
1

Robust Real-Time Number Sign Detection
on a Mobile Outdoor Robot

Sebastian A. Scherer∗ Daniel Dube∗ Philippe Komma∗ Andreas Masselli∗ Andreas Zell∗
∗Department of Computer Science, University of Tuebingen, Tuebingen, Germany

Abstract— We present the evolution of a highly-efficient system
for visually detecting number signs in real-time on a mobile
robot with limited computational power. The system was designed
for use on a robot participating in the 2010 “SICK robot day”
robotics challenge, in which the robot needed to autonomously
find 10 number signs and drive to all of them in a given order
as fast as possible. Our most efficient method has proven to be
robust and successful, since our robot won the competition using
the final vision systems described in this paper.

Index Terms— number detection, number classification, real-
time, robotic vision,

I. INTRODUCTION

Automatic sign detection is an essential task for robots
working in environments built for humans: Signs can serve as
landmarks and convey messages for both humans and robots.
In this work we try to find the best system for detecting a set
of number signs used for marking subgoals in the 2010 “SICK
robot day” robotics challenge. The goal of this challenge was
to build a robot that autonomously finds and drives to 10
number signs in a given order within at most 10 minutes.
Hence the system had to run on an on-board processor of a
mobile robot and had to provide real-time performance.

Even though the system presented here solves a very specific
task, there are several domains of research which are related
to the problem at hand: recognition of text on certain objects
such as license plates [5, 11, 9] and containers [12], video
OCR [16], and text detection in natural images [15, 23, 20].
A few examples for the latter field of research are Liang et al.
[14], who give an overview of document analysis from camera-
captured images. Yamaguchi et al. in [22] address the problem
of recognizing phone numbers in natural images. Both take
advantage of the fact that there is more than a single character
and that characters usually arranged in lines. In contrast, de
Campo et al. [7] focus on recognizing single characters in
natural images, which is more similar to our problem at hand.

Another related area of research is the detection of signs,
e.g. traffic signs. In comparison with video OCR, sign detec-
tion is a more challenging problem due to the requirement
of coping with highly dynamic settings in real-time. Note,
however, that the task of sign detection is facilitated by the
fact that almost all traffic signs are either colored in or at
least framed in an easy-to-detect signal color to make them
easier to spot. This also implies that there is usually a distinct
edge around their boundary, which renders their detection less
demanding and makes color and shape information popular
features for detecting traffic signs [8].

Fig. 1. Our robot driving towards sign number 5 during its winning run at
the “SICK robot day” robotics challenge 2010.

For the “SICK robot day” competition, it was not totally
clear whether there would be an always visible boundary that
could be used for sign detection. Hence, we could not apply
car number extraction techniques based on color segmentation
[13] or rectangular area detection [11].

The contribution of this work is to provide a framework
which addresses these problems in real-time. As shown in
Sect. V the proposed method allows for robust number de-
tection and classification in a highly dynamic environment.

The remainder of this paper is organized as follows: In
Sect. II we describe the 2010 “SICK robot day” robotics
challenge. Sect. III provides details of our experimental setup.
In Sect. IV we describe four different number detection and
classification approaches we implemented. The results are
presented and discussed in Sect. V. Finally, Sect. VI gives
conclusions.

II. THE 2010 “SICK ROBOT DAY” CHALLENGE

The 2010 “SICK robot day” challenge was an interna-
tional robotic race for universities, colleges and other research
groups. Participating teams were required to build and program
an autonomous mobile robot that is able to explore and navi-
gate an unknown environment, find and recognize landmarks
given by number signs, and reach all of them in a given order
as fast as possible. The organizers originally announced that
the challenge could take place either indoors or outdoors in



2

course 30 × 40 meters in size with obstacles that can easily
be detected by laser range finders. As the challenge had to
take place indoors in the end, however, the actual course was
circular-shaped with a diameter of only approx. 15 meters. In
addition to static obstacles that were moved by the organizers
between consecutive runs, there was always a second robot
competing on the course at the same time. Collisions with
static objects would lead to a penalty of 5% of the total time
and collisions with the other robot to disqualification. We also
knew in advance that the number signs to be found consisted
of black numbers from zero to nine printed in size 37×58 cm
on white rectangular boards. The robots had to find and reach
these number signs in a given order. The quantity of number
signs reached in the correct order and the time required for
this determined the ranking of all participating robots. Note
that it would be fatal to miss a number sign early in the given
order: Signs correctly reached after one was missed would not
count towards a robot’s score.

III. EXPERIMENTAL SETUP

A. The Mobile Robot

The mobile robots used for these experiment are custom-
built based on a remote-controlled monster truck “E-MAXX”
by Traxxas. Among several other sensors they contain three
cameras: The main camera is a forward-looking AVT Marlin
mounted on a pan unit so it can keep a number sign focused
while driving around corners. It captures grayscale images
sized 780× 580 at a rate of 30 Hz. We additionally employed
two Firefly MV cameras by Point Grey Research looking left
and right, hoping to find more signs due to the larger total
area of view. These two cameras grab grayscale images sized
640×480 at a rate of 7.5 Hz. All processing is done on a Mini-
ITX computer featuring a 2.26 GHz Core 2 Duo Mobile CPU
mounted on the robot. The number sign recognition module
is only one of many computationally demanding modules
running on the computer at the same time.

B. Data

We have a total of 29 logfiles available of our robot driving
in different environments with number signs recorded on 7
different days in different locations, indoors and outdoors. We
split these logfiles into a training set (21 logfiles), used to train
the classifiers of sections IV-D and IV-A, and a validation set
(8 logfiles). From each logfile we consider only one camera
image per second to avoid processing large numbers of similar
images. This still leaves us with 6179 and 2292 images,
respectively, in the training and validation set. We semi-
automatically labeled all images in both sets as we needed
correctly labeled training data for learning our classifiers and
validation data for the performance analysis in Sect. V.

IV. NUMBER SIGN DETECTION ALGORITHMS

In this section we present four iterations of our sign recog-
nition software evolved during the preparation of the “SICK
robot day” challenge of 2009 and 2010. The problem to be
solved is detecting black number signs printed on an otherwise

Fig. 2. Image as seen by the robot (left) and binarized image (right) with
blobs classified as numbers (marked in green) and as non-numbers (marked
in red).

white board in images captured by a camera mounted on a
moving robot.

We first describe the application of the object detection
framework by Viola et al. [19] to our problem in Sect. IV-
A: A general-purpose approach, which is well-known for
its good performance detecting mainly faces, but can also
be trained to detect arbitrary objects like soccer balls [18].
For the remaining three approaches presented in this work,
we decompose the task at hand into three subproblems:
Thresholding or binarization, connected component labeling,
and classification of the connected components. We deem this
decomposition reasonable as we try to find black numbers
printed on white background: Proper binarization retains this
property in the resulting binary image and the numbers printed
onto white signs become black blobs which can be easily
extracted using connected component labeling. Thresholding is
the task of classifying image pixels as either dark (represented
by the value 0) or light (represented by 1). The obtained
binary image provides the basis of the following connected
component labeling process. Connected component labeling
identifies connected regions and assigns each connected region
a unique label. In the context of number detection, region
detection is important since each number is represented by
connected components in the image. After the labeling process
we obtain a set of connected regions (or image patches)
containing both numbers and non-numbers. For identifying the
respective number and filtering out non-numbers, a classifier
has to be established.

The approach described in Sect. IV-B relies on many
readily-available methods, e.g. by OpenCV [2] and pattern
matching for classification. The one described in Sect. IV-C
speeds up the binarization step by using an integral image, con-
nected component labeling using flood fill, and classification
using 1-nearest neighbor. In our final approach described in
Sect. IV-D, we again try to speed up connected labeling using
a run-based approach and improve classification by training
an artificial neural network.

A. The Boosted Cascade Classifier (Viola&Jones) Approach

This approach is based on the boosted cascade detector
by Viola et al. [19] used for real-time face detection. They
use the AdaBoost algorithm to train a classifier which then
decides in a the recall phase whether an image patch shows
a face or not. An image is scanned for faces by applying
the classifier on a window that is moved across the image



3

Fig. 3. Patches used for training the classifier.

in different scales. Window positions at which the classifier
predicts a face are memorized to produce the final detection
result for the image. One crucial idea in [19] is the introduction
of a so called attentional cascade, which rapidly improves the
speed of the overall detector. A classifier consists of a cascade
of simpler classifiers, or layers, which are applied successively.
It starts with the simplest layer, which is designed to be quickly
evaluated and highly sensitive, allowing a high false positive
rate. This layer can already reject many non-faces, so the
remaining layers focus on the image patches accepted by the
first layer. The whole classifier only accepts an image patch
as a face if it has been predicted positive by all layers.

Originally published as a fast and robust face detector, the
system can be trained with arbitrary objects. We created a
number detector by training the system with patches of number
signs that were cropped out of our log files (see also section
III-B). Examples of the image patches are shown in figure 3.

Since a single detector can only distinguish between two
classes, usually objects and non-objects, we arrange multiple
detectors to create a classifier which is capable of telling not
only if a number is found, but also which number is predicted
(see Figure 4). The first stage has been designed to quickly
select patches which are candidates for a number and reject the
majority of image patches, which do not have to be processed
further. Only patches that pass the first stage are examined
more sophistically by the classifiers sensitive for a certain
number. By using a first stage common for all numbers we
extended the idea of the attentional cascade described in [19],
overcoming the burden of applying 10 different classifiers,
one for each number, to all window positions and scales
when scanning an image. As shown in 4, the structure of the
additional processing is linear and relies on a robust response
of the detectors that are specific for each number, e.g. if
the “one”-classifier erroneously predicts a one instead of a
nine, the “nine”-classifier never gets a chance to correct this.
However, due to processing speed and ease of implementation
this structure has been chosen to be used as opposed to a more
sophisticated approach.

1) Training: The stage common for all number candidates
consists of a 10 layer cascade trained with an initial set of 1472

C
accept

0
accept

reject

1
accept

reject
8
accept

reject
9
accept

rejectreject

Fig. 4. Structure of the classifier composed from multiple cascade detectors.
All image patches must pass a common stage (C) to get examined by the
classifiers specific for each single number, going from 0 to 9. Patches that
are rejected by either the C stage or the 9 classifier will be considered as
non-numbers.

images of all 10 numbers and 12252 images of non-numbers,
i.e. the images were used for training the first layer of the
cascade. For the last layers the bootstrapping method described
in [19] is used, taking only those images for training that have
been predicted positive by the first layers, and refilling the
non-number set by gathering false positives from large images
that do not contain numbers. Gathering is done by scanning
these images with the classifier created so far, consisting
of the former layers. The detection rate is set to 0.97 per
cascade layer, the false positive rate is set to 0.4 per layer,
which means that the common stage already rejects about
1−0.410 = 99.990% of all non-numbers. The classifiers for a
certain number are trained with 112 to 193 positive examples
and initially 12252 negative examples (non-numbers), also
using a detection rate and false positive rate of 0.97 and 0.4
per layer, respectively. Bootstrapping is applied for images
that do not contain the certain number, i.e. all other numbers
are present. First training results show that this is necessary
to ensure a high specificity of the classifier. Training is done
until the non-number training set cannot be refilled with false
positives, which results in classifiers consisting of 13 to 22
cascade layers.

B. The OpenCV Approach

For our second approach, we focused on achieving real-time
number detection by using basic and fast image processing
methods. We therefore used standard algorithms, e.g. adaptive
thresholding and pattern matching, as implemented in the
OpenCV library.

1) Thresholding: Depending on the lighting conditions, the
setup of the camera and the captured scene, the detected gray
value of the white board background or the black number
is highly variable. Methods separating pixels into fore- or
background by globally adjusted thresholds are therefore not
applicable. In an adaptive approach, this threshold is deter-
mined dynamically taking spatial variations in illumination
into account. For example, Wellner [21] employs a moving
average technique in which the mean m of the last s visited
pixels is considered. If the value of the current pixel is t
percent less than the average m then this pixel is assigned
the value of 0 (dark) and 1 (light) otherwise. Since this
approach depends on the scanning order of the pixels and
the neighborhood samples are not evenly distributed during
the average calculation, Bradley et al. [1] adopt an alternative



4

approach for determining the threshold. They compute the
average of a s× s window of pixels centered around the pixel
under consideration and define a certain percentage of this
average as the threshold value.

We used the implementation of the described adaptive
thresholding approach from the open source image library
OpenCV with a dynamic window size of 15×15 pixels to as-
sign each pixel to either light background or dark foreground.
Although this setup works fast and stable for most conditions,
it has major difficulties detecting very close numbers. There,
the dynamic window is smaller than the line width of the
number, hence the inner number area is randomly chosen
depending on the image noise. The computation time of the
adaptive threshold, however, increases with the window size,
thus a larger window is no option to deal with this problem.

2) Component Labeling: We applied a contour-based ap-
proach [4] 1 to obtain the connected components of the binary
image. The algorithm identifies the components by tracing
a contour chain for each connected region. Since we were
only interested in blobs which are likely to be numbers,
we applied several filters with experimentally determined
thresholds to discard some of the extracted components, which
saves computation time in the classification step. In our case,
numbers are higher than wide, so we removed all components
with a aspect ratio greater than 1. Since numbers have usually
straight contours, we only kept blobs with a ratio of perimeter
to diagonal between 2 and 10. Furthermore, the relative line
width of the numbers is equivalent to a certain value, so we
discarded blobs with a ratio between blob area and bounding
box area lower than 0.1 and greater than 0.5.

3) Classification: We based the classification task on a k-
nearest-neighbor classifier (KNN) with k = 1. Since the image
patches are two dimensional and vary in size whereas the KNN
classifier requires one dimensional inputs of constant length,
the connected regions had to be preprocessed. For this we
scaled every contour chain to fit in a 16× 16 pixels bounding
box. Now the OpenCV method cvWarpImage was used to crop
this bounding box from the image. Then we set all not blob
related areas of this patch to the background color and scaled
the pixel values of the patch linearly to fill the interval between
0 to 255. Finally, we determined the nearest neighbor of the
extracted patch by calculating a normalized distance between
the patch and every patch of a labeled reference set. In our
case, the reference set consists of images of the numbers from
zero to nine rendered with rotation angles between −15◦ and
15◦ in steps of 5◦. Given two image patches p1 and p2, the
normalized distance is calculated by d = ‖p1−p2‖L2

255·
√
A

, where
‖.‖L2 is the L2 norm, calculated by the OpenCV method
norm, and A is the area of the patch. If the minimal distance
between the extracted patch and a training patch is lower than
a threshold of 0.33, the label of the training patch is assigned
to the patch. In the other case, the patch is classified as a non-
number. The threshold was experimentally chosen to yield a
good ratio between correct detections and false positives.

1We used the open source library cvBlobsLib which implements [4] and
is based on OpenCV: http://opencv.willowgarage.com/wiki/
cvBlobsLib.

C. The Accelerated k-Nearest Neighbor (kNN) Approach

The third approach aimed at reducing the run-time com-
plexity of each individual step by means of several modifica-
tions: an integral image-based adaptive thresholding approach,
connected-component labeling using flood fill, and accelerated
k-nearest neighbor classification.

1) Thresholding: Using integral images [6, 19], the average
calculation for adaptive thresholding can be accomplished in
constant time, rendering the approach of [1] practical for real-
time applications. Given an image I with pixel intensities
I(x, y) at pixel locations (x, y), an entry within the integral
image I(x, y) stores the sum of all intensities which are
contained in the rectangle defined by the upper left corner (0,0)
and the lower right corner (x,y). Then, the average intensity
i(x, y) of an arbitrary rectangular area of I given by (xur, yur)
and (xll, yll) can be calculated as:

i(x, y) =
I(xur, yur)− I(xur, yll)− I(xll, yur) + I(xll, yll)

(xur − xll)(yur − yll)
,

(1)
where xur, yur and xll, yll denote the upper-right and lower-
left x- and y-coordinates of the given rectangle, respectively.
Equation (1) shows how the average can be computed effi-
ciently. Further acceleration was achieved by choosing a power
of two as the window size, which enables the use of a right-
shift instead of a division operation.

Adaptive thresholding using an integral image is a two-stage
process. At first, the integral image has to be calculated, which
can be accomplished in linear time. In the second stage, the
original image is binarized by comparing each pixel intensity
of I with the average intensity of the rectangular area which
surrounds the pixel under consideration.

2) Component Labeling: For the labeling task, we em-
ployed a simple seed fill algorithm: Given a certain location
in the binary image (x, y), its neighbors are recursively tested
whether they are assigned the same binary value as the pixel
under consideration. If this is the case the respective neighbor
(x∗, y∗) is assigned the same label as the pixel (x, y). Further,
this process is recursively repeated to all non-visited neighbors
of pixel (x∗, y∗). Recursion stops if the binary value of the
neighboring pixel (x∗, y∗) differs from the one of (x, y).

All pixels with the same label assigned define a set of
connected components. We further represented the area which
was covered by the minimum bounding box surrounding a
single connected component set by a binary matrix. Here, a
matrix element was assigned the value of 1 if it represented
a connected component and 0 otherwise. Finally, the set of
all binary matrices established the basis of the succeeding
classification step.

3) Classification: Following the classification scheme of
the first approach, we also employed k-nearest neighbor clas-
sification with k = 1 given rescaled image regions as inputs.
In contrast to the previous approach, however, these image
regions did not originate from the acquired grayscale image
but from their respective connected components extracted
in the previous step. Further, resampling was achieved by
nearest neighbor interpolation yielding rescaled connected
components of size 32× 32 pixels. In the following step, the

http://opencv.willowgarage.com/wiki/cvBlobsLib
http://opencv.willowgarage.com/wiki/cvBlobsLib


5

32×32 matrix of binary values was transformed into a 1024 bit
sized one dimensional vector by concatenating each individual
row of the matrix. Here, the one dimensional vector was repre-
sented by a byte array of length 128, Fn = {fn,1, . . . , fn,128},
each byte containing 8 pixels of the binary vector. Classi-
fication was performed by calculating the Hamming distance
between a candidate input vector and each entry of the number
training set. Similar to the first approach the training set
consisted of unmodified and transformed numbers rotated by
an angle between −15◦ and +15◦ with step size 5◦, yielding
70 training patterns in total. The image in the training set
with the minimum distance to the candidate vector determined
the classification result. If the Hamming distance exceeded a
certain threshold, the considered image patch was defined to
be a non-number. We determined this threshold experimentally
by choosing a threshold value which resulted in the smallest
classification error. Adopting our representation of connected
areas, the Hamming distance between two input vectors F1

and F2, H(F1, F2), can be efficiently computed using addition
and XOR operations only: H(F1, F2) =

∑128
i=1 bitcount(f1,i⊗

f2,i), where bitcount determines the number of 1-bits in the
resulting bitstring after the XOR operation. In our implemen-
tation, the function bitcount was realized using a lookup table
covering all 28 possible configurations of an input vector entry
fn,i. We disregarded further acceleration measures such as
using 16 bit up to 64 bit integers instead of 8 bit integers as the
basis data type for the input vector representation (cf. [17]) or
employing specialized instructions of the SSE4.2 instruction
set as proposed in [3]. This is because the classification step
proved to be fast enough and hence had not to be accelerated.

D. The Artificial Neural Network (ANN) Approach

In the fourth approach we reused the algorithm to compute
an adaptive thresholding using the integral image. We notably
changed, however, how connected components are extracted
and classified.

1) Extracting Suitable Connected Components: We based
our connected components labeling algorithm on the run-based
two-scan labeling algorithm by He et. al. [10]. This algorithm
regards runs, i.e. continuous horizontal line segments with the
same pixel value, instead of pixels as the smallest elements of
connected components, which promises a significant speedup
for binary images with large areas of constant value. It requires
extra space for a label image, which assigns the same unique
label to all pixels that belong to the same connected component
upon completion of the algorithm, and for three arrays of
limited size to store temporary information about so-called
provisional label sets.

The original algorithm by He traverses the image twice: In
the first scan, the algorithm traverses the image pixel-wise
to extract runs. If a run is not connected to any previous
run, a new label is assigned to all of its pixels. Otherwise it
inherits the label of the connected run. In case there are two or
more runs with different labels both connected to each other,
they are merged to form a provisional label set. This merging
operation can be implemented efficiently since all information
about provisional label sets is in compact data structures.

In the second scan, the original algorithm traverses the
whole image again to compute the final label image, replacing
all provisional labels with their final ones.

In our case, however, we do not need the complete final
label image. As we usually only need to extract a small number
of connected components, we modified He’s algorithm in the
following way: In addition to the data structures proposed by
He, we also store the bounding box of each provisional label
set. Thus, we can disregard connected components depending
on the dimension of their bounding box and extract only
connected components which are likely to be numbers. Once
we have selected a smaller number of connected components
as candidates, we extract these efficiently, based on their
bounding box instead of traversing the whole label image for
a second time.

2) Classification of Patches: To further improve classifi-
cation performance over the previous kNN classifier without
requiring much more computation time, we employ an artifi-
cial neural network (ANN) to classify image patches.

The neural network has to decide to which of the 11 classes
a patch belongs: It is either one of the 10 numbers or “not a
number”. We implemented this using the 1-of-11 target coding
scheme, which requires one output neuron per class: For each
input, we expect the output neuron corresponding to its class
to return 1 and all others to return 0.

The structure of our neural network is a multilayer percep-
tron with 160 input units (one per pixel of patches resized
to 10 × 16) and only one hidden layer consisting of 20
hidden units. All units of our neural network use the logistic
activation function, except the output layer which uses the
softmax activation function, so we can interpret the output of
each output unit as the posterior probability of the input patch
belonging to its corresponding class.

We used the Stuttgart Neural Network Simulator (SNNS)
[24] to train and evaluate the neural network because of its
ability to automatically generate efficient C code evaluating a
previously trained network using its snns2c module.

We trained the network using standard backpropagation
on a large dataset containing real-world patches extracted
from logfiles in which a robot moved around environments
that contained all 10 signs. The classifier of the previous
approach supplied us with a preliminary labeling of this
dataset and we only needed to manually verify or correct this
labeling afterwards. Since these logfiles contain a relatively
small number of patches that correspond to actual numbers
compared to a large number of non-number patches, we syn-
thetically generated more training patches by warping images
of numbers using different perspective transformations. We
relied on early stopping to prevent overfitting to the training
data and employed a 10-fold cross validation on the training
data to find that the average test error was minimal after 53
epochs of training.

By adding a large number of synthetic training patches,
we significantly changed the ratio between number and non-
number patches and thus the prior class probabilities assumed
by the network. We need to correct this by scaling the
posteriors returned by the network with the ratio of relative
frequencies of each class before and after adding synthetic



6

TABLE I
DETECTION PERFORMANCE OF THE OPENCV, KNN, ANN AND

VIOLA/JONES APPROACHES. THE FIRST TWO VALUES ARE RELATIVE TO

THE NUMBER OF TRUE NUMBER SIGNS IN THE VALIDATION SET.

OpenCV kNN ANN Viola/Jones

true positives in % 35.0 34.6 49.7 64.0
false negatives in % 65.0 65.4 50.3 36.0
false positives per frame 0.012 0.011 0.012 0.007

TABLE II
CLASSIFICATION PERFORMANCE OF THE OPENCV, KNN, ANN AND

VIOLA/JONES APPROACHES.

OpenCV kNN ANN Viola/Jones

correct detections in % 100.0 99.8 99.6 97.6
wrong detection in % 0.0 0.2 0.4 2.4

data.
Since we were more concerned about false positives and

wrong detections than about false negatives, we applied a loss
function that assigns a loss of 1 to false negatives and a loss
of 10 to false positives and wrong detections. Classes are then
chosen to minimize the expected loss.

V. EXPERIMENTAL RESULTS

We evaluate all four of the approaches described in chapter
IV using the validation dataset described in III-B with regard
to both classification performance and computation time.

A. Detection Performance

In order to compare the detection performance, we decouple
the two problems of detecting a general number sign and the
classification of detected signs. Each true number sign is either
correctly detected (true positive) or missed (false negative).
Detections that do not correspond to a true number sign are
counted as false positives. Since numbers as found by the
described detectors might slightly differ in position and size
from the ones labeled by humans, we consider two labels to
coincide if the intersection the area of both covers at least one-
fourth of each label’s individual area. The resulting detection
rates can be seen in table I. Rates of the OpenCV and kNN
approach are almost identical because they mainly differ in
details of their implementation. The ANN approach achieves
many more true positives while keeping the number of errors
at a similar rate due to the better classification performance of
the artificial neural network. The Viola/Jones-based detector
performs significantly better than all other methods.

The classification performance, i.e. the percentage of cor-
rectly detected signs that were also assigned the correct label,
is shown in Table II. This is consistently high with the
exception of the Viola/Jones approach which tends to confuse
number signs more often than the others.

The overall ratios of correctly recognized numbers as re-
ported in Table I might seem low to the reader. This is
because many of the number signs visible and tagged in our

[10, 25) [25, 40) [40, 55) [55, 70) [70,170]

Height interval of number signs (in pixels)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o
rr

e
c
t

d
e
te

c
ti

o
n

ra
te

Detection performance in relation to the size of number signs

OpenCV

kNN

ANN

Viola

Fig. 5. Detection performance depending on the visible size of numbers.
The correct detection rate in this plot is equivalent to the true positives rate
from table I times the correct detection rate from table II.

TABLE III
PROCESSING TIME PER FRAME IN MILLISECONDS.

OpenCV kNN ANN Viola/Jones

thresholding 3.5 ± 0.4 2.5 ± 0.4 2.4 ± 0.3 -
segmentation 9.3 ± 5.3 9.3 ± 1.3 2.3 ± 0.7 -
classification 0.4 ± 0.3 0.2 ± 0.4 0.1 ± 0.2 -
overall 13.2 ± 5.5 12.0 ± 1.6 4.8 ± 1.0 193.5 ± 73.3

log files suffer from motion blur or are far away from the
robots. In combination with the artifacts introduced by the
discretization in the thresholding step of the first three ap-
proaches, this makes classifying very small numbers correctly
a hard problem. Another important issue to keep in mind
is, that for our application, low ratios of false positives or
incorrectly classified numbers are much more important than
higher recognition rates: As long as our robot has not seen the
next number it needs to reach, it can simply keep exploring
until it will find it eventually. If, on the other hand, it drives
towards an incorrectly recognized (false positive) sign and
decides it has reached it, there is no way to recover from
this bad decision and the competition would be lost.

Fig. 5 shows how detection performance of different ap-
proaches depends on the size in pixels of the number sign as
seen in the image. While the performance is comparable for
large numbers, the most significant differences can be observed
for small numbers. Good performance for small numbers,
however, is essential, as we want to find number signs early
on when the robot is still far away. Once the robot is close to
a sign, we hope to have an accurate estimate of its position
and can afford to not detect it from time to time.

B. Computation Time

Table III lists the computation time required by the de-
scribed methods. We measured these times by running the
number sign recognition systems on our robot in batch mode,
i.e. with no other jobs running at the same time and utilizing
only one of the two cores.

It is worth noting that our own implementation of adaptive
thresholding using the integral image is significantly faster



7

than the implementation provided by OpenCV on a window
size of 15 × 15 pixels. The most important improvement
with respect to computation time, however, comes from using
a run-based algorithm for segmentation as described in the
ANN approach. While using runs might not help that much
when processing images with many very small connected
components, e.g. documents with very small letters, binarized
images of natural scenes in our experience always contain
at least some uniform regions, in which using runs improves
performance considerably.

VI. CONCLUSIONS

We have implemented and compared the performance of
four methods for detecting number signs on a mobile robot
and managed to create a robust system that requires less than
5 ms per image. Using this system, our robot is able to detect
number signs in real-time even when processing images from
three cameras at the same time, while still leaving enough
computational resources for other modules running on the
robot. Specialized algorithms using efficient simplifications,
e.g. binarization, are key to image processing on mobile robots
in high-speed environments like robot races. Unfortunately,
they usually require easily exploitable properties. For the task
described here, we were able to exploit the fact that there
is a white region around the black numbers to be detected.
This allowed us to implement a robust number sign detection
algorithm that is several orders of magnitude faster than
general-purpose object detection algorithms.

Our robot described in III-A won the 1st place in the
“SICK robot day” robotics challenge 2010 using the artifi-
cial neural network-based number sign detection system. A
video of our first run at the SICK robot day challenge 2010
can be found at http://www.youtube.com/watch?v=
tpILYAUGxfU.

ACKNOWLEDGMENT

The authors would like to thank all other colleagues of
our team that participated in the “SICK robot day” robotics
challenge: Karsten Bohlmann, Yasir Niaz Khan, Stefan Laible
and Henrik Marks

REFERENCES

[1] D. Bradley and G. Roth. Adaptive thresholding using the integral image.
Journal of Graphics Tools, 12(2):13–21, 2007.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[3] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust
independent elementary features. In Kostas Daniilidis, Petros Maragos,
and Nikos Paragios, editors, Computer Vision - ECCV 2010, volume
6314 of Lecture Notes in Computer Science, chapter 56, pages 778–
792. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010.

[4] F. Chang. A linear-time component-labeling algorithm using con-
tour tracing technique. Computer Vision and Image Understanding,
93(2):206–220, February 2004.

[5] X. Chen, J. Yang, J. Zhang, and A. Waibel. Automatic detection and
recognition of signs from natural scenes. IEEE Transactions on Image
Processing, 13(1):87–99, 2004.

[6] F. C. Crow. Summed-area tables for texture mapping. In Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 84), pages 207–212, New York, NY, USA,
1984. ACM.

[7] T. E. de Campos, B. R. Babu, and M. Varma. Character recognition
in natural images. In Proceedings of the International Conference on
Computer Vision Theory and Applications, Lisbon, Portugal, February
2009.

[8] A. de la Escalera, J. M Armingol, and M. Mata. Traffic sign recognition
and analysis for intelligent vehicles. Image and Vision Computing,
21(3):247 – 258, 2003.

[9] K. Deb, H.-U. Chae, and K.-H. Jo. Vehicle license plate detection
method based on sliding concentric windows and histogram. Journal
of Computers, 4(8):771–777, 2009.

[10] Lifeng He, Yuyan Chao, and K. Suzuki. A run-based two-scan labeling
algorithm. Image Processing, IEEE Transactions on, 17(5):749–756,
May 2008.

[11] C.G. Keller, C. Sprunk, C. Bahlmann, J. Giebel, and G. Baratoff. Real-
time recognition of u.s. speed signs. In IEEE Intelligent Vehicles
Symposium, pages 518–523, Eindhoven, June 2008.

[12] S. Kumano, K. Miyamoto, M. Tamagawa, H. Ikeda, and K. Kan.
Development of a container identification mark recognition system.
Electronics and Communications in Japan, Part 2, 87(12):38–50, 2004.

[13] M. Lalonde and Y. Li. Detection of road signs using color indexing.
Technical Report CRIM-IT-95, Centre de Recherche Informatique de
Montreal, 1995.

[14] Jian Liang, David Doermann, and Huiping Li. Camera-based analysis
of text and documents: a survey. International Journal on Document
Analysis and Recognition, 7:84–104, 2005. 10.1007/s10032-004-0138-z.

[15] J. Ohya, A. Shio, and S. Akamatsu. Recognizing characters in scene
images. IEEE Trans. Pattern Anal. Mach. Intell., 16:214–220, February
1994.

[16] T. Sato, T. Kanade, E. K. Hughes, and M. A. Smith. Video OCR for
digital news archive. In Proceedings of the 1998 International Workshop
on Content-Based Access of Image and Video Databases (CAIVD ’98),
CAIVD ’98, pages 52–60, Washington, DC, USA, 1998. IEEE Computer
Society.

[17] S. Taylor, E. Rosten, and T. Drummond. Robust feature matching in
2.3µs. In IEEE CVPR Workshop on Feature Detectors and Descriptors:
The State Of The Art and Beyond, June 2009.

[18] André Treptow, Andreas Masselli, and Andreas Zell. Real-time object
tracking for soccer-robots without color information. In European Con-
ference on Mobile Robotics (ECMR 2003), pages 33–38, Radziejowice,
Poland, 2003.

[19] P. Viola and M. J. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57:137–154, May 2004.

[20] K. Wang and J. A. Kangas. Character location in scene images from
digital camera. Pattern Recognition, 36(10):2287–2299, October 2003.

[21] P. D. Wellner. Adaptive thresholding for the digitaldesk. Technical
Report EPC-1993-110, 1993.

[22] T. Yamaguchi, Y. Nakano, M. Maruyama, H. Miyao, and T. Hananoi.
Digit classification on signboards for telephone number recognition.
In Document Analysis and Recognition, 2003. Proceedings. Seventh
International Conference on, pages 359–363, 2003.

[23] J. Yang, X. Chen, J. Zhang, Y. Zhang, and A. Waibel. Automatic
detection and translation of text from natural scenes. In Proceed-
ings of International Conference on Acoustics and Signal Processing
2002(ICASSP ’02), Orlando, FL, USA, May 2002.

[24] Andreas Zell, Niels Mache, Ralf Hübner, Günter Mamier, Michael Vogt,
Michael Schmalzl, and Kai-Uwe Herrmann. SNNS (stuttgart neural
network simulator). In Josef Skrzypek, editor, Neural Network Simu-
lation Environments, volume 254 of The Springer International Series
in Engineering and Computer Science. Kluwer Academic Publishers,
Norwell, MA, USA, February 1994. Chapter 9.

http://www.youtube.com/watch?v=tpILYAUGxfU
http://www.youtube.com/watch?v=tpILYAUGxfU

	Introduction
	The 2010 ``SICK robot day'' Challenge
	Experimental Setup
	The Mobile Robot
	Data

	Number Sign Detection Algorithms
	The Boosted Cascade Classifier (Viola&Jones) Approach
	Training

	The OpenCV (OCV) Approach
	Thresholding
	Component Labeling
	Classification

	The Accelerated k-Nearest Neighbor (kNN) Approach
	Thresholding
	Component Labeling
	Classification

	The Artificial Neural Network (ANN) Approach
	Extracting Suitable Connected Components
	Classification of Patches


	Experimental Results
	Detection Performance
	Computation Time

	Conclusions
	References

