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Abstract. Terrain classification is a fundamental task in outdoor robot naviga-
tion to detect and avoid impassable terrain. Camera-based approaches are well-
studied and provide good results. A drawback of these approaches, however, is
that the quality of the classification varies with the prevailing lighting conditions.
3D laser scanners, on the other hand, are largely illumination-invariant. In this
work we present easy to compute features for 3D point clouds using range and
intensity values. We compare the classification results obtained using only the
laser-based features with the results of camera-based classification and study the
influence of different lighting conditions.

1 Introduction

One of the most frequently mentioned applications for terrain classification in robotics
is the recognition and avoidance of impassable terrain. The robot must be able to decide
whether the terrain ahead is passable easily, passable with caution, or whether it is better
to avoid this terrain and to plan another path. Apart from this, terrain classification can
also improve the self-localization of a robot. GPS often is not very accurate and odom-
etry is error-prone, especially in rough outdoor environments. Then, the knowledge of
the terrain can be useful if the robot should follow a dirt road or a field boundary, for
example. In our experiments we consider five types of terrain that are often encountered
(see Fig. 1).

(a) Asphalt (b) Big tiles (c) Grass (d) Gravel (e) Small tiles

Fig. 1. Images and 3D scans of the considered five terrain types

A major challenge in the field of outdoor robotics is the changing lighting condi-
tions. The texture of the ground may look very different depending on time of day and



the currently prevailing weather conditions. These external factors influence the results
of camera-based terrain classification. Laser scanners, however, are largely independent
of these outdoor conditions and 3D LIDARs, which scan an entire area at a high frame
rate, provide enough information for terrain analysis. In this paper we show how to
extract features from these 3D scans that are fast to compute and yet are capable of dis-
tinguishing different terrain types. We consider four very different lighting conditions to
test the independence assumption and compare the results with a previously developed
camera-based method [KKZ11].

2 Related Work

Camera-based approaches for terrain classification are well-studied. There, the problem
is to find efficient and discriminative representations of texture information. This has
been done, for instance, in terms of co-occurence matrices, Local Binary Patterns, and
texton-based approaches. For the experiments in this paper we use the methodology of
an earlier work where we achieved good results using local image descriptors with a
grid-based approach [KKZ11] (see Sec. 4.2).

There exist several approaches for terrain classification that use range data in ad-
dition. In [Ras02] color and texture features are combined with geometric features ob-
tained from laser data for the purpose of road detection. A method for classifying the
traversability of terrain is proposed in [HOJ06]. A stereo camera provides the data to
learn geometric features for traversability, and color information is then used to en-
hance the geometric information. For a quick adaptation to different lighting conditions
color models are learned in an unsupervised fashion. In [HLAP11] they use the 3D laser
Velodyne HDL-64E S2 in addition to color cameras. The high-resolution data that this
laser delivers is used together with color and texture information to classify the terrain
in three classes: road, rough and obstacle. They further apply a Markov random field in
order to take into account the context-sensitivity of the individual terrain grid cells.

In the just-mentioned approaches only the geometric information from range data is
used. But most lasers also provide intensity values (also called remission or reflectance
values), which indicates the proportion of the emitted light that arrives back at the laser.
In [WSKB09] these intensity values are used to detect grass-like vegetation. They are
able to distinguish between street and grass with an accuracy of over 99%. As an ex-
planation of why this works so well, they state an effect well known from satellite
images analysis [MHSM95], namely that chlorophyll, a green pigment found in almost
all plants, strongly reflects near-IR light, such as that of a laser. Apart from the material
the intensity values also depend on the distance and the angle of incidence of the laser
beams.

We will show that with these values and the features presented in Sec. 4.1 not only
grass and non-grass, but several terrain classes can be distinguished from each other. In
a previous work where we presented a method for classifying plant species using a 3D
LIDAR sensor and supervised learning [WBL+10] we also experienced the discrimina-
tive power of the intensity values as the features based on these values were the most
important. There, the same 3D laser scanner was used, which we use here and which is
described in the next section.



3 Hardware

All experiments were performed with our outdoor robot Thorin, which can be seen in
Fig. 2. The robot is equipped with a Mini-ITX computer featuring a 2.26 GHz Core 2
Duo Mobile CPU and has, among other sensors, a Marlin F-046 C Color Camera and a
FX6 3D Laser Scanner by Nippon Signal.

Marlin F-046 C Color Camera
Vendor Allied Vision Technologies GmbH

Resolution 780 x 582 pixels
Frame Rate Max. 53 Hz

FX6 3D Laser Scanner
Vendor Nippon Signal Co., Ltd.

Resolution 29 x 59 data points
Frame Rate 8 or 16 Hz

Range 16 m
Scan Area 50◦ (hor.) and 60◦ (vert.)

Fig. 2. Outdoor robot Thorin with a Nippon Signal FX6 3D laser scanner and an AVT Marlin
F-046 C color camera

The color camera is able to take pictures at a frame rate of up to 53 Hz. It has both
manual and automatic white balance as well as an auto shutter and auto gain function.
All three auto functions were enabled for the experiments, as this is necessary especially
in changing lighting conditions.

The FX6 sensor uses a pulse laser in the near-IR range. It is lightweight and ro-
bust and largely illumination-independent, so that it works with ambient light of up to
100,000 Lux. Thus it is best suited to be used in different light and weather conditions.
A drawback of the sensor is its low resolution with only 29 x 59 data points. In addi-
tion to the distance an intensity value is returned for each point, which indicates the
proportion of the emitted light which arrives back at the sensor.

4 Terrain Classification

4.1 3D LIDAR-Based Feature Extraction

Filtering Since the laser scanner yields a lot of erroneous measurements, filtering of
the point cloud is a crucial preprocessing step. Some mismeasurements can be easily
identified by looking at the intensity values. Namely, extremely low or high values
indicate that it is almost certainly not a valid measurement.

To reduce the noise in the data, every point of the cloud that does not have a certain
number of neighbors within a fixed radius, is deleted. Filtering often removes up to
20-25% of the data.



Ground-plane detection After filtering the point cloud the next step is to detect the
ground plane, which is an easy task if it includes most of the points (see Fig. 3(a)).
Then one can simply apply sample consensus methods like RANSAC to find the largest
plane in the scene. These iterative methods estimate the parameters of a mathematical
model that best fits the observed data. We use a variant of the RANSAC algorithm
called MSAC [TZ00] which uses an M-estimator-based error function and provides a
more robust estimate without additional computational effort.

Scenes with multiple planes, especially when the ground plane is not the largest, are
more difficult to treat, e.g. when the robot is driving near a house wall (see Fig. 3(b)).
Then it is no longer enough to consider each frame individually. A simple yet robust
method is to only consider points near a reference plane and to update the parameters
of this plane every frame:

1. From the set P of all points consider only those points P′ = {(x,y,z)|(x,y,z) ∈
P∧ â ·x+ b̂ ·y+ ĉ ·z+ d̂ ≤ dmin} near the reference plane R : â ·x+ b̂ ·y+ ĉ ·z+ d̂ = 0
for a fixed threshold dmin

2. Estimate the parameters of the largest plane in P′: (a,b,c,d) = MSAC(P′)

3. Update the reference plane:
â := â+(a− â)/n, b̂, ĉ, d̂ resp.
n := n+1

The implicit assumption made here is that the terrain can be described by a pla-
nar surface. As the robot drove only on relatively flat terrain in our experiments and
the scanning range of the laser in front of the robot is very limited, this assumption is
justified. For uneven terrain this model has to be extended appropriately, e.g. by hierar-
chically refining the plane.

With the known parameters of the ground-level plane the data points can be trans-
formed so that the points belonging to the ground lie in the x-y-plane with the z-axis
pointing upwards and the origin projected onto the plane. Thereafter, a grid is laid on
the plane and only those cells in which there is a minimum number of data points are
considered for classification. A pre-classification can be made by looking at the maxi-
mum height of the points of a cell, which now is simply the maximum z value. Accord-
ing to a chosen threshold the cells can be classified as drivable and non-drivable. The
drivable cells can then be further divided into the different terrain classes. This is of
course a much too simple approach to detect obstacles, however, the focus of this work
lies not in obstacle avoidance but in distinguishing different terrain types.

Features Now, for every drivable cell, characteristic features can be calculated. Due to
the low resolution of the laser scanner only very few points per cell are present. Despite
this limitation the features must be discriminative enough to distinguish between differ-
ent terrain types. Below we present the eleven features used.

The height of the points above the surface not only is suitable for distinguishing
between drivable and non-drivable cells, but also within the drivable-terrain class height
features can be used to distinguish between smooth and rough terrains:



(a) (b)

Fig. 3. Ground-plane detection: The ground plane is detected even when there are larger planes
in the scene.

1. Maximum height: The maximum height of all points of a terrain grid cell regarding
the detected ground plane. After the transformation of the point cloud this is simply
the maximum z value.

2. Standard deviation of height: The standard deviation of all heights. Again, this is
just the standard deviation of all z values.

As stated in Sec. 2 the intensity values provide good features for terrain classification:

3. - 4. Minimum and maximum intensity: The minimum and maximum intensity value of
all points of a cell.

5. Range of intensity: The difference between the minimum and maximum intensity
value.

6. - 8. Mean, median and standard deviation of intensity: The mean, median and standard
deviation of the intensity values of all points of a cell.

The intensity values not only depend on the material but also on the distance and
the angle of incidence. And since the number of points of a cell tends to decrease with
the distance and thus also is characteristic, the remaining features are:

9. Distance: The distance of the grid cell to the laser origin.
10. Angle of incidence: The angle between the ground plane and the vector from the

grid cell to the laser origin.
11. Number of points: The number of data points belonging to a grid cell.

4.2 Camera-Based Feature Extraction

For camera-based classification, a virtual grid is drawn on the image and local features
are calculated across this grid. For this application we take three local image descrip-
tors: Local Binary Patterns (LBP), Local Ternary Patterns (LTP) and TSURF. Two of
these, LBP and LTP, are texture-based image descriptors, whereas TSURF is an interest
point image descriptor. These image descriptors have shown their strength in terrain
classification on mobile robots [KKZ11].

LBP is a very simple image descriptor which is calculated for each pixel consid-
ering a neighbourhood of 3x3. All the neighbours of this pixel are thresholded based
on the center pixel and resulted values are concatenated to form an 8-bit binary pattern



for this pixel. These binary patterns are calculated for all pixels in a patch and then a
histogram is calculated from all of these patterns. This histogram then gives a 256-bit
texture descriptor for this patch. LTP is an extension to LBP, in which a threshold value
is introduced while thresholding the neighbourhood pixels. This gives a ternary pat-
tern which is split into two binary patterns. These patterns are then concatenated and a
histogram is generated which gives a 512-bit texture descriptor for the patch.

TSURF is an extention of the SURF image descriptor. In SURF, interest points
are detected in an image which can be distinctively identified. These interest points are
then described using box filters. They enable to track features across images. In TSURF,
interest points are assigned to the intersections of the grid drawn on the image and then
descriptors are calculated to describe these points. Details can be found in [KKZ11].

4.3 Classification with Random Forests

It has been found that for both the laser and the camera-based classification Random
Forests are very well suited [Bre01]. A random forest is a collection of multiple decision
trees. In the training phase each tree is constructed by not considering all of the N
training instances but by randomly chosing N instances with replacement; so some are
chosen more than once, while others are omitted. Then, for each node of each tree a
different, also randomly chosen subset of all the features is considered to find the best
split. In the classification phase a new sample is pushed down each tree so that it ends
up in a leaf node with a corresponding class label. The final classification result then is
the majority of labels assigned to the sample considering all trees of the forest.

5 Experiments and Results

In order to assess the capabilities of the classification methods described in Sec. 4 under
varying lighting conditions, we tested them in four different settings:

1. Cloudy morning: no direct sunlight, soft shadows
2. Sunny midday: lots of sun, harsh shadows
3. Dusk: rapidly changing illumination
4. Night: diffuse light from street lamps

First, the laser- and camera-based approach were tested for each setting separately
to see how well the two of them deal with each in particular. Then, for each of the
two approaches a general model for all scenarios was built by taking the same number
of training data from each setting. Both methods are grid-based and have been tested
with different resolutions. In the laser-based method the grid is placed on the detected
ground-plane in three-dimensional space and the height and width of a square grid cell
is given in meters. In the camera-based approach a grid is drawn on the two-dimensional
image and the size is measured in pixels. Only for cells that are located relatively close
to the front of the robot (. 2m) enough laser measurements are available to classify
the cell. To enable a fair comparison, only image patches belonging to this area were
considered. In the camera-based approach each of the three descriptors was tested sep-
arately and then, for every setting and resolution, the best one was chosen. Fig. 4 shows



the true positive rates for the different settings and grid resolutions after a five-fold
cross-validation using random forests with 100 trees each.
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(a) Laser-based terrain classification
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(b) Camera-based terrain classification

Fig. 4. Classification results (true positive rates) for different lighting conditions and grid resolu-
tions. In (b), for every setting and resolution, the best result of the three descriptors is shown.

The laser-based classification provides consistently good results regardless of exter-
nal conditions and the chosen grid resolution, with a true positive rate of up to 90.5%
for the general model (see Fig. 4(a)). It performs best in the noon setting with a true
positive rate of up to 94.6%. Only considering the two classes of grass and asphalt for
classification demonstrates the laser scanner’s ability to detect vegetation as mentioned
in Sec. 2. Then, the true positive rates for all settings and all grid resolutions are above
99.9% (see Fig. 5(b) for an example of a classified point cloud).

In the camera-based classification the results depend on the chosen grid resolution.
LBP and LTP perform better with larger grid cells, while LTP outperfoms LBP in all
respects. LTP achieves the best results in the morning (96.6%) and at noon (94.2%)
and the worst results in the evening (83.8%) and at night (78.3%), considering a grid
resolution of 60 pixels each. TSURF performs better than LTP at small grid sizes and
worse at larger ones, since the results of TSURF may get worse again with larger grid
sizes. In contrast to LTP it copes very well with the night setting and achieves 91.0%
for a grid size of 30 pixels, but the best result in the evening setting is only 81.4%, again
for a resolution of 30 pixels. By selecting the most appropriate descriptor in each case,
good results are obtained for all scenarios, only the true positive rates in the evening
setting are somewhat lower (see Fig. 4(b)). That the results in the night setting are so
good seems counterintuitive, but can be explained by the fact that there is little but
constant light without harsh shadows.

6 Conclusions

In this work we studied 3D LIDAR- and camera-based terrain classification under dif-
ferent lighting conditions. We presented easy to compute 3D LIDAR features, and it
turned out that the intensity values provide the most characteristic features and that the
classification results are largely illumination-invariant and independent of the chosen
grid resolution. In the general case, regarding all scenarios and five terrain classes, true
positive rates of up to 90.5% were achieved. When only considering the two classes of
grass and asphalt, the rates for all settings were above 99.9%. A disadvantage of the 3D



LIDAR is the limited range due to its low resolution. In the camera-based classification
the results were somewhat more dependent on the lighting conditions and the resolution
but are remarkably good in the night setting with a true positive rate of up to 91.0%. In
the general case, rates of up to 87.9% were achieved, and the best results were made in
the morning setting with rates up to 96.6%.

Since the random forest not only returns a class label, but also the proportion of
trees that have voted for this class, one gets a measure that indicates how confident the
corresponding classifier is; this can be used for sensor fusion in future work.

(a) (b)

Fig. 5. Camera image and elevation map with laser-based terrain classification. Green: grass,
black: asphalt, red: high elevations
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