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Abstract:

The capability of a robot to follow autonomously a

person highly enhances its usability when humans and

robots collaborate. In this paper we present a system for

autonomous following of a walking person in outdoor en-

vironments while avoiding static and dynamic obstacles.

The principal sensor is a 3D LIDAR with a resolution of

59x29 points. We present a combination of 3D features,

motion detection and tracking with a sampling Bayesian

filter which results in reliable person detection for a low-

resolution 3D-LIDAR. The method is implemented on an

outdoor robot with car-like steering, which incorporates

the target’s path into its own path planning around local

obstacles. Experiments in outdoor areas validate the ap-

proach.

Keywords: 3D perception, person detection, person fol-

lowing, car-like steering

1. Introduction

In the future we will likely see more and more robotic

assistants in outdoor work environments, e.g. in agricul-

ture, construction or forestry. In such fields humans and

robots will closely work together, and robots, which won’t

be fully autonomous in the near future, will still require

human guidance. A basic, but very helpful, capability for

such a robotic helper is the ability to follow on command a

human worker to a goal. Such a task is challenging for the

robot, as it has to detect a moving target, predict its move-

ments and follow with constant distance while avoiding

previously unknown static and dynamic obstacles.

In the presented system we use a 3D laser ranging sen-

sor, which has compared to vision-based systems the ad-

vantage that reliable obstacle detection and person track-

ing can be executed simultaneously with a single sensor.

Our particular sensor is based on a resonating MEMS mir-

ror and is certified for use in full sunlight (<=100000Lux),

a major feature for deployment in outdoor areas, in op-

posite to indoor systems like the Microsoft Kinect. Com-

pared to other outdoor-capable 3D-scanning systems, e.g.

manufactured by Velodyne with a pricing in the high five-

figure range, the sensor is still within a lower price range.

The challenge, and the main contributionof this work, is to

detect a person reliably in low-resolution sets of 3D point

data from a moving platform. For the person detection we

focus on using legs and feet, as it can be safely assumed

that in outdoor working environments human workers do

not wear floor-length coats or skirts. Legs as main features

offer the advantage, that they are also detectable for rang-

ing sensors with a limited field of view in vertical direc-

tion, as all the while the same sensor is needed to detect

obstacles on the ground in the driving path of the robot.

1.1. Related work on person tracking and robot fol-

lowing

The detection of persons in range data has a long his-

tory in robotics literature. Among others the approaches

differ in the choice of the principal sensor, the feature

extraction techniques, the methods for tracking and pre-

dicting moving targets and the targeted environment. [8]

presents an approach using an occupancy grid to detect

pedestrians with a 6-layer LIDAR. Stacked 2D features

with a 3D LIDAR are employed in [9]. The method works

reliably in near ranges, using an Velodyne 64E S2 with

about 20 times the resolution of the sensor used in this

work. However, recognition rates drop to 63% when per-

sons are represented by less than 200 points in the scan im-

age. The same sensor is employed in [10], where a variant

of GentleBoost together with temporal and static descrip-

tors is used for recognition of pedestrians and three other

object classes. A similar classifier is used together with

contour features in [6]. Other types of 3D-ranging sensors

have also been used for person detection, e.g. [2] uses a

time-of-flight-sensor with a Kalman filter for tracking and

in [11] a system based on a RGB-D sensor is presented

with a Reversible Jump Markov Chain particle filter for

fusing a number of different detection algorithms.

To our knowledge most of the publications about

people-following robots focus on indoor environments. In

[4] an indoor robot follows the exact path which the target

person took. This behavior is compared with a direct-to-

goal behavior with respect to human acceptance. A hybrid

strategy is suggested but not elaborated. A contribution of

this work is a heuristic implementation of this behavior. A

few works deal with robots and ranging sensors in outdoor

areas [1, 5]. [3] shows a vision-only based approach for an

outdoor robot in unstructured environments.

2. Person Detection and Tracking

The flowchart in Fig. 1 shows the main steps of the

presented person detection approach. After preprocessing

the LIDAR data and estimation of the ground plane candi-

date hypotheses are generated by first extracting suitable

segments from each horizontal scan line of the range data

and then grouping segments to segment blocks. Segment

blocks are classified and then tracked using a particle filter.

2.1. Preprocessing of range data and ground plane

detection

The current ground plane is estimated from range

using the RANSAC algorithm. The plane detection is

speeded up by taking the first two points from fixed spots
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Figure 1: Structure of Person Detection

Figure 2: Local map with inflated obstacles and LI-

DAR scan points above (white boxes). Points classified as

ground filtered out.Screenshot taken from rviz

in front of the robot and only sampling the third point.

Using the detected plane all points belonging to it are re-

moved from further computations. To obtain a local map

of the surroundings all other 3D points are projected on

this plane. Points with a height above the plane greater

than the height of the robot or person are excluded from

obstacle detection.

2.2. Segment-block-based feature detection

Legs, or actually leg parts, are modelled as cylinders.

The extraction of cylinders from the point cloud is per-

formed in three stages: In the first stage each 2D scanline

is separated into sets of segments using a jump detection

algorithm. Segments with lengths outside an interval are

purged. For each remaining segment a circle is then fitted

to the points. Here, it has to be taken into account that,

due to noisy range measurements, low resolution of the

scanner, disadvantageous viewing angle and loose-fitting

clothes, the circle-estimation might yield very imprecise

data. In the next stage horizontal segments are combined

to segment blocks. Two segments are grouped if they over-

lap each other in vertical direction with at least 50%. For

each segment block the following features values are cal-

culated:

– Average width wS of segments as euclidean distance

between first and last segment point

– Standard deviation of width σwS

– Total number of segments nS combined in segment

block

– Height hS of segment block above estimated ground

plane

– Number cs of segments within block, which can be fit-

ted a circle with parameters reasonable for a leg

– Average diameter ds of circular segments

– Standard deviation of circle diameters σdS

Segment blocks are assigned a score wb using a random

forest classifier which assigns for each feature a value de-

scribing how much this value is adequate for a human leg.

2.3. Classification and tracking of multiple hypothe-

ses

The tracking of person pose hypotheses is imple-

mented using a sequential importance resampling (SIR)

filter. The probability density of the target person’s posi-

tion is approximated with a set of m particles. Each par-

ticle represents a hypothesis si for position x, velocity v

person with an associated importance weight w.

The ego-motion of the target-following robot is com-

pensated using odometry data therefore at the beginningof

each sensor cycle all samples are shifted using the robots

displacement and rotation and their estimated own veloc-

ity:

x
i
k =k

Ok−1(x
i
k−1 + T · vk−1) (1)

withkOk−1 the transformation from previous to new robot

frame and T the time between two sensor updates. In the

correction step the current sensor measurement is used to

calculate weights for each sample. In this application, sen-

sor measurements are affected with non-gaussian noise.

The targeted person can be occluded and should not be

mismatched with another person. We propose a set of three

techniques to address this problem.

Using the best current target estimation to weight

observed segment blocks A pedestrian walks typically

with a speed of less than 10km/h. This implies that the tar-

get person moves only a small distance between two sen-

sor readings, and position candidates at greater distance to

the previous position are less probable than closer estima-

tions. To account for this we calculate a weight for each

segment block bj using the distance to the last best target

position estimate x∗and Gaussians distribution:

w
j
d = (2πT )−

1

2 exp(−
1

2T
(bj − x

∗)⊺(bj − x
∗)) (2)

The factor T in the equation takes account of the fact,

that the uncertainty about the targets’s position grows with

increasing time between sensor updates. The target posi-

tion is extracted using the robust mean where the position
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is calculated as the weighted mean of the samples in a win-

dow sized ǫ around the best particle smax, the one with the

maximum weight:

x
∗ =

m∑

i=1

x
i
w

i : |xi − x
max| ≤ ǫ (3)

Assuming noise-free sensor readings, this method

would calculate the goal position as the center between

the observed pair of legs.

Identifying the best fitting observation for each

sample In a noisy natural environment there are often

numerous observations, which are possible target candi-

dates. However, a target hypothesis si should not get a

stronger importance weight if there are multiple observa-

tions nearby, but should be associated with a single ob-

servation. Therefore for each sample we calculate the dis-

tance to each segment block weighted with the quality of

the segment block w
j
b

w
i,j
s = (2π)−

1

2 exp(−(bj − x
i)⊺(bj − x

i)) · wj
b (4)

and select the block with the maximum resulting

weight as the associated observation. Then, the predicted

weight wi is

w
i = max

j
(wi,j

s ) · wjmax
d (5)

Accounting for occlusions and sensor noise A dis-

advantage of approximating probability distributions with

a sampling importance filter is particle degeneration, i.e.

there are no particles left at the actual position of the goal.

A typical cause in our case are temporary occlusions of

the target or sensor noise. To account for this we calculate

the final weight for each sample in the current time step k

using a decay factor ǫn:

w
i
k = (ǫn + (1 − ǫn)w

i) · wi
k−1 (6)

The value ǫn is increased if there is an segment block

between the position of the particle and the sensor.

3. Motion planning and obstacle avoidance

for person following

A walking person is most of the time capable to leave

behind a wheeled non-holonomic robot in uneven outdoor

terrain. Therefore it is assumed that the person moves co-

operatively by walking on paths where the robot is able to

follow. We also assume that the environment is not known

in advance and features dynamic obstacles, like for exam-

ple other persons. Thus, the robot can only plan its move-

ment within the range of the LIDAR and must implement

a reactive behavior to avoid dynamic obstacles.

After extracting the ground plane as described in 2.1

a local 2D occupancy grid map is generated from LIDAR

data by projecting all obstacle points on the ground plane.

The map module is set up as a rolling windows which al-

ways keeps a list of detected obstacles with the robot in its

center and thus serves as memory of the robot for passed
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Figure 3: Motion planning using recorded path of target

person and locally detected obstacles. The robot drives to-

wards the most distant recorded waypoint which is directly

approachable.

obstacles. The area in the sensor’s field of view is con-

stantly updated while objects behind the robot fall out of

the map with the robot’s movement. The pose transforma-

tion of obstacles is executed using odometry data. For path

planning all obstacles are inflated in two levels: First by

the radius of the in-circle of the robots footprint and sec-

ond with a safety margin (Green and dark grey areas in

Fig. 2, obstacles in red).

There are different strategies for a robot to follow a per-

son. A simple but efficient method is the greedy strategy

where the robot attempts to drive the shortest path towards

a target point behind or next to the person. An alternative

approach is to constantly record the path the target per-

son is walking, and to follow this path as closely as possi-

ble. This incorporates the idea that the human has walked

the optimal path around encountered obstacles and lets

the robot benefit from human intelligence. However, this

approach may lead to unnecessary motions of the robot

and erratic behavior in case the target is momentarily lost.

In [7] a hybrid approach as the combinationof these strate-

gies is recommended, with a heuristic switching between

both behaviors.

The basic idea for the approach implemented in this

work is outlined in Fig. 3. The position of the target is

constantly recorded, so the robot always has a list of way-

points and thus the walked path of the person to follow.

In the given example the position of the target person is

not directly reachable. In this case, the history of way-

points is searched backwards, starting with the persons

position, to find a suitable point to drive to. As the robot

has Ackermann-type car-like steering, it drives along cir-

cle segments with a minimal possible turning radius deter-

mined by the wheelbase and the maximum possible steer-

ing angle. The cost of a path to a waypoint is determined

by summing up costs of the cells in the cost map.

For local obstacle avoidance a potential field approach

is used. The speed of the robot is controlled with a PID

controller.

4. Employed hardware

4.1. Robot platform

We conducted experiments with an outdoor-robot de-

veloped and built at our department (Fig 4). The plat-
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Figure 4: Robot with mounted 3D laser ranging sensor

Figure 5: Scene with two persons in the field of view

recorded with the FX-6-LIDAR. Ground is displayed

as small black dots, detected segment blocks as orange

squares and unclassified obstacles as green dots.

form is based on a RC-model truck in 1:8 scale with

Ackermann-type steering which was outfitted with a 32-

bit microcontroller for real-time control and an embedded

dual-core PC for high-level tasks. The odometry system

is implemented using an encoder inside the wheels for

counting wheel revolutions and hall sensors for measur-

ing the steering angle. To improve the quality of the po-

sitional estimation the odometry values are fusioned with

an IMU containing a magnetic compass using a Kalman

filter. With single-axis steering the robots have a minimal

turning radius of 0.87m. The robots are capable of driv-

ing in rough terrain with slopes up to 35°. The robot was

equipped with an U-Blox-6-GPS for logging and analyz-

ing the test drives.

4.2. 3D LIDAR Sensor

The employed 3D laser ranging sensor is an FX-6

shown manufactured by Nippon Signal Co. It is based on

an MEMS chip with a resonating micro-mirror. It scans

a pyramid-shaped area with a vertical angle of 50◦ and a

horizontal angle of 60◦. The sensor operates with a frame

rate of 16Hz and provides a resolution of 59x29 dots. The

usable range is 5m with a resolution of 1cm and an accu-

racy of 5%. Fig. 5 displays the typical output of the sensor.

5. Experimental Results

We tested our person-following robot system with a

number of test drives in the area surrounding the faculty

building shown in aerial view in Fig. 6. The environment is

typical for semi-urban areas, with paved roads, meadows,

but also gravel walks and wood-like areas with slopes up

[m]

[m
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Figure 6: Trajectories of the robot following a person, red

path three times around the faculty building with a total

length of 2083.4m

to 20%. Obstacles encountered by the robot include trees,

bushes, and lamp posts. At the final stage of our experi-

ments we conducted two test drives within different envi-

ronments (Tracks 1-2 in Fig. 6) and as final experiment a

long drive with a length of 2083.3m three times around

the building (Track 3). In all three test drives together the

robot followed a person for a total distance of 3.5km.

Track 1 took place on mostly even asphalt ground,

with the exception of a few curbstones which needed to

be crossed. In test drive 2 the robot was led downwards in

a park-like area with grassy underground. The track con-

tinued on a gravel walk near a few lamp posts which re-

semble in diameter and height human legs. Near the first

long curve the track continued on an ascending slope with

a maximal slope of about 20% towards the building. Af-

ter passing some trees and bushes the track ended on the

paved road. During track 3 the robot followed the person

continuously for about 30minutes and lost its target three

times. In two cases the robot continued autonomously af-

ter the person returned to the robot, only in one case, at

a sharp u-turn, the robot stopped in front of a wall and

manual steering with remote control was necessary to con-

tinue the track. However, during track 2 the same spot was

passed by the robot without any problems. Table 1 summa-

rizes some key figures of the drives. As local map build-

ing and motion planning rely heavily on the quality of the

odometry system, the long-term accuracy of the odometry

was evaluated as well. Fig. 7 displays the trajectory of the

robot on track 2 calculated from odometry data fusioned

with the 3D-magnetic compass, which shows, compared

to the cyan-colored GPS-trajectory in Fig. 6, the general

stability of the odometry in outdoor areas. The odometry

distance error is, as Table 1 shows, about 3.3% on asphalt,

and approximately 9.5% for tracks on other ground types.

The system also showed itself to be robust to other persons

crossing the path between the target person and the robot

(Fig. 9).
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No. Total

track

length

(GPS)

s[m]

Total track

length

(Odome-

try)

s[m]

Avg.

target

distance

davg[m]

Max.

target

distance

dmax[m]

Avg.

target

speed

vavg[m/s]

Max.

target

speed

vmax[m/s]

Avg.

robot

speed

ravg[m/s]

Max

robot

speed

rmax[m/s]

Max.

slope

[%]

Ground

type

1 552.73 534.64 3.1 5.5 1.05 1.58 1.04 1.69 2 mostly

asphalt

2 881.74 798.86 2.7 5.8 0.95 1.77 0.92 1.89 21.9 grass,

asphalt,

gravel

3 2083.26 1883.35 2.5 4.97 1.07 1.73 1.08 2.21 21.9 grass,

asphalt,

gravel

Table 1: Results of three person-following drives
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Figure 7: Compass-stabilized odometry trajectory of track

2.

Figure 8: A part of track 2 and 3 (gravel walk) with as-

cending slope along a curved path.

6. Conclusion

In this paper, we presented a robust robot system with

a 3D LIDAR, which is able to track and follow a walking

person in outdoor environments. Our experiments showed

the method to work stable especially at ascending or de-

scending slopes and when passing obstacles like trees and

lamp posts. We have addressed the problem of using a low-

resolution 3D laser scanner for the simultaneous tasks of

obstacle detection and recognition of persons.
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