2006). Real-time control of a
mobile robot using linearized model predictive control. In
Proc. of IFAC Symposium on Mechatronic Systems, 968–973.
Heidelberg, Germany.

Lapierre, L., Zapata, R., and Lepinay, P. (2007). Combined
path-following and obstacle avoidance control of a wheeled
robot. Int. Journal of Robotics Research, 26(4), 361–376.

Maček, K., Philippsen, R., and Siegwart, R. (2009). Path
following for autonomous vehicle navigation based on kin-
odynamic control. Journal of Computing and Information
Technology, 17(1), 17–26.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M.
(2000). Constrained model predictive control: stability and
optimality. Automatica, 36, 789–814.

Micaelli, A. and Samson, C. (1993). Trajectory-tracking for
unicycle-type and two-steering-wheels mobile robots. Tech-
nical Report 2097, INRIA Sophia-Antipolis.

Morin, P. and Samson, C. (2008). Springer Handbook of
Robotics, chapter 34. Motion control of wheeled mobile
robot, 799–826. Springer Berlin Heidelberg.

Ollero, A. and Amidi, O. (1991). Predictive path tracking of
mobile robots: Application to the CMU Navlab. In Proc. of
Int. Conf. on Advanced Robotics, 1081–1086. Pisa, Italy.

Samson, C. (1995). Control of chained systems: Application
to path-following and time-varying point stabilization of
mobile robots. IEEE Trans. on Automatic Control, 40(1),
64–77.

Spellucci, P. (1998). An SQP method for general nonlinear pro-
grams using only equality constrained subproblems. Mathe-
matical Programming, 82(3), 413–448.

