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Abstract— Mapping is regarded as one of the most funda-
mental tasks for mobile robots. In this work, we present an
approach that enables multiple resource-limited mobile robots
to cooperatively build an image-based map of the environment
and to afterwards localize in it. To achieve this, we deploy
a hierarchical team of mobile robots. A parent robot possesses
state-of-the-art sensors, computation power and acts as a leader.
It teleoperates small child robots within its line-of-sight. In
contrast to other approaches and due to the cooperation among
the robots, we can relax the requirement that every robot must
be able to self-localize to take part in multi-robot mapping.
Additionally, our algorithm ensures the mapping of the entire
area in an efficient way, i.e., it fulfills the requirements of
area coverage. To test our approach, extensive experiments
have been performed both in simulation and real-world. In
the latter case, a team of four heterogeneous mobile robots was
deployed. Besides the successful cooperation in the robot team,
localization results are presented to validate the applicability
of the proposed mapping procedure.

I. INTRODUCTION

Small mobile robots in the size of approx. 10 cm have

shown to be useful in many cases. In swarm robotics,

simulation of biological principles as well as in education,

minirobots have been successfully deployed. Yet, this type

of robots often provides limited computation power and

restricted sensing capabilities. This is where a heterogeneous

team of mobile robots becomes attractive: the individual

strengths of the robots can lead to a better overall per-

formance of robot teams. In this paper, we propose an

algorithm that enables a number of small, resource-limited

child robots to visually map an environment entirely in an

efficient way. To this end, the child robots are assisted by

a parent robot that possesses state-of-the-art computation

power and accurate sensors. While the parent robot is able to

robustly localize and navigate in an environment, the child

robots can only act with limitations. Another advantage of

this configuration is that small mobile robots are inexpensive

and thus can be employed in larger numbers. To enable

cooperation within the team, the robots have communication

abilities and the parent robot is able to teleoperate the child

robots within its line-of-sight. Similar team configurations

were presented in [1].

For many robotic tasks, a model of the environment is a

necessary prerequisite. Since cameras have become flexible,

low-priced and lightweight devices, image-based mapping

is an attractive alternative to mapping with range sensors,
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Fig. 1. (a) Heterogeneous team of mobile robots. (b) Mapping example
within line-of-sight of the parent robot where the direction of the image
grabbing is set east (right). In the upper image, vertices to be covered are
depicted. Vertices that lie within line-of-sight of the parent robot but whose
view is obstructed by the parent robot can not be covered in this step. The
lower image depicts the navigation graphs of three child robots moving
stepwise towards east. Rectangles depict the starting positions of the child
robots and arrows their roadmap graphs. The position of the parent robot,
i.e., the parent vertex, is depicted by a circle.

especially for robots with limited resources. In this work,

we focus on the path planning and cooperation between

the robots in the team while using a common mapping and

localization method. In former research, we established and

investigated visual self-localization for the type of resource-

limited mobile robots [2]. In the mapping phase of our

previous work, images were grabbed manually at grid points

in indoor environments. From these training images, global

image features were extracted and stored together with the

position information in a database of features, similar to

the work in [3]. In the retrieval phase, test images were

grabbed by the robot and features were extracted again. By

comparison to the features in the database and employing

a particle filter, current poses could be estimated. Since

self-localization generally requires that a place has been

visited and mapped before, our aim is to exhaustively map

the environment by multiple child robots in an efficient

way. Since nowadays mapping with laser scanners is usually

uncritical, we assume that a range map of the environment

was created before, e.g., by the parent robot. Obviously, this

range-sensor map can not serve the child robots to self-

localize by means of their cameras. Our algorithm defines

a grid of points from the map and ensures that at all of



these points an image is grabbed by a child robot and is

sent to the parent robot. After mapping, the entire database

of image features can be re-sent to the child robots that are

subsequently able to perform self-localization with respect to

this database. Accordingly, they can act fully autonomously,

e.g., as mobile sensor nodes, and do not require the assistance

of the parent robot anymore.

II. RELATED WORK

First steps into the direction of heterogeneous robot teams

were achieved by Parker [4]. She demonstrated the ability

of robots to compensate for heterogeneity in task alloca-

tion and execution. Grabowski et al. presented centimeter-

scaled robots, called millibots, which were composed of

various modular components and collaborated to explore and

map unknown environments [5]. The design of autonomous

behaviors for tightly-coupled cooperation in heterogeneous

robot teams was presented in [6] as part of larger experiments

by Howard et al. [1]. Their objective was to deploy a large

number of robots as sensor nodes by fewer, more capable,

robots and to map the interior of buildings to perform

detection and tracking of intruders. Their team of robots

is similar to ours. Yet, they focused on exploration and

deployment instead of coverage and mapping.

Our approach is an instance of mapping with known poses.

However, large parts of reasearch focus on simultaneous

localization and mapping (SLAM). A common way to solve

this task is to jointly estimate the path of the robot and

landmark positions. An example using a camera is the work

by Karlsson et al. [7]. Alternative visual SLAM approaches

determine only the path of the robot, based on the appearance

of scenes [8].

In multi-robot SLAM, the goal is to build a global joint

map by multiple robots and to localize the robots simul-

taneously in the map. In [9], Simmons et al. implemented

an approach by using maximum likelihood to construct

consistent maps with sensor data and odometry. Thrun and

Liu solved the problem of unknown relative starting locations

by using sparse information filters [10]. Howard et al. used

a manifold map structure to provide self-consistency of the

map [11] and later on extended a Rao-Blackwellized particle

filter to tackle multi-robot SLAM problems [12]. However,

all of the proposed algorithms are difficult to realize with

resource-limited robots. Building maps, exchanging them

between the robots and finding correspondences between

the maps become difficult tasks if very limited computation

power is available. To simultaneously cover the room in an

efficient manner further complicates the problem, particularly

due to imprecise movements of the robots. Reasons are

noisy odometry and wheel slip that appears more often

with lightweight robots. In this work, we overcome these

mentioned challenges by supporting the minirobots during

the mapping phase in a heterogeneous team of robots.

Since our work is also related to multi-robot area cov-

erage, further classification is necessary. In [13], Choset

distinguished between off-line algorithms, in which a map

of the work area is given a priori, and on-line algorithms,

in which no map is given. Furthermore, he distinguished be-

tween approximate cellular decomposition and exact cellular

decomposition. In the first case, free space is represented

as a fine grid, where all cells are of the same size and

shape, but the union of the cells only approximates the

target region. In the second case, the union of all cells fills

the entire target region. In this work, we focus on off-line,

approximate cellular decomposition coverage as the basis

for the mapping. While our previous work [14] built on the

coverage algorithms of Hazon and Kaminka [15] to compute

the robots’ paths as efficiently as possible, we now also have

to consider that we grab images in a specified direction

only to limit possible viewpoints and thus faciliate self-

localization. This comes with the constraint that no robot

must stand in the field of view of another robot at the instance

an image is grabbed.

III. HETEROGENEOUS TEAM OF ROBOTS

Our heterogeneous team of mobile robots is presented in

Fig. 1. The parent robot is a custom-built service robot with

a height of approx. 1.5 m. It is equipped with a laser scanner

and an omnidirectional vision system with 780×580 pixels.

The child robots are covered with orange hats which are

detected and tracked by the blob tracking facilities of the

OpenCV (http://opencv.willowgarage.com/) framework that

was extended by a color segmentation module. The tracking

frequency is 23 Hz and the measured accuracy detecting the

child robot’s real position within a line-of-sight radius of

2.0 m is 0.04±0.02 m.

The child robots, named c’t-Bots (http://www.ct-bot.de),

have a diameter of 12 cm. They possess only the restricted

computation power of an ATmega644 microcontroller with

64 KB flash program memory, a clock frequency of 16 MHz

and 4 KB SRAM. The most capable sensor is a POB-Eye

color camera that includes an image processing module. This

module permits to perform image processing directly on it

and to send the extracted image features to the robot via

I2C. The camera provides a resolution of 120×88 pixels

and possesses an ARM7TDMI processor at 60 MHz with

64 KB RAM. To store the image features on the robot, an SD

card reader is connected. We additionally use a Devantech

CMPS03 compass with a specified accuracy of 3-4 °. The

compass allows building a sparse environmental map where

all images are taken looking in the same direction. To

send and receive data, the robot is equipped with a WLAN

interface. In the mapping step of our work, the child robots

are teleoperated by the parent robot that sends out steering

commands and receives the current headings of the child

robots. When images are grabbed, they are sent directly to

the parent robot which stores them.

IV. PATH PLANNING

A. Overview of the Mapping Approach

As mentioned before, the child robots lack reliable sensors

and processing power to efficiently map the environment

autonomously. By contrast, the parent robot can localize

and navigate in a robust way. To take advantage of this



heterogeneity, we propose a teleoperation of the child robots

within line-of-sight of the parent robot. Figure 1(b) depicts

the basic approach that is structured as follows.

1) From the 2D occupancy grid map which was built

using the laser scanner, vertices are determined that

have to be visited by at least one child robot. At each

of the vertices, an image has to be grabbed to establish

self-localization capabilities.

2) A parent roadmap graph for the parent robot is built

with parent vertices and parent edges such that all

vertices lie in line-of-sight of at least one parent

vertex. Since the images are grabbed in one single

direction, we assign only vertices with unobstructed

view, i.e., their view is not obstructed by the parent

robot standing on the parent vertex. The parent edges

determine the order of parent vertices that will be

visited.

3) For each parent vertex, child roadmap graphs for all

child robots are determined. All vertices that lie in line-

of-sight of a parent vertex will thus be visited, and

images will be grabbed by the child robots at these

points.

4) When the mapping around a parent vertex is finished,

the robots move to the next one, until all parent vertices

have been visited. This implies that all vertices from

step (1) have been covered.

We assume all robots to be able to move in the four

directions up, down, left, right and we assume every vertex

to be accessible in this way. In the parent and child roadmap

graphs, each vertex is connected by n edges with 1 ≤ n ≤ 4.

Furthermore, the graphs are entirely connected. We now

formalize the procedure.

Let there be one parent robot and N child robots. From

the given map, a grid of vertices V =
{

v(i)∣i = 1, ..., P
}

to be visited by the child robots is extracted. The distance

d between the vertices is constant. Only vertices are chosen

that lie in the center of a free cell of size d× d.

A parent roadmap graph Gp = (Vp, Ep) for the par-

ent robot is defined, which consists of Q parent vertices

Vp =
{

v
(t)
p ∣t = 1, ..., Q

}

and Q − 1 directed edges Ep =
{

(v
(t)
p , v

(t+1)
p )∣t = 1, ..., Q− 1

}

with Vp ⊆ V .

For a vertex v we further define the line-of-sight of the

parent robot:

LOS(v) := {w∣w ∈ V is in line-of-sight from v} (1)

and

LOSfree(v) := {w∣w ∈ LOS(v) and w has unobstructed

view towards the direction of mapping.}
(2)

Note that v /∈ LOS(v). For every parent vertex, a subset

C(t) consisting of child vertices vc can be computed, where

C(t) =

{

vc ∈ V ∣vc ∈ LOSfree(v
(t)
p ), vc /∈

t−1
∪

k=1

C(k)

}

.

(3)

Note that the child robots do not visit Vp for reasons of

simplicity, since our localization method is robust enough to

handle these few missing reference positions.

Assuming that ∀ v ∈ V ∃ vp : v ∈ LOSfree(vp), this

guarantees that
˙∪

t

C(t) = V ∖ Vp. (4)

For every v
(t)
p ∈ Vp and for each child robot j =

1, ..., N the child roadmap graphs G
(j)
c = (V

(j)
c , E

(j)
c ) are

constructed such that C(t) is covered.

After all vertices in C(t) have been visited, the parent

robot moves to v
(t+1)
p , where the new child roadmap graphs

are computed as above.

Recalling our assumption that all v ∈ V lie in line-of-sight

of at least one vp ∈ Vp and that all v ∈ C(t) for all subsets

C(t) are visited by the child roadmap graphs, it follows that

V ∖ Vp will be covered entirely.

B. Construction of a Parent Roadmap Graph

To construct Gp, we first need to find the parent vertices

Vp to fulfill Eq. 4. Therefore, we pursue a greedy algorithm

on the set V that chooses vertices for Vp according to a

weighting method. For every vertex, a weight is computed

that takes into account the number of vertices in line-of-

sight and its corresponding number of neighbor vertices (the

eight vertices lying in a square around it). Vertices with few

neighbors receive larger weights to ensure the visit of vertices

at borders of the area. The objective is to minimize Q =
∣Vp∣. The algorithm subsequently covers the neighborhood

of already chosen parent vertices without creating gaps.

For all v ∈ V , the following steps are performed:

1) The set LOSfree(v) is computed.

2) The number of neighbor vertices n(v) is computed,

where 1 ≤ n(v) ≤ 8.

3) A specific weight ws(v) = (9 − n(v))2 is assigned

to v.

In a second iteration, a total score

w(v) =
∑

l∈LOSfree(v)

ws(l) (5)

is computed for all v ∈ V .

The set Vp is then selected as follows. First, let Vp := ∅
and M := ∅. While M ∪ Vp ∕= V , the following steps are

performed:

1) We first define a set of potential next vertices

N(Vp) := {v ∈ V ∖ Vp∣ ∀vp ∈ Vp : ∣∣v − vp∣∣ ≤ f} ,
(6)



where f is approx. twice the maximal line-of-sight ra-

dius of the parent robot to cover the area continuously.

The vertex vp ∈ N(Vp) is then picked ensuring

∀ v′ ∈ N(Vp) : w(vp) ≥ w(v′). (7)

2) Vp := Vp ∪ {vp}
3) M := M ∪ LOSfree(v).
4) For all v ∈ V , w(v) is updated.

After the set Vp is completed, the determination of the

order in which the vertices are visited can be interpreted

as a traveling salesman problem. A standard heuristic such

as a nearest neighbour algorithm can be used to compute

the paths Ep. Since the Euclidean distance is not feasible

in obstructed environments, we use the distance transform

algorithm [16] to compute the distance between every pair

of v
(t)
p , which provides the shortest path, ordering Vp into

the sequence v
(1)
p ...v

(Q)
p .

C. Construction of Child Roadmap Graphs

After Gp has been created, for all v
(t)
p ∈ Vp and for

each child robot j = 1, ..., N , the roadmap graphs G
(t,j)
c =

(V
(t,j)
c , E

(t,j)
c ) are constructed such that all child vertices

C(t) will be visited.

The construction of child roadmap graphs works as fol-

lows. Starting points for the construction of child roadmap

graphs are chosen reverse to the direction of mapping while it

is ensured that no starting point obstructs the view of another

one. For each starting point, a goal point is chosen that lies in

the direction of mapping, maximizing the distance between

the goal points. A path is planned towards this goal point as

in [16] (see Fig. 1 (b)).

1 2 3

Fig. 2. Extending the original path (1) using the hilling procedure (2) and
one branch out (3). Arrows depict the roadmap graph of the child robot.
The starting point of the child robot is displayed as a square.

Then, the graphs are extended stepwise in parallel until

all child vertices are covered (see Fig. 2):

∙ If there are two not yet visited neighboring vertices,

hilling is performed, i.e., the path is winded.

∙ If hilling cannot further be done, the path will be

branched out.

This procedure is similar to the approach in [15]. After all

vertices have been visited, the subset H is determined to

switch from stage t to t+ 1:

H := LOS(v(t)p ) ∩ LOS(v(t+1)
p ) (8)

If ∣H ∣ ≥ N , the child robots will move to a vertex from H

and the parent robot afterwards moves to v
(t+1)
p . Otherwise,

a following behavior will be performed as explained in the

next section.

D. Following Behavior

The following behavior is performed during transition

between the mapping phases t and t+1 if the line-of-sight of

subsequent parent vertices do not overlap (or only slightly).

In this case, the child robots move towards the parent robot

to their individual following positions. Then, the parent robot

moves to v
(t+1)
p , where the mapping procedure is restarted.

To have the child robots follow the parent robot, different

methods were tested. A distributed chaining behavior where

each child robot follows its predecessor is not always stable

since the robots might cut corners, overtake their leading

robot or collide with objects. As in [6], we therefore decided

to implement a behavior-based approach similar to [17]. As

during the mapping, the parent robot tracks the position of

the child robots and teleoperates them. By incorporating the

difference between their current positions and their target

positions, velocity vectors are computed.

V. EXPERIMENTAL RESULTS

A. Simulation Results

We conducted various simulation experiments to test our

approach. 2D grid maps of size 30m×30m were generated

randomly, where the distance d between the grid vertices

was set 0.5 m. Then, we added obstacles of different sizes.

To perform the greedy algorithm to construct Gp, we set f =
2 ⋅ rlos, where rlos is the line-of-sight radius of the parent

robot (see Eq. 7). To determine which vertices in line-of-

sight of a parent vertex have unobstructed view towards the

arbitrarily chosen direction of mapping (east), the opening

angle of the child robots’ cameras was set 80 °.

Figure 3 depicts the time that was required to map dif-

ferently obstructed environments with a varying number of

child robots. The results are averaged over ten cycles on

randomly generated, different maps. rlos was set 2.0 m. The

ratio of the obstructed area was set 0 %, 20 % and 40 %

of the map. One timestep comprises one step of a robot in

the direction up, down, left or right. We further distinguish

between mapping timesteps that are conducted by the child

robots while grabbing images of the environment, and the

remaining coordination timesteps that are required to move

the robots from one parent vertex to the next, including the

following behaviors of the robots. Table I shows the number

of extracted parent vertices in the differently obstructed

environments. Since at 0 % obstruction the map is always

equal, there is no standard deviation given for Q, but the

number of executed following behaviors differs due to the

different number of child robots.

TABLE I

NUMBER OF PARENT VERTICES Q AND NUMBER OF EXECUTED

FOLLOWING BEHAVIORS AT DIFFERENTLY OBSTRUCTED MAPS

0% obstr. 20% obstr. 40% obstr.

∣Vp∣ = Q 167.0 180.5± 4.1 174.9 ± 5.4
follow. 32.5± 12.3 54.8± 18.1 82.9 ± 24.9

Figure 3 shows that in obstructed environments the number

of mapping timesteps decreases due to the fact that fewer
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Fig. 3. Distribution of total timesteps for different environments. The lower
parts of the boxes represent mapping timesteps, the upper part coordination
timesteps.

vertices have to be visited. By deploying more child robots,

the mapping timesteps generally decrease due to the parallel

task execution. By contrast, the coordination timesteps grow

since more robots require more time to be coordinated, e.g.,

to form the following behavior.

An important parameter for the mapping procedure is the

line-of-sight radius of the parent robot rlos. Depending on the

robot configuration, different line-of-sight radii are plausible.

In Tab. II, the number of extracted parent vertices are shown

at varying line-of-sight radii. Larger radii result in fewer

parent vertices. In Fig. 4, the timesteps required at varying

line-of-sight radii are depicted. By enlarging rlos, the overall

mapping time reduces. A demanding factor corresponding

to the overall mapping time is the coordinated following

procedure. If child robots can be steered directly from the

line-of-sight area of one parent vertex to the line-of-sight area

of the next, this saves time. As the size of rlos increases, the

possible overlap between the radii increases correspondingly.

Consequently, the number of following behaviors decreases

(see Tab. II) and thus the number of coordination timesteps

does.

TABLE II

NUMBER OF PARENT VERTICES Q = ∣Vp∣ AND NUMBER OF EXECUTED

FOLLOWING BEHAVIORS AT DIFFERENT LINE-OF-SIGHT RADII

rlos
1.0m 2.0m 4.0m 8.0m

∣Vp∣ 538.5 ± 5.4 180.5 ± 4.1 71.2± 4.1 42.0± 2.6

follow. 403.1± 154.7 54.8 ± 18.1 18.4± 5.6 9.5± 3.6

Noticeably, a larger line-of-sight radius also implies a

drawback: The fragmentation of vertices gets larger, that is,

during the mapping steps, vertices have to be crossed that

have been visited in an earlier phase. Therefore, the mapping

timesteps grow again at rlos = 8.0m. If rlos is very small

(1.0 m), multiple child robots can only slightly improve the

overall mapping time because of high coordination costs.

The minimal overall time is achieved by using 2 (3, 5, 7)

child robots at a line-of-sight radius of 1.0 m (2.0 m, 4.0 m,
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Fig. 4. Distribution of total timesteps at a map with 20% obstruction and
different line-of-sight radii. The lower part of the boxes represent mapping
timesteps, the upper part coordination timesteps.

8.0 m). A reasonable ratio between rlos and the number of

child robots has to be chosen to achieve the minimal mapping

time.

B. Real-World Results

We conducted real-world experiments in an indoor en-

vironment of approx. 32 m2 (see Fig. 5). Our localization

methods, however, were evaluated within a larger area of

approx. 75 m2 [2]. 84 grid vertices were extracted from the

occupancy map. The parent robot was able to robustly detect

the child robots within rlos = 2.0m. The opening angle of

the child robots’ cameras was measured as 80 °, the grid

resolution d was set 0.5 m and the direction of mapping was

arbitrarily chosen east.

The number of determined parent vertices was seven. To-

tally, we conducted the experiment ten times. The averaged

time to map the entire environment was 38.4±1.7 min. Since

the child robots’ movements are fairly imprecise, we steered

the robots at 0.15 m per second only. The reason for this was

the avoidance of child robot collisions and tracking losses

which accordingly did not occur. To approach a vertex, we

first let the child robots rotate towards the direction of the

goal point by means of their compass and then perform a

straight-line motion. Since compass data and robot rotations

suffer from inaccuries, we first let the child robots approach

the goal point up to a distance of 0.2 m. If necessary, the

child robots were then rotated again and steered straight-line

directly towards the goal. This ensured reaching the vertices

safely without missing the target points.

Figure 5 (b) depicts the actual paths of the child robots

measured by the tracking system of the parent robot. The

movements of the child robots are fairly imprecise: the

position error between the child robot’s desired mapping

positions and their measured positions was 0.10±0.05 m. The

orientation error between the robot’s measured orientations

and the desired mapping orientations was 8.79±9.99 °.

To test the localization accuracy of the images, we per-

formed cross-validation on the ten mapping datasets that

consisted of 77 images each. For every image, the distance to
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Fig. 5. (a) Grid of vertices and extracted parent vertices in the indoor test
environment. Arrows depict parent edges. (b) Paths of the three child robots
as determined by the tracking system of the parent robot. Rectangles depict
the positions of the parent vertices.

the best match of the nine test datasets was determined. The

best match was determined by extracting global features from

the images and comparing these features. We decided to use

Weighted Gradient Orientation Histograms (WGOH) at full

image resolutions, since this feature led to best localization

results in [2], and a minimalistic pixelwise image comparison

on a reduced image size. For a detailed introduction to the

methods, we refer the reader to [2]. In case of WGOH at

images of 120×88 resolution, the mean localization error

was 0.43±0.59 m. In case of the pixelwise image comparison

on 15×11 images, the corresponding error was 0.54±0.79 m.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel cooperative mapping

strategy for a heterogeneous team of mobile robots that

includes entire coverage. Several contributions have been

made in this work. First, we developed a robotic team

structure in which a larger number of inexpensive and

resource-limited robots are assisted by a more capable robot

to conduct a task that they could hardly perform alone. In

contrast to other approaches, our setup does not require

all robots to possess accurate localization and navigation

abilities. Second, we developed a technique which uniformly

partitions the work area in order to save mapping time.

Third, a path planning method for the small robots was

described that ensures that no robot obstructs the view of

another one at the instant of grabbing an image. Despite

the restrictions of small robots, namely the relatively large

rotation error and the fairly imprecise movements, we can

conclude that a localization based on the recorded image

database is possible at a reasonable accuracy. Our approach

is able to handle the challenging restrictions of small mobile

robots. However, this comes at the cost of a centralization

in form of the parent robot: the system can hardly recover

from a parent robot failure. For this reason, future work

will include the deployment of multiple robot teams and a

dynamic association of the child robots to the parent robots,

possibly to further improve overall mapping time. Moreover,

the discretization of the world could be performed differently

from a regular grid: vertices may be chosen depending on

environmental properties that reveal the self-similarity of the

surrounding. Finally, uncertainty concerning the child robots’

positions could be taken into account in the future.
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