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Abstract—In this paper we present extensive experimental re-
sults of location fingerprinting with passive UHF radio-frequency
identification (RFID). As recent passive RFID hardware provides
information about received signal strength (RSS), we evaluate
its usefulness in the context of fingerprinting based on classical
vector similarity measures. We analyze the impact of decisive
parameters of the applied approach and also select them auto-
matically via cross-validation, including the most appropriate
similarity measure. A further novelty is an RSS threshold-
ing mechanism which reduces the computational demands of
comparing fingerprints. This technique is especially useful in
surroundings which are densely equipped with RFID tags, such
as future supermarkets or logistic centers. We conducted real-
world experiments with a mobile robot and two different RFID
readers. Results are reported both for global localization in each
time frame and for time-filtered position tracking. We provide
the experimental data of this work for download.

I. INTRODUCTION

The indoor localization of mobile agents has been a vital

research topic in recent years. It was identified as a key prereq-

uisite for location-based services and autonomous robots. In

the context of radio-frequency identification (RFID), a number

of either propagation model-based or fingerprinting techniques

have been developed. In this work, we assume the setup of a

mobile RFID reader whose position is to be determined. Sta-

tionary passive transponders are spread over the environment

in arbitrary locations. This setup is particularly relevant in

economical applications such as RFID-supported warehousing,

logistics, and retail.

We focus on the extension of our recently published location

fingerprinting approach [1] using next generation ultra-high

frequency (UHF) RFID readers. There, we matched current

RFID measurements and reference measurements at known

positions efficiently by means of classical similarity measures.

Based on this comparison, a position was estimated via particle

filtering. In this paper we oppose particle filtering to weighted

k-nearest neighbors (WKNN). Moreover, in our previous ap-

proach similarities between single fingerprints were solely

based upon tag IDs and the respective detection counts during

a read operation. The latest generation of readers, however,

additionally report the received signal strength (RSS) of the

responses of all tags. Therefore, we extend our approach by

RSS fingerprints.

By cross-validation we configure central parameters of the

approach automatically, e.g., the number of nearest neighbors

as well as type and parameterization of the similarity measure.

As a result we obtain the best assignment of parameters

for the reference data set. This choice will be used in the

online localization process to improve the localization errors.

Furthermore, we propose a thresholding operation on signal

strength that may be used to speed up positioning on systems

with less computational power.

The remainder of the paper is structured as follows. In

Sect. II we survey related works. Thereafter, we detail our

localization approach in Sect. III. Experimental results are

provided in Sect. IV. Finally, in Sect. V, we draw conclusions.

II. RELATED WORK

This work is related to a variety of radio location fingerprint-

ing approaches. Bahl et al. [2] developed the in-building sys-

tem RADAR, in which WLAN signal strength measurements

were used for combined localization via fingerprinting and

signal propagation modeling. Ladd et al. [3] extended RADAR

on a robotic platform by Markov localization. Li et al. [4]

compared WKNN and Markov localization based on WLAN

signal strength measurements. Examples of fingerprinting with

other proprietary active RFID systems are LANDMARC [5]

and the work by Yamano et al. [6]. Widyawan et al. [7] per-

formed particle filtering and probabilistic 1-nearest neighbor

with signal strength in simulation.

Fig. 1. Photographs of one experimental platform (left, RFID antennas white)
and a part of the environment (right) with RFID tags (white, on cardboards)



Ferris et al. [8] localized by means of particle filtering

on mixed graph/free space representations. Signal strength

models were learned via Gaussian processes. This approach

was later applied by Joho et al. [9] with RSS from passive

UHF RFID. Sayrafian et al. [10] applied distance measures to

fingerprints of the direction-depending power spectrum of a

rotating antenna. Lim and Zhang [11] performed deterministic

fingerprinting with passive UHF RFID tags on the ceiling.

Schneegans et al. [12] performed fingerprinting with Bayes

estimates of detection rates in the global frame of references.

Some approaches employ connectivity rates of active RF

nodes, which resembles the detection rates of passive transpon-

ders. For instance, Bargh et al. presented location fingerprint-

ing at room-level accuracy, using response rates of Bluetooth

dongles [13]. Denby et al. compared Gaussian processes, k-

nearest neighbors, and support vector machines (SVMs) for

full-band GSM fingerprinting in a city flat at room-level

accuracy [14].

A number of approaches combine particle filtering and

RFID with signal strength information. They are typically

based on a model of radio propagation between two nodes

(e.g., [15]), few others rely on fingerprinting (e.g., [16]).

Wolf et al. [17] developed a method for appearance-based

localization. Being a visual fingerprinting approach, it is

related to this work, also because the particle filter embedding

was similar. Another example is Huhle et al. [18], who applied

Gaussian process learning on omnidirectional images to Monte

Carlo localization.

Gaussian processes and SVMs typically involve the auto-

matic search for hyperparameters. Some other related finger-

printing approaches using (dis)similarity measures do employ

cross-validation for parameter selection (e.g., [19], [20], [21]).

To our knowledge, however, understanding the similarity mea-

sure itself as an estimation parameter is novel.

III. SIMILARITY-BASED FINGERPRINTING

A. Location Fingerprinting

Location fingerprinting denotes the class of localization

methods which determine the position of a mobile system

from a set of sensor measurements taken at that location.

By comparing current observations to observations recorded

at reference locations during a training/calibration stage, the

position of the system can be estimated later. An explicit model

of the interaction between the sensor and the surroundings is

usually not required for that comparison.

Radio location fingerprinting (e.g., [22]) utilizes the identi-

fication mechanisms of passive RFID or active radio standards

like WLAN, Bluetooth, and GSM. Fingerprints consist of the

identifiers of devices in range and information about signal

strength, link quality, or detection rates. In the context of

wireless communication, location fingerprinting is particularly

motivated by the fact that it is difficult to predict radio

propagation accurately. Compared to model-based localiza-

tion, fingerprinting is usually more accurate: The a priori

recorded signal distribution in the global frame, including hard

to model, location-specific propagation effects, serves as a
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Fig. 2. Top view (left) and side view (right) of the SCITOS robot and the
two attached RFID antennas.

reference for localization without explicit modeling. Therefore,

we follow the fingerprinting paradigm in this work.

A disadvantage of fingerprinting is that it requires the

prior collection of reference measurements. Yet, a number of

solutions to this issue have been proposed recently, e.g., [23],

[24], [25]. For a comparison and discussion of localization

methods, we refer to Seco et al. [26].

Our fingerprinting solution represents RFID measurements

as vectors. Similarities between the current observation and

the reference measurements in signal space permit to deduce

a metric location estimate for the mobile system. For example,

the position of the system can either be computed by the

similarity-weighted mean of the positions of the k most similar

reference fingerprints, or it can be estimated via particle

filtering with a likelihood function derived from fingerprint

similarities. The former solution has been the classical ap-

proach to radio location fingerprinting (cf. [22]). The scenario

with passive UHF, however, as investigated also in this paper,

is different because:

• The read range of passive RFID is smaller than of WLAN

or Bluetooth; at the same time, the density of RFID tags

serving as ”anchor nodes” can be expected to be two to

four orders of magnitude larger if tags are used for pallet,

carton, or item labeling.

• RFID readers of the relevant industry standards EPC

Class 1 Gen. 2 and ISO/IEC 18000-6C report tag IDs

and detection counts, but not necessarily received signal

strength (RSS) or angle of arrival. A number of recent

RFID readers, however, do provide RSS values. In this

paper we aim at comparing the impact of the measured

variable on localization accuracy.

• The relative angle to the RFID tag (Fig. 3) and also the

difference of orientations of RFID tag and reader antenna

reveal major influence on the detectability of the tag.

Moreover, we aim at estimating the pose of the mobile

platform in this paper, i.e., both position and orientation.

The use of two perpendicularly mounted antennas (Fig. 2,

left) supports solving this issue, similar to the original

setup by Hähnel et al. [27].

B. Representation of Fingerprints

We represent an RFID measurement at time step t by

a tuple ft = (f
(1)
t , . . . , f

(A)
t ) which comprises the readings

at the A reader antennas. Let L be the number of RFID
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Fig. 3. Illustrations of the read characteristics (detection rates and received signal strength, RSS) of the employed RFID readers. These models are just for

visualization purposes (i.e., not used in this work). (a): Model of smoothed mean detection rates of the Elatec SR-113 reader (30 dBm transmission power)
for the detection of a single tag, conditioned on the relative displacement of that tag with respect to a reader antenna. (b): As (a), but for the Impinj Speedway
reader. (c): As (b), but at 22.5 dBm transmission power. (d): A model of smoothed RSS (in dBm) for the Impinj at 30 dBm.

labels in the environment. For each antenna a, the vector

f
(a)
t = (f

(a)
t,1 , . . . , f

(a)
t,L ) contains measured values for all RFID

tags. When detection counts are regarded, f
(a)
t,l ∈ N is a

nonnegative integer which counts how often tag l was detected
by antenna a at time step t. If some tag l was not detected, this

corresponds to f
(a)
t,l = 0. By contrast, when we are interested

in RSS values, f
(a)
t,l ∈ R stands for the logarithmic received

power, resolved in dBm.

In the training stage, reference measurements are collected.

This is often done on a regular mesh of reference positions. In-

stead, we simply collected measurements during some minutes

of explorative traversal of the environment with a mobile robot.

The RFID inquiries are annotated with reference positions

using laser-based localization [28]. The mapping phase results

in a set m = {(f1,x1), . . . , (fM ,xM )} of RFID reference

fingerprints fi with corresponding poses xi = (xi, yi, θi).
(xi, yi) are the global Cartesian coordinates of the robot, and

θi is the global heading of the robot.

Below, we will require vector values to be nonnegative. For

this reason, we shift all RSS values by the same constant

∆f such that the minimum value among the set of reference

measurements equals 0. Missing RSS values can now safely

be assumed to be 0 as well. The shift ∆f will also later be

applied to RFID measurements gt during localization (such

that g
(a)
t,l ≥ 0 ∀l, a, t).

C. Similarity-based k-Nearest Neighbors

In weighted k-nearest neighbors (WKNN) fingerprinting, the

position of a mobile device is the weighted mean of those k
positions whose reference measurements best match the cur-

rent observation gt. The weighting and matching is achieved

by some similarity measure sim which assesses the pairwise

similarity of gt to each of the M reference fingerprints. Let π
define a descending sorting of the reference fingerprints by the

computed similarity. That is, π : {1, . . . ,M} → {1, . . . ,M}
such that π(i) ≤ π(j) ⇒ sim(fi,gt) ≥ sim(fj ,gt). Then, the
WKNN position estimate x̂t is:

x̂t =
1

∑k

i=1 sim(fπ(i),gt)

k
∑

i=1

xπ(i) sim(fπ(i),gt) (1)

TABLE I
OVERVIEW OF SIMILARITY MEASURES USED

Similarity measure
(+abbreviation)

Formula: sim(f ,g) = . . .

Cosine similarity
(COS)

∑L
l=1

flgl
√

∑

L
l=1

(fl)
2·

√

∑

L
l=1

(gl)
2

Histogram intersection
(HI)

∑L
l=1 min(fl, gl)

Bhattacharyya
coefficient (BHA)

∑L
l=1

√
flgl

Inverse Euclidean
distance (EUCL)

(

ε+
√

∑L
i=1(fi − gi)2

)−1

Inverse Bray-Curtis
dissimilarity (BC)

(

ε+
∑L

l=1
|fl−gl|

∑

L
l=1

(fl+gl)

)−1

If only k′ < k fingerprints reveal nonzero similarity, one

simply proceeds with these k′ fingerprints.
The similarity function sim must return a nonnegative scalar

value which indicates similarity. That is, the disjointness of

vectors (each pair of components has at least one value of 0

because the reader detected entirely different tags) results in

a similarity of zero. On the other hand, a good match yields

a large positive score (the intersection of common tag IDs in

both measurements is large). Example similarity functions are

cosine similarity and histogram intersection (Table I).

The dual type of functions – dissimilarity measures – can

also be used. The Euclidean distance, for instance, has widely

been employed for many variants of k-nearest neighbors fin-

gerprinting. Dissimilarities, however, must be transformed to

similarities first. For this purpose, we transform a dissimilarity

function d(·, ·) into a similarity function sim(·, ·) by

sim(f ,gt) = 1/(ε+ d(f ,gt)) (2)

for some constant ε > 0. As argued in [1], the parameter

ε should be subject to optimization. One contribution of this

work is the automatic choice of ε via cross-validation. Table I

lists all measures employed for this work. We also refer to [1]

for details on the functions.

To be precise, similarities sim(g
(a)
t , f

(a)
i ) are computed

individually for all antennas a, a = 1, . . . , A. Then, the

similarities at all antennas are integrated to a single scalar



by averaging, weighted by the number of detected tags at the

respective antenna:

sim(gt, fi) =
A
∑

a=1

sim(g
(a)
t , f

(a)
i ) ·

n(g
(a)
t , f

(a)
i )

∑A

a=1 n(g
(a)
t , f

(a)
i )

(3)

where n(g
(a)
t , f

(a)
i ) := max(|g

(a)
t |, |f

(a)
i |)

be the maximum number of detected tags in g
(a)
t and f

(a)
i (i.e.,

|gt| :=
∑

1≤i≤L: gi>0 1).

D. Cross-Validation for Parameter Adjustment

The approach so far relies on three decisive parameters

which reveal impact on the localization result: The number of

considered neighbors, k, the distance-to-similarity conversion

parameter, ε, and the choice of similarity measure, sim. It

is desirable to optimally configure those values automatically

for every possible hardware setup and environment. Inspired

by recent papers [19], [20], [21], we employ cross-validation

(CV: e.g., see [29] for details) for the automatic choice of

the best (or close to optimal) parameter set: We split the

reference measurements (i.e., the calibration/training data) into

c folds (in our case, c = 5). Then, we evaluate the localization
performance on each of the c folds, using the other c − 1
folds as reference data. The test is repeated for different

possible combinations of parameter values. The combination

with the best localization accuracy on the training data is

finally selected for localization.

Cross-validation can be computationally expensive because

of combinatorial explosion. Still, it needs to be performed

only once, between calibration stage and actual localization.

Moreover, the experimental results in Sect. IV indicate that

CV can be performed fast for a reasonably limited parameter

subspace.

E. RSS Thresholding

The run time of computing the similarity between two RFID

fingerprints increases linearly with the number of detected

tags in the two of them. This value can be large in densely

tagged target surroundings such as in warehousing or logistics.

Computational time can be saved if the sizes of the mea-

surements get decreased: We propose to replace each RFID

measurement f (either reference or localization measurement)

by a more sparse representation f |≥ϑ, where ϑ serves as a

minimum threshold on RSS values:

f |≥ϑ(f) := (τ(f1), . . . , τ(fL)) (4)

with τ(x) :=

{

x x ≥ ϑ

0 else
(5)

Equation (5) is well-defined because RSS values were shifted

such that the minimum RSS value corresponds to 0 (cf.

Sect. III-B).

Thresholding leads to more components with a value of 0

among observation vectors. If the measured values for a

specific tag ID l in two compared vectors are both zero, these

components will be omitted in the evaluation of the similarity

(or dissimilarity) function. This speeds up computation times.

In opposition, observations of tags with larger RSS values will

not be pruned. They represent non-spurious readings. Larger

RSS values embody tags close to the antenna. They are likely

to well constrain the current position of the mobile platform.

In Sect. IV we will show that thresholding retains sufficient

information to still allow for comparable localization accuracy.

F. Particle Filtering and Observation Modeling

In our earlier paper [1] we showed how to embed k-nearest

neighbors fingerprinting into a particle filter. In the work at

hand, we apply the same technique and briefly summarize it

below for the sake of the self-containedness of this paper.

A particle filter [30] is a probabilistic method to estimate

a not directly observable, dynamic state, e.g., the pose of

the robot. Being a nonparametric Bayes filter, it recursively

approximates a density over robot locations by a discrete set

{(x
(i)
t , w

(i)
t )}1≤i≤N of N samples (particles) for each time

step t. The x
(i)
t = (x

(i)
t , y

(i)
t , θ

(i)
t ) are pose hypotheses (2D po-

sition (x
(i)
t , y

(i)
t ), orientation θ

(i)
t ) with associated importance

weights w
(i)
t . The pose estimate x̂t at time t is obtained via

the weighted mean of sample locations, x̂t =
∑N

i=1 w
(i)
t x

(i)
t .

Particle filtering is known to be robust, accurate, and to permit

arbitrarily shaped noise distributions. For details, we refer

to [1], [30], [31].

Particle filtering comprises three central, iteratively applied

steps: One of them is prediction, in which particles are prop-

agated according to control input (e.g., odometry or inertial

data) and a motion model. The second one is the correction

step, in which particles are reweighted according to sensor data

and an observation model, as detailed below. Resampling, the

third type of steps, is applied to select the most likely samples

whenever a part of the samples are degenerated.

The RFID-specific model to be adapted is the observa-

tion model. It represents the likelihood p(gt |x
(i)
t ,m) of

observing the current measurement gt for a sample placed

at position x
(i)
t , given the M reference fingerprints m =

{(f1,x1), . . . , (fM ,xM )}.
We approximated the observation likelihood p(gt |x,m) in

pose x by expanding the map m [1]:

p(gt |x,m) ≈ ν

k
∑

j=1

sim(gt, fij ) exp

(

−
1

2
d2(x,xij )

)

(6)

ν is a normalizer which ensures that the likelihood is a

probability density; it does not need to be computed explicitly,

because importance weights are normalized after applying the

observation model. d2(·) is a kernel which considers both

translational and rotational displacement:

d2(x,xij ) =
(x− xij )

2

σ2
d

+
(y − yij )

2

σ2
d

+
(θ ⊖ θij )

2

σ2
r

(7)

The ⊖ denotes the difference of angles over the interval

[−π, π]. σd and σr are bandwidth parameters for the trans-

lational and the rotational distance components, respectively.

Visually, the observation model (6) rewards particles with po-

sitions and orientations close to similar reference fingerprints.



TABLE II
DESCRIPTIONS OF EXPERIMENTAL DATA: RANGES (MIN.-MAX.), MEAN VALUES (∅), AND SUMS (Σ) OF THE FIVE LOG FILES PER DATASET

Reader Transmission Number of Number of unique tag Trajectory Duration Tag detections Tag count
power (dBm) RFID measurements IDs detected per log length (m) (s) per inquiry per detection

Impinj 30.0
1014-1176 414-452 206-245 528-613 0-82 0-28

∅: 1064.0, Σ: 5320 ∅: 429.6 ∅: 223.8, Σ: 1119 ∅: 554.4, Σ: 2772 ∅: 32.3 ∅: 2.9

Impinj 22.5
1011-1147 246-259 207-239 525-597 0-31 0-63

∅: 1072.2, Σ: 5361 ∅: 255.4 ∅: 229.7, Σ: 1148 ∅: 557.7, Σ: 2788 ∅: 7.5 ∅: 6.1

Elatec 30.0
1018-1199 249-264 210-259 516-610 0-22 0-26

∅: 1095.8, Σ: 5479 ∅: 255.4 ∅: 225.9, Σ: 1129 ∅: 556.7, Σ: 2783 ∅: 6.7 ∅: 3.3

4 m

Fig. 4. Grid map of the experimental environment with a traversable area of
approx. 160m². Areas with RFID tags (attached to walls and furniture) are
marked orange and green.

IV. EXPERIMENTAL RESULTS

We conducted several real-world experiments to validate

effectiveness and accuracy of the proposed techniques. Two

identical MetraLabs SCITOS G5 robots (Fig. 1) served as

experimental platforms. The only difference was the type

of on-board, ISO 18000-6C compliant UHF RFID reader:

An Elatec SR-113 RFID reader was mounted on the first

platform, while the second robot featured an Impinj Speedway

reader. The Speedway reader reports detection counts and

peak RSS values of all detected tags; the Elatec SR-113

provides detection counts only. The RFID antennas (circularly

polarized) were fixed exactly in the same positions as shown in

Fig. 2. Characteristic read statistics at a single RFID antenna

are visualized in Figs. 3 (a)-(d).

The experimental environment is depicted in Fig. 4. Our

setup included approx. 260 RFID tags (type Alien Technology

Squiggle, ISO/IEC 18000-6C). The tags were placed on walls

and room equipment at different heights between the ground

and the level of the RFID antennas. As before [1], the

installation was not overly systematic by purpose. Besides

that, we tried to spread tags roughly in a balanced distribution

along the borders of the corridors. A number of tags in an

adjacent laboratory (green area in Fig. 4) were also sometimes

accessible by the readers.

We recorded three datasets of five log files each. Each log

comprises at least 1000 RFID measurements, odometry, and

true positions along one coherent, manually steered trajectory

through the environment. RFID measurements were acquired

at 2Hz. Reference positions and ground truth were recorded by

means of laser-based Monte Carlo localization as implemented

in CARMEN [28]. As shown in Table II, the logs contain the

data of approx. 16,000 RFID inquiries from more than 3 km

distance traveled in total. Histograms of RSS and detection

counts per tag and inquiry are depicted in Fig. 5.
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Fig. 5. Distributions of detection rates (top) and RSS values (bottom, Impinj
Speedway only) among the different data sets.

The experimental results below reflect the outcome of a

large number of trials run on the data in an offline fashion.

Each trial stands for localizing the robot on one entire log

file, using M = 2000 fingerprints from two of the remaining

log files as references. So, an outer CV over distinct log

files yielded the error values presented in the result figures

and tables. The inner cross-validation on reference log files

achieved parameter selection.

A. Parameter Cross-Validation

Tab. III lists the results of our approach including the cross-

validation of parameters and similarity measures. With the

Speedway reader and full transmission power, the mean lo-

calization errors were approx. 0.4m without particle filtering.

The mean tracking errors were below 0.25m when filtering

was applied. With the SR-113, the errors were larger (0.67m

and 0.29m without and with particle filtering).

Figure 6 (a) illustrates the cross-validation (CV) results

(ranging over k and ε) for different similarity measures (COS,

HIST, BC, EUCL, BHA) and for the case that also the

measure itself is selected automatically (AUTO). As a rule,

CV selection was superior. Only in case of the SR-113 reader,

the CV result was slightly worse than the optimum, but still

comparable. The figure also reveals insight to the ranking of
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Fig. 6. Cross-validation results and impacts of the different parameters (without particle filtering): (a) Localization accuracy using cross-validated parameters
for different combinations of reader type, transmission power level and measured variable (x-axis). The six curves represent the different similarity and
transformed distance measures with varying CV parameter space (k for similarity measures, k and ε for distance measures). The red curve (AUTO) represents
the mean loc. errors if the CV additionally evaluates similarity/distance measures. (b) Localization accuracy for the cosine and inverse Bray-Curtis similarity
under variation of k (ε = 1 fixed). The four curves represent mean loc. errors for combinations of measured variables (RSS/detection count) and the two
similarities in use (dataset: Impinj, 30 dBm). (c) Localization accuracy for the transformed distance measures under variation of ε when k = 2 is fixed. The
four curves represent mean loc. errors for combinations of measured variables (RSS/detection count) and the two distance measures (dataset: Impinj, 30 dBm).

the similarity measures. Cosine similarity (COS) and Bray-

Curtis dissimilarity (BC) performed best.

Figure 6 (b) shows that the CV actually selected the best

suited number of nearest neighbors, k. Moreover, the results

of RSS as the measured variable outperform the localization

accuracy of detection counts (details follow in Sect. IV-B).

As shown in Fig. 6 (c), the best choice of the distance

transformation parameter ε (see (2)) varies with each distance

measure. Optimizing ε yielded improvements of up to 5 cm.

A surprising result of Fig. 6 (c) is that the localization error

gets smaller with larger values of ε. On the other hand, Fig. 7

visualizes that ε and k mutually affect each other and that

higher values of ε provide less accurate localization results

for larger values of k. Thus, to achieve optimal precision, k
as well as ε need to be chosen with care.

Although the weights of the fingerprints become very small

for large values of ε (cf. (2) for ε ≫ d(f ,gt)), the order

of chosen candidate reference fingerprints is retained. Thus,

(1) degrades to a simple mean function, but still yields a

satisfactory approximation of the pose due to the similarity

in signal space. This characteristic emphasizes the advantage

of a particle filter, which uses a prior distribution to focus on

likely areas of the location space.

B. RFID Detections vs. RSS

The influence of the measured variable (RSS vs. detection

counts) is depicted in Fig. 6 (b) and Tab. III. For all inves-

tigated cases, the localization errors were smaller when RSS

was employed. The difference is considerable (approx. 7 cm)

without particle filter and with an RF power of 22.5 dBm.

Otherwise, RSS improved the positioning accuracy by 1-4 cm

only. The small amount of the deviations may be unexpected,

particularly because the range of RSS values is larger than

the range of detection counts (cf. Fig. 5). Still, as indicated

by Fig. 3 (d), the smoothed RSS values differ roughly as

much as the smoothed detection counts; they do not appear

to distinguish locations better.
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Fig. 7. Mean absolute localization errors for the inverse Bray-Curtis
dissimilarity under variation of k and ε.

This finding is similar to the results by Joho et al., who even

concluded that a “signal strength model alone was consistently

less accurate than the tag detection model” [9].

C. Impact of Particle Filtering

Additionally, we analyze the effect of temporal filtering.

Before our experiments, the parameters of the motion model

had been calibrated using the method by Eliazar and Parr [32].

We applied residual resampling whenever the effective sample

size (see. [30]) dropped below N/2. Each experiment was

repeated ten times in order to meet the random nature of

sampling.

The particle filter results are listed in Tab. III. By contrast

to WKNN, we show the accuracy of tracking, i.e., the initial

position of the robot was given. This way, the results reflect

the long-term accuracy as obtained when the observation

model from Sect. III-F is applied, independent of the initial

localization error. As can be seen, the mean absolute Cartesian

position error is between 0.20 and 0.26m for the Impinj

Speedway reader, depending on measured variable and trans-

mission power. With the Elatec SR-113, a tracking accuracy of



TABLE III
LOCALIZATION ERRORS AND INFLUENCE OF PARTICLE FILTERING

USING CROSS-VALIDATION-OPTIMIZED PARAMETERS (STD. DEV. OF MEANS OVER DIFFERENT TRAJECTORIES)

reader
type

measured
variable

transm.
power
(dBm)

k-nearest neighbors particle filter
Cartesian error (m) rotational error (rad) Cartesian error (m) rotational error (rad)

mean ± std.dev. max median mean ± std.dev. mean ± std.dev. max median mean ± std.dev.

Impinj

detection
count

30.0 0.433± 0.077 0.624 0.435 0.204± 0.036 0.216± 0.044 0.346 0.213 0.066± 0.012
22.5 0.537± 0.079 0.721 0.528 0.268± 0.054 0.256± 0.046 0.410 0.248 0.072± 0.010

RSS
30.0 0.399± 0.075 0.588 0.412 0.201± 0.038 0.203± 0.046 0.333 0.198 0.065± 0.013
22.5 0.470± 0.081 0.648 0.457 0.262± 0.055 0.225± 0.044 0.362 0.214 0.072± 0.010

Elatec det. count 30.0 0.671± 0.047 0.778 0.679 0.325± 0.022 0.286± 0.040 0.406 0.281 0.079± 0.007
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Fig. 8. Timing and accuracy of RSS thresholding: mean position tracking
accuracy (blue curves, left vertical axis) vs. computation time per correction
step of the particle filter (red curves, right vertical axis) for different thresholds

approx. 0.29m was achieved1. Furthermore, the mean absolute

orientation error was 4.5° or better for all data when particle

filtering was applied. These outcomes underline the benefit of

exploiting the temporal correlation of robot positions and the

incorporation of odometry.

D. Impact of RSS Thresholding

Figure 8 illustrates the results of applying a signal strength

threshold as described in Sect. III-E. We used a particle filter

with N = 1000 samples and M = 2000 reference fingerprints

on the Impinj dataset (30 dBm transmission power). We set

k = 4. The investigated similarity measures were cosine

similarity (COS), histogram intersection (HI), and inverse

Bray-Curtis dissimilarity (BC). The experiments were run on

a Linux PC (dual-core Pentium D 2GHz, only one core used)

with 2GB RAM. Based on the distribution of RSS values in

Fig. 5, we tested thresholds between -70 dBm and -50 dBm.

As can be seen, mean localization errors increased only

slightly when only RFID tags with an RSS value below a

threshold of less than -50 dBm were ignored. At the same time,

the run time was reduced considerably. For instance, applying

a threshold of -55 dBm decreased the duration of a particle

filter correction step from approx. 14ms to approx. 5ms in

case of cosine similarity. At the same time, the mean position

1In our earlier paper [1], the filter error was better (approx. 0.22m). There,
however, the tag density was larger: 8.5 instead of 6.7 tags were detected
on average (cf. Tab. II) with a larger mean tag count of 4.1 instead of 3.3.
Moreover, for the work at hand, we also recorded measurements in which no
tags had been identified. Such inquiries had been ignored in the former data.
On the other hand, the CV-enhanced method of the paper at hand revealed
approx. 20% better localization results on the former data [1].

tracking error increased from 22 cm by only 3 cm. However, a

threshold of -50 dBm lead to larger localization errors (mean

error of 30 cm at 2ms run time).

E. Impact of Transmission Power

Table III and Fig. 6 (a) highlight an interesting outcome with

respect to the employed transmission power level of the RFID

reader: In our experiments, the localization accuracy was better

with the greater transmission power. This result may appear

surprising. The models in Fig. 3 illustrate a smaller read range

when using less power; therefore the certainty about a position

should be higher when some transponder is detected. On the

other hand, greater transmission power also coincides with a

larger number of detections per inquiry and a larger spectrum

of RSS values (cf. Fig. 5). These factors seem to outperform

the aspect of certainty.

F. Run Times and Memory Consumption

Figure 8 underlines that our localization approach runs in

real time (more than 60Hz with N = 1000 particles) on off-

the-shelf PC hardware – even without RSS thresholding. This

fact promises that, by adjusting sample size and RSS threshold,

our approach is feasible also on less powerful embedded PCs.

Applying a particle filter with 1000 samples consumes

approx. 2ms more per observation than WKNN. The motion

model requires less than 1ms per step.

During localization, the reference fingerprints were kept in

memory without compression. Detection rates and RSS values

were represented by double precision. Depending on reader

type and transmission power level, between 2MB (Impinj,

22.5 dBm) and 13MB (Impinj, 30.0 dBm) RAM were required.

The mean duration of the cross-validation was 90.5± 41.5 s

on the same Pentium D 2GHz PC, but now using both cores.

V. CONCLUSION

In this work we presented extensive experimental results

of localizing a robot with an on-board passive UHF RFID

reader. We applied fingerprinting with different similarity

measures to both detection counts and received signal strength

as measured variables. Position and orientation of the mobile

system were estimated either by weighted k-nearest neighbors

or by additional particle filtering.

Comprehensive experiments showed that we could localize

the mobile system with the newer RFID reader at mean

Cartesian errors of approx. 0.4m without particle filtering.



With filtering enabled, we tracked the robot in real time at

errors slightly larger than 0.2m. The mean orientation errors

obtained were 11.5° and 4°, respectively. RSS-based localiza-

tion was slightly superior to detection rate-based localization.

Cross-validation, the only preprocessing step required, was

shown to be an effective tool to determine essential estimation

parameters automatically. The overhead in computational and

in programming complexity is negligible. Moreover, we pro-

posed RSS thresholding as a means of reducing computational

load in RSS-based localization at the expense of moderately

increased errors. We were able to save 70% run time, while

the mean tracking error increased by only 3-4 cm.

Future work may comprise the design of a novel similarity

function itself, since it reveals major impact on localization

accuracy. Moreover, the fingerprinting community has come

up with a variety of fingerprint selection and preprocessing

techniques that could be added to our estimation pipeline.

The experimental data of this work can be downloaded from

http://www.cogsys.cs.uni-tuebingen.de/datasets/rfid-ta2011. To

our knowledge, this is the first publicly available dataset of a

passive UHF fingerprinting setup.
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