
High Resolution Visual Terrain Classification for Outdoor Robots

Yasir Niaz Khan Philippe Komma
Andreas Zell

Chair of Cognitive Systems, Computer Science Department, University of Tübingen
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Abstract

In this paper we investigate SURF features for visual ter-
rain classification for outdoor mobile robots. The image is
divided into a grid and SURF features are calculated on the
intersections of this grid. These features are then used to
train a classifier that can differentiate between different ter-
rain classes. Images of five different terrain types are taken
using a single camera mounted on a mobile outdoor robot.
We further introduce another descriptor, which is a modified
form of the dense Daisy descriptor. Random forests are used
for classification on each descriptor. Classification results
of SURF and Daisy descriptors are compared with the re-
sults from traditional texture descriptors like LBP, LTP and
LATP. It is shown that SURF features perform better than
other descriptors at higher resolutions. Daisy features, al-
though not better than SURF features, also perform better
than the three texture descriptors at high resolution.

1. Introduction
The estimation of the ground surface is essential for a

safe outdoor traversal of an autonomous robot. The robot
must be aware of ground surface hazards induced by the
presence of slippery and bumpy surfaces when employed
for a variety of outdoor assignments, such as rescue mis-
sions or surveillance operations. These hazards are known
as non-geometric hazards [28].

Terrain identification techniques can be classified into at
least two different groups: retrospective and prospective ter-
rain identification. Whereas retrospective techniques pre-
dict the traversed ground surface from data recorded during
robot traversal [15], prospective techniques classify terrain
sections, which will be traversed in the near future, i.e. lo-
cated in front of the robot. The latter approaches can rely
on the environment’s geometry at short and long range ac-
quired using either LADAR sensors [25] or stereo cameras
[3]. However, classifying terrain based on geometrical rea-
soning alone gives rise to ambiguities which cannot be re-

solved in some situations: for example, tall grass and a short
fence may provide similar geometrical features. Further-
more, stereo cameras yield very little information at long
range. However, this information is important for generat-
ing paths which can safely be traversed by the robot while
moving towards distant targets. Hence, in this paper, we
consider another class of prospective terrain classification
techniques which relies on texture features acquired from
monocular cameras. Compared to the geometric features,
these texture features provide more meaningful informa-
tion about the ground surface even at long-range distances.
Using the extracted visual cues we then apply a Random
Forests [16] based approach to the problem of terrain clas-
sification: i.e. after training a model which establishes the
assignment between visual inputs and corresponding terrain
classes, this model is then employed to predict the ground
surface of a respective visual clue. As in [14], texture fea-
tures are extracted from image patches which are regularly
sampled from an image grid. We perform terrain classifica-
tion on a patch-wise basis rather than on a pixel-wise basis
because the latter tends to produce noisy estimations which
complicates the detection of homogeneous ground surface
regions [9].

Several authors have addressed the problem of represent-
ing texture information in terms of co-occurrence matri-
ces [12], Markov modeling [18, 27], Local Binary Patterns
(LBP) [20], and texton-based approaches [26, 2] to name a
few. Yet, it remains unclear which approach is suited best
for an online application on a real outdoor robot in terms
of prediction accuracy. Hence, the main motivation of our
paper is a thorough comparison of different texture descrip-
tors for representing different terrain types and to devise
new methods by adapting descriptors from other problem
domains. Here, the data originates from a real robot traver-
sal whose camera images contain artifacts such as noise and
motion blur. These data differ from the ones included in the
Brodatz data set [8] or Calibrated Colour Image Database
[21], where the images have been acquired under controlled
conditions lacking dark shadows and overexposure, artifacts
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Figure 1. Outdoor robot used for experiments

common in images taken outdoors. In addition, we inves-
tigate four new texture descriptors: Local Ternary Patterns
descriptor (LTP) [23], Local Adaptive Ternary Patterns de-
scriptor (LATP) [1], SURF descriptor [4] and Daisy de-
scriptor [24], which, to our knowledge, have not been tested
in this domain by anyone else. These descriptors have been
tested for this purpose [13], but at a very low resolution.

The remainder of this paper is organized as follows: In
Sect. 2, we provide details of our classification experiments.
Sect. 3 briefly summarizes the different texture descriptors
used. Results are presented and discussed in Sect. 4. Fi-
nally, Sect. 5 gives conclusions.

2. Experimental Setup
2.1. Testing Platform

The testing platform we used is our outdoor robot
(Fig 1), which is a modified RC-model truck whose body
was removed and replaced by a dual-core PC, a 32-bit mi-
crocontroller and different sensors attached to the vehicle.
This includes a Point-Grey Firefly color camera with a 6mm
lens to capture images at a resolution of 640x480 pixels.
For our experiments, we ran the robot at a speed of about
1 m/s while capturing images from the camera, hence not
all of the acquired images are sharp due to motion blur ar-
tifacts. The height of the camera is approximately 50 cm
from the ground. The camera is tilted down so as to capture
the terrain directly in front of the robot. Hence, the camera
captures images starting from a distance of 30 cm with re-
spect to the robot’s front. The robot is equipped with tractor
tires to be able to run on rough outdoor terrain. However,
these tires produce an increased amount of vibration while
traversing even a smooth surface.

2.2. Terrain Classes

To capture terrain data, we drove the robot outdoors on
our campus and captured the terrain types visible to the

robot through the camera. The outdoor area of the campus
consists of asphalt roads, meadows and some parking areas
covered with gravel or tiles. We were able to identify five
different classes: asphalt, gravel, grass, big tiles and small
tiles. The robot was navigated multiple times over different
routes at varying times of the day. One of these experiments
was carried out under a heavily clouded sky after rainfall.
Some of the terrain types contained wet and dry patches,
e.g. asphalt, gravel, etc. In this case, a single terrain type
contained different colors.

The second experiment took place at a time when the
sun was about to set which resulted in over-exposure of the
camera. In this case, the image colors were extremely dis-
torted. The third scenario was at noon on a sunny day. Note
that not all terrain types were captured in each scenario.

While driving on the campus we found that all terrain
types contained many different features depending on the
location and time at which the pictures were acquired. Fig.
2 shows different terrain types in color and grayscale to in-
dicate the artifacts introduced under different scenarios. For
example, Fig. 2(a) shows a blurred image of the grass ter-
rain type along with small plants and their flowers. Fig. 2(b)
shows the asphalt terrain type with a wet patch after rain. In
fig. 2(c) the gravel terrain type is depicted after rainfall.
Here, water was gathered in a bigger amount. Fig. 2(d)
shows a sample image from the big-tiles terrain type. Since
parts of the terrain are shadowed, its intensity changes a lot
and the boundary also becomes difficult to classify. Simi-
larly, Fig. 2(e) shows an image from the small-tiles terrain
type. It is also noticeable that the shadow of a tree induces
texture artifacts of its own.

Fig. 3 shows the grass terrain type under two different
weather conditions. The image on the left is taken in win-
ter (middle of March) one hour before sunset. The sun was
looking into the camera at that time. The image on the right
is taken in spring (middle of June) on a cloudy afternoon.
Moreover, the image on the left also has a patch of snow
among the grass. This clearly shows that color based de-
scriptors will not work in all cases. Also note that under
similar conditions, color based descriptors can misjudge the
wet and dry or shaded and open parts of the same terrain
type. Other than that, color will only accurately distinguish
grass from other terrain types as is obvious from the sam-
ple terrain images. Finally, Fig 4(a) shows the small-tiles
terrain type with blur induced due to robot motion and fig.
4(b) shows the same terrain type with over-exposure due to
sun.

Most of the images are characterized by the presence of
not only one but multiple terrain types. These images were
labeled manually to generate training images for each class.
The boundaries between any two terrain types are mostly
diagonal or irregular . Hence, even after clipping, most
of the images contained other terrain types at the borders.
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Figure 2. Sample images of different terrain types: (a) grass, (b)
asphalt, (c) gravel, (d) big-tiles and (e) small-tiles, both in color
and in grayscale

Figure 3. Difference of grass color under different sun angles

Note that this interferes with the terrain descriptors which
are based on a square grid and hence results in a decrease
in classification accuracy. Images containing blur were not
filtered out, except in extreme cases where the blur artifacts
were too dominant. For our experiments we tried different
grid sizes for each descriptor to determine the best descrip-

(a) (b)

Figure 4. Samples from small-tiles terrain type under: (a) blur, (b)
over-exposure

tor for each resolution.

3. Texture Descriptors

3.1. SURF

Speeded Up Robust Features (SURF) [4] are an improve-
ment of the famous SIFT features [17]. SURF is used to
detect interest points in a grayscale image and to represent
them using a 64- or 128-dimensional feature vector. These
features can then be used to track the interest points across
images and thus prove suitable for localization tasks. In
this paper, we considered SURF features for a new appli-
cation: texture classification. In SURF interest points are
detected across the image using the determinant of the Hes-
sian matrix. Box filters of varying sizes are applied to the
image to extract the scale space. Then the local maxima
are searched over space and scale to determine the interest
points at the best scales. The key-point detection capabil-
ities of SURF, however, have been omitted here. This is
because the interest points detected by SURF are usually
concentrated around sharp gradients, which are likely not
present within homogeneous terrain patches. Instead we fix
the interest point location and scale from which the SURF
descriptor is determined.

In our approach we divide the image in a grid and use
the generated patches or sub-windows to calculate the de-
scriptors. Each image patch is then classified individually.
We use 64-dimensional Upright-SURF (U-SURF) descrip-
tors, in which the rotation invariance factor is removed. Still
they are rotation invariant up to +/-15 degrees. Furthermore,
we only consider a single scale for descriptor extraction
which was determined experimentally using a grid-search
approach. We call this modified approach TSURF (where
T denotes Terrain). The SURF descriptor describes how
the pixel intensities are distributed within a scale dependent
neighborhood of each interest point. Haar wavelets are used
to increase robustness and speed over SIFT features. First, a
square window of size 20σ is constructed around the inter-
est point, where σ is the scale of the descriptor. The descrip-
tor window is then divided into 4 x 4 regular subregions.
Within each subregion, Haar wavelets of size 2σ are calcu-
lated for 25 regularly distributed sample points. If the x and
y wavelet responses are referred by dx and dy respectively,



then for the 25 sample points,

vsubregion =
[∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|

]
are collected. Hence, each subregion contributes four values
to the descriptor vector, resulting in a final vector of length
64 (4 x 4 x 4).

3.2. Daisy

The Daisy descriptor [24] is inspired from earlier
ones such as the Scale Invariant Feature Transformation
(SIFT) [17] and the Gradient Location-Orientation His-
togram (GLOH) descriptor [19], but can be computed much
faster. It does not introduce artifacts that degrade the match-
ing performance when used densely, unlike SURF, which
can also be computed efficiently. For each image, first H
orientation maps, Gi, 1≤i≤H, are computed, one for each
quantized direction, where Go(x,y) equals the image gradi-
ent norm at location (x,y) for direction o if it is bigger than
zero, else it is equal to zero. Each orientation map is then
convolved several times with Gaussian kernels of different∑

values to obtain convolved orientation maps for different
sized regions. Daisy uses a Gaussian kernel, whereas SIFT
and GLOH use a triangular shaped kernel.

Originally, Daisy features are calculated as dense fea-
tures on the entire image. We instead divide the image
into a grid of a specific size and calculate Daisy features on
this grid, like our TSURF approach. We call this approach
TDaisy (where T denotes Terrain). Then classification is
performed on these local features. Each local feature is a
200-dimensional vector.

3.3. Local Binary Patterns

Local Binary Patterns (LBP) [20] are very simple, yet
powerful texture descriptors. A 3x3 window is placed
over each pixel of a grayscale image and the neighbors are
thresholded based on the center pixel. Neighbors greater
than the center pixel are assigned a value of 1, otherwise 0.
Then the thresholded neighbors are concatenated to create
a binary code which defines the texture at the considered
pixel. Since the 8-bit binary pattern can have 256 values,
we have a histogram containing 256 dimensions for classi-
fication. Below is an example of a 3x3 pixel pattern of an
image. Thresholding is performed to obtain a binary pat-
tern:

94 38 54
23 50 78
47 66 12

1 0 1
0 1
0 1 0

Binary Pattern = 10110100

3.4. Local Ternary Patterns

Local Ternary Patterns (LTP) [23] are a generalization of
Local Binary Patterns. Here, instead of a binary pattern, a
ternary pattern is generated by using a threshold k around
the value c of the center pixel. Neighboring pixels greater
than c+k are assigned a value of 1, smaller than c-k are
assigned -1, and values between them are assigned 0.

T =

 1 T ≥ (c+ k)
0 T < (c+ k) and T > (c− k)
−1 T ≤ (c− k)

where c is the intensity of the center pixel.
Instead of using a ternary code to represent the 3x3 ma-

trix, the pattern is divided into two separate binary codes,
part1 and part2. The first part contains the positive values
from the ternary pattern, and the second contains the neg-
ative values. From both separately calculated 3x3 matrices
an LBP is determined resulting in two individual matrices
of LBP codes. Using these codes two separate histograms
are calculated. The two histogram parts are concatenated to
form a histogram of 512 dimensions.

Below is an example of a 3x3 pixel pattern of an image.
A threshold parameter (k=5) is used to obtain a ternary pat-
tern, which is then divided into two binary patterns:

94 38 54
23 50 78
47 66 12

1 -1 0
-1 1
0 1 -1

Ternary Pattern (k=5): 1(-1)01(-1)10(-1)
Part1=10010100, Part2=01001001

3.5. Local Adaptive Ternary Patterns

Local Adaptive Ternary Patterns (LATP) are based on
the Local Ternary Patterns. Unlike LTP, they use simple
local statistics to compute the pixel threshold. This makes
them less sensitive to noise and illumination changes. LATP
have been shown to work in face recognition problems [1].
We test this operator in the domain of texture classification.
The basic procedure is the same as LTP. Instead of a con-
stant threshold, the threshold (T) is calculated for each local
window using local statistics as given in the equation:

T =

 1 T ≥ (µ+ kσ)
0 T < (µ+ kσ) and T > (µ− kσ)
−1 T ≤ (µ− kσ)

where µ and σ are mean and standard deviation of the
local region, respectively, and k is a constant. The resulting
ternary pattern is divided into two binary patterns, part1 and
part2, like LTP and separate histograms are calculated and
concatenated for classification forming a 512 dimensional
vector. Below is an example of LATP calculation:



94 38 54
23 50 78
47 66 12

1 0 0
-1 1
0 0 -1

µ=51.33, σ=25.74, µ+kσ=77.07, µ-kσ=25.59
Ternary Pattern (k=1): 1001(-1)00(-1)
Part1=10010000, Part2=00001001

3.6. Classifier

We performed the classification task using several clas-
sifiers. Therefore, we used the machine learning software
Weka [11] to train and test these classifiers. The classi-
fiers tested were Random Forests, Support Vector Machine
(SVM), Multilayer Perceptron (MLP), LIBLINEAR, J48
Decision Tree, Naive Bayes and k-Nearest Neighbor. From
this set, Random Forests gave the best overall performance.

Decision Trees [22] have shown their applicability in
various classification tasks [29, 5]. Yet, predictive mod-
els which have been generated with this approach tend to
overfit the data and hence do not generalize well. Random
forests [16] try to overcome these problems by injecting
randomness into the tree generation procedure and combin-
ing the output of multiple randomized trees into a single
classifier.

The trees are established by recursively bisecting the
data set into smaller subsets at each inner node Ri. As
splitting criterion the Gini-index [10] is employed which is
defined by:

IG(i) =

k∑
j=1

p̂ij(1− p̂ij),

where k is the number of classes to discriminate and p̂ij de-
notes the probability of observing a measurement of class
j with respect to all instances provided for node Ri. For-
mally, this probability is defined as p̂ij =

Nj

Ni
with Nj de-

noting the number of measurements which belong to class
j and Nj is the total number of observations in node Ri. At
each splitting step, the remaining data is separated into two
distinct subspaces or subnodes, Rc1 and Rc2 , using a ran-
dom feature subset of size m, where m is typically chosen
by m =

√
d. The best split is defined as the subdivision

which maximizes the decrease in the Gini-index:

∆IG(i) = IG(i)− p̂c1IG(c1)− p̂c2IG(c2).

The splitting procedure is recursively adopted until a max-
imum tree depth is reached. For decision trees, pruning or
recursion depth limitation techniques have to be applied to
prevent overfitting. Random Forests classifiers, however,
grow trees of maximum depth without performing subse-
quent pruning steps.

After tree generation, each leaf node stores several in-
stances along with their respective class membership. The

latter can be adopted to assess the posterior distribution
p(c = k∗|xi):

p(c = k∗|xi) = F ({t1, . . . , tN}, xi, k∗)

=
1

N
·

N∑
j=1

Nr + f(tj , xi, k
∗)

K ·Nr +
∑K

l=1 f(tj , xi, kl)
,

where f(tj , xi, kl) denotes the number of estimation exam-
ples which belong to class kl and which are assigned to the
same leaf as instance xi in tj . Here, the term estimation ex-
amples is used to stress that this set is only adopted to the es-
timation of posterior probabilities and hence does not have
to be identical to the training set in general. In this work,
however, the approach of [7] has been followed which sug-
gests to choose the estimation examples to be identical to
the original set of training examples. Further, Nr represents
a regularization term which behaves as a uniform Dirich-
let prior [6] over feature values. If an instance assigned to
a specific leaf node is not encountered during training, the
inclusion of the additional terms assign a non-zero value to
the corresponding probability.

During the recall phase, the test pattern traverses each
random tree until a leaf node is reached. The posterior dis-
tributions assigned to the respective nodes are then aver-
aged over all members of the ensemble. Finally, the class
k∗ which maximizes p(c = k∗|xi) is chosen to be the clas-
sification result of the test pattern.

Concerning prediction accuracy, using a larger number
of trees reduces the generalization error for forests. How-
ever, this also increases the run-time complexity of the clas-
sification process. Hence, a compromise has to be found
between accuracy and speed by varying the number of trees.
We found that in our case 100 trees gave adequate accuracy
without a significant loss in speed. Further, we adopted a
5-fold cross-validation scheme to verify the accuracy of the
results.

4. Results
Classifiers were applied on each descriptor and the true

positive ratio (TPR) of the entire dataset was obtained. The
TPR is the ratio of the correctly classified instances to the
number of all test patterns contained in the data set. Since
Random Forests produced the best overall result, we only
describe those results here. Table 1 presents a summary of
accuracy results of the five approaches on the five terrain
types.

Note that high resolution means that the image is divided
into more parts, meaning that each grid cell is very small
and so we get a lot of grid cells. For example, a 640x480
image divided into 10x10 patches gives 64x48=3072 grid
cells. This is the highest resolution we tested, i.e. with a
grid size of 10x10. On the other hand, low resolution means



Grid-
size LBP LTP LATP TSURF TDaisy
10 55.0% 67.2% 54.2% 99.2% 79.2%
20 75.7% 83.0% 73.7% 97.8% 74.9%
30 85.2% 90.0% 83.3% 96.6% 72.4%
40 90.2% 93.3% 88.4% 95.7% 70.8%
50 92.6% 94.7% 91.4% 94.9% 70.0%
60 94.4% 95.7% 93.4% 95.2% 69.0%
70 95.5% 96.8% 95.0% 94.5% 69.0%
80 95.8% 96.8% 95.8% 93.1% 67.8%
90 96.9% 97.4% 96.5% 93.6% 68.5%

100 96.9% 98.1% 97.2% 94.0% 69.1%
Table 1. Classification accuracy of the five descriptors

Figure 5. Graph of descriptor accuracies at different grid-sizes

that the image is divided into lesser cells and that the size
of each grid cell is large. So in this case, a 640x480 image
divided into 80x80 patches gives just 8x6=48 grid cells.

The same data is plotted in Fig. 5 for visualization. Here
it is clear that, although at lower resolutions the texture
descriptors such as Local Binary Patterns, Local Ternary
Patterns and Local Adaptive Ternary Patterns perform the
best, at higher resolutions, TSURF and TDaisy features pro-
duce much better results. At a grid-size of 50x50, TSURF
matches the performance of the best texture descriptors, as
both TSURF and LTP have an accuracy of about 95%. For
higher resolutions, TSURF performs better than them. At
a grid-size of 10x10, TSURF has a performance of 99%,
whereas LTP only gives a performance of 67%.

It is to be noted that for grid-sizes lower than 30x30,
the performance of the three texture descriptors decreases
sharply. This is due to the fact that such a small cell doesn’t

Grid-
size LBP LTP LATP TSURF TDaisy
10 64,963 88,356 93,139 34,714 96,359
20 13,417 16,279 16,654 5,196 17,669
30 3,479 5,448 6,054 1,576 6,946
40 1,599 2,784 2,451 625 2,921
50 808 1,420 1,285 313 1,614
60 532 776 863 178 833
70 388 573 499 119 546
80 190 349 256 81 304
90 169 282 213 43 239

100 121 232 148 31 169
Table 2. time taken in seconds for cross-validation by different
descriptors at different grid-sizes

include enough neighboring information for adequate fea-
ture description. Even below a grid-size of 40x40, the per-
formance of the three texture descriptors falls below 90%
and hence they may not be usable.

The performance of the TDaisy descriptor improves with
increasing resolution. Although worse than TSURF, it per-
forms better than the three texture descriptors only at a grid-
size of 10x10.

The TSURF descriptor is the smallest descriptor con-
sisting of only 64 dimensions. The LTP and LATP de-
scriptors are the longest descriptors consisting of a 512 di-
mensional vector each. LBP and TDaisy are intermediate
length descriptors. LBP produces a 256-dimensional de-
scriptor and the TDaisy descriptor consists of 200 dimen-
sions. For TSURF based classification, different scale levels
(σ) described in section 3.1 ranging from 2 to 20 were tried.
Higher values of this scale parameter for descriptor calcu-
lation give the best result in all of the cases. For LTP-based
classification, we also tried different values for the thresh-
old value k described in section 3.4 having values between
2 and 20. It was observed that small values of the threshold
give better results. Similarly for LATP-based classification,
we tried different values of the threshold value k described
in the section 3.5 ranging from 0.1 to 1.9. In this case, an
intermediate threshold value close to 1.0 gives the best re-
sult.

The time taken for 5-fold cross-validation for all of the
descriptors is described in Table 2. These times are in sec-
onds and are for the random forests classifier used for vali-
dation.

Fig. 6 plots the time taken for 5-fold cross-validation in
a graph. Note that the values are plotted on a logarithmic
scale. Here we can observe that for all grid-sizes, TSURF
takes the least amount of time. The most amount of time is
mostly taken by LTP or similar descriptors. This is natural,
since TSURF has the smallest descriptor vector.



Figure 6. Graph of time taken for cross-validation depicted on log-
arithmic scale

5. Conclusion

In this paper, we thoroughly investigated the applicabil-
ity of different local descriptors at varying resolutions for
visual terrain classification on outdoor mobile robots. Most
current texture classification approaches use sharp images
containing a single texture captured from a perpendicular
camera angle. Whereas, we used images from real runs
of the robot containing blurred images with non-sharp ter-
rain boundaries. Along with three texture-based descrip-
tors, LBP, LTP, and LATP, we have tested modified forms
of two other descriptors: SURF and DAISY. SURF and
DAISY are modified to be calculated on a grid placed on the
image. The texture-based descriptors performed best at low
resolutions. LTP gave the best low resolution performance,
however, it has one of the largest feature vectors. LATP
is the other largest feature vector that also performs well.
However, at higher resolutions TSURF performs much bet-
ter than all other descriptors. In addition TSURF has one of
the smallest feature vectors and is fast to train. TDaisy has
the second smallest feature vector, but its performance is not
satisfactory at almost all of the resolutions we tried. Hence,
we have demonstrated that visual terrain classification can
be performed from high to low resolution using one of the
local descriptors we have described above. At resolutions
higher than 50x50, TSURF should be used. For resolutions
lower than 50x50 LTP should be used where accuracy is the
most important; TSURF should be used where speed is the
most important; and LBP should be used where a compro-
mise between speed and accuracy is desired.

Furthermore, it is demonstrated that visual terrain clas-

sification can be successfully performed even under non-
optimal conditions, such as motion blur induced by a fast
moving robot and its vibrating camera, different weather
conditions, both wet and dry ground surfaces and a low
camera viewpoint.
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