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Abstract—We present a novel approach incorporating a
combination of Radio-Frequency Identification (RFID) and
odometry information into the motion control of a mobile robot
for the purpose of path following in unknown environments.
Our method utilizes RFID measurements as landmarks and
makes the mobile robot autonomously follow a path that was
previously recorded in a manual training phase. The approach
needs no prior information about RFID sensor models, the
distribution and positioning of the tags nor does it require a
map of the environment. Particularly, it is adaptive to different
reader power levels and various tag densities, which have a
major impact on RFID performance. Extensive experiments
with a SCITOS G5 robot in different environments like a
library, a supermarket and hallways confirm the effectiveness
of our algorithm.

I. INTRODUCTION

Autonomous navigation of a mobile agent along a pre-

defined path has many applications, such as environment

monitoring, service and security. Traditional methods usually

use a map or landmarks to represent the environment. The

robot estimates its position by matching the sensor data and

the map or the landmarks, and determines its path to follow.

This has been studied extensively for indoor robots with

laser range finders by scan matching [1] or by comparing

the similarities of visual features from camera images [2].

However, these methods require a significant amount of

sensing and processing power.

Due to its simple, reliable and contactless way of identi-

fying products, RFID has become an emerging technology

and thus is already used in many industrial environments,

like warehouses, stores or even libraries. Therefore, we

propose a new method employing a combination of RFID

and odometry measurements for path following purposes.

In particular, we apply the teaching and playback scheme

to perform this task, which has already been successfully

used in different navigation systems [2]. During the teaching

stage, the robot is manually controlled to move along a

desired path. RFID measurements and the associated motion

information are recorded in an online-fashion as reference

data in this phase. In the second stage, the robot shall follow

this path autonomously. Therefore, we compare current RFID

measurements to the previously recorded reference data to

estimate the robot’s relative position. As a result, motion

control commands are generated by fusing the position and

reference motion data to steer the robot.
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This work also represents an extension to our previously

published approach on path following using received signal

strength (RSS) only [3]. Through the integration of odometry

data the robot is able to navigate along more complex paths,

as opposed to following a straight route in a hallway in [3].

Odometry, on the one hand, may be used to get quite accurate

estimates of the change in position over short periods of time,

but on the other hand, is very sensitive to error accumulation

over long distances. Therefore, we utilize a combination

of RFID as well as odometry information embedded into

a particle filter to compensate for the errors of both and

generate a new and reliable navigation system.

The remainder of this paper is organized as follows: After

an overview of the related work in Sect. II, we describe our

path following method in Sect. III. Then, the details of the

motion control algorithm are explained in Sect. IV. Finally,

we present experimental setup and results in Sect. V, and

draw conclusions in Sect. VI.

II. RELATED WORK

Most RFID related robotics research can be divided into

sensor-model and landmark based approaches, that focus

either on the mapping of the tags or on the localization of

a mobile agent [4], [5], [6]. Recent research also explores

the application of RFID for navigation and path following

purposes. Gueaieb et al. [7] utilized the phase difference of

RFID signals for the navigation task. The mobile agent was

able to follow virtual paths that link the tags’ orthogonal

projections to the ground.

Bahl et al. [8] introduced the first fingerprinting based

system (RADAR) for localization. Several distribution-based

extensions have later been proposed (e.g. by Youssef et al. [9]

and Ladd et al. [10]) to achieve a higher accuracy of the prior

localization. Vorst et al. [11] used vector space similarity

measures and weighted k-nearest neighbors (WKNN) on

RFID fingerprints for the localization of the robot.

III. ALGORITHM OVERVIEW

A. RFID Fingerprinting

Radio frequency (RF) location fingerprinting approaches

use the radio signal from RFID, WiFi access points, GSM

or other RF-based sensor networks to express the obser-

vations [8]. The actual location of an agent then is esti-

mated by matching current observations with the recorded

measurements in a database. These approaches do not rely

on an explicitly predicted model of the sensor’s behavior.

Instead, the a priori recorded set of fingerprints expresses

the sensor’s output at sampled locations in the global frame.
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(a) (b)

Fig. 1. (a): RFID-tagged library scenario. (b): High Frequency (HF, red)
and Ultra High Frequency (UHF, blue) tags attached to the books. Only the
passive UHF tags are used throughout our experiments - more information
on the environment as well as the project (AmbiSense) can be obtained
from http://www.ambisense.org.

Fingerprinting-based approaches therefore are assumed to

be more accurate and robust in regard to location-specific

distortions; for this reason, we use fingerprints in our path-

following approach.

B. Data Recording During the Teaching Stage

During the teaching stage, the robot is manually controlled

to move along a desired path in an RFID tagged environment.

While traversing the environment, arrays of RSS values ft
of the detected tags as well as odometry obervations mt are

gathered on the fly and stored as reference fingerprints Ft
at each time step t: Ft = ( ft ,mt). Whereas mt = (vt ,ωt),
with vt being the translational and ωt the rotational velocities

respectively. The resulting set of fingerprints M= (F1,F2, ...)
expresses the desired path in the spatial domain as pairs

of RFID and odometry observations. Since an RFID reader

may be equipped with several antennas a ∈ {1, ...,A}, each
fingerprint ft , in particular, is built up as a set of RSS

observations per antenna ft = ( f
(1)
t , ..., f

(A)
t ). Let L be the

total number of tags observed by all antennas at time t. Then,

for each antenna a, f
(a)
t = ( f

(a,1)
t , ..., f

(a,L)
t ) contains the RSS

value of tag l that is detected by antenna a at time t. In our

configuration, the robot has two antennas, so A = 2. The

reference fingerprints are sorted ascending over time, and

each fingerprint has a unique index i ∈ {1, ..., I}, where I is

the total number of reference fingerprints.

C. Navigation of the Robot in the Playback Stage

The goal of this stage is to make the robot autonomously

follow the previously defined path represented by finger-

prints only. The robot’s initial position, firstly, shall not

be constrained to the start position of the recording, and

additionally, the mobile agent shall be able to compensate for

small relative offsets to the recorded path. Using odometry

only, an offset to the reference path would obviously lead

to bad results. Therefore we utilize RSS as well as index

differences by comparing the current RFID observations with

the reference fingerprints for position corrections, as detailed

later (see Sect. III-E and Sect. III-F, as well as [3]). As a

result, the robot can adjust its position and movement in this

stage based on the RFID measurements, and we deal with

the cumulative errors of the odometry.

D. Similarity Measures

In our approach, we individually compute the similari-

ties between current RFID measurements and the reference

data for each antenna sim(g
(a)
t , f

(a)
j ). The overall similarity

sim(gt , f j) of the current observation to a reference finger-

print is calculated by weighting the individual similarities

with the number of tags detected at the respective antennas.

sim(gt , f j) =
A

∑
a=1

sim(g
(a)
t , f

(a)
j )

n(g
(a)
t , f

(a)
j )

∑A
a=1 n(g

(a)
t , f

(a)
j )

(1)

Here, n(g
(a)
t , f

(a)
j ) is the maximum number of detected

tags in g
(a)
t and f

(a)
j respectively. In our experiments, we use

the cosine similarity (COS) which has also been utilized by

Vorst et al. for localization purpose in [11].

sim(g
(a)
t , f

(a)
j ) =

∑L
l=1 g

(a,l)
t f

(a,l)
j

√

∑L
l=1 (g

(a,l)
t )2

√

∑L
l=1 ( f

(a,l)
j )2

(2)

E. Orientation Estimation with Particle Filters

As can be seen in Fig. 2, the angular deviation from

the expected path is approximated as the index difference

between the left (i
(0)
t ) and the right (i

(1)
t ) antenna:

et,θ = i
(0)
t − i

(1)
t (3)

An estimate for the index into the reference data can be

calculated by a mean of the indices over both antennas:

it =
i
(0)
t + i

(1)
t

2
(4)

Each antenna’s index is estimated by independent particle

filters. The state of each antenna is represented by N samples

(particles), that are updated after receiving new RFID obser-

vations. Each particle consists of a hypothesis index x
(n,a)
t

and a weight w
(n,a)
t . The estimated index of the antenna is

calculated by a weighted mean over all particles:

i
(a)
t =

N

∑
n=1

x
(n,a)
t w

(n,a)
t (5)

Particle filters perform three central steps iteratively:

1) Prediction: The position of each particle at timestep t

is predicted by its previous state, a control input (e.g.

odometry mt) and an uncertainty/noise model:

x
(n,a)
t = x

(n,a)
t−1 +N (µ ,σ2) (6)

Here, N (µ ,σ2) is Gaussian random noise added to

the control input, with µ mean and σ standard devia-

tion:
µ =

vt

vt,e(K f )
σ = µλ

In our case, the particles’ positions are actually ex-

pressed in the reference fingerprints’ index-frame and

represented by 1D scalar values (e.g. if a particle’s

position is between f5 and f6, xt ∈ [5,6]). Whereas σ
is proportional to a scalar factor λ and the mean µ ,
which is computed from the current velocity (based

on the control input mt) and the estimated reference

velocity (as explained in more detail in Sect. IV).
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(a) (b)

Fig. 2. Index estimation: (a) Robot following path with two antennas
(orange, purple), RFID tags (green), reference fingerprints (blue) and the
closest reference fingerprints (red box). (b) Respective similarities of left
and right antenna, that are used to estimate the index difference as well as
the overall weighted similarity.

2) Correction: The weights of the particles are updated

according to the observation model p(g|x,M), i.e., the
likelihood of measurement gt at sample xt given M

reference fingerprints:

w
(n,a)
t = η

(a)
t w

(n,a)
t−1 p(g

(a)
t |x

(n,a)
t ,M) (7)

Here η
(a)
t is a normalizing factor which ensures that

∑N
n=1w

(n,a)
t = 1 and M is the representation of the

desired path (as explained in Sect. III-A).

In our method, the observation model p(gt |x
(n,a)
t ,M)

represents the likelihood of observing the current fin-

gerprint gt from the sample position x
(n,a)
t given the M

reference fingerprints and is computed individually for

each antenna. Let f j1 , ..., f jK be the K most similar

reference fingerprints compared to gt (according to

Eq. (1)). We extract those by comparing the current

measurement gt to the reference fingerprints centered

around fit , i.e. { f j1 , ..., f jK} ∈ [ fit−K , fit+K ]. This im-

proves the robustness and reduces the computational

costs if the number of the reference fingerprints is

large.
p(g

(a)
t |x

(n,a)
t ,m) =

K

∑
k=1

sim(g
(a)
t , f jk)exp(−

1

2
d2(x

(n,a)
t ,x jk)) (8)

where d2(·) is a distance measure applied to the indices

of the respective fingerprints g and f

d2(x
(n,a)
t ,x jk) =

(x
(n,a)
t − x jk)

2

δd
(9)

and δd is the bandwidth parameter of the translational

displacement component. As a result, particles close to

similar reference fingerprints will get awarded by the

observation model Eq. (8).

3) Resampling: If the effective sample size (ESS) falls

bellow a predefined threshold, e.g. N/2, resampling is

performed and all degenerated particles are replaced.

F. Estimation of RSS Difference

The distance of the robot to the recorded path is expressed

as the weighted average over the RSS differences between

the current fingerprint and the K most similar reference

fingerprints.

et,d =
1

∑K
k=1 sim(gt , f jk)

K

∑
k=1

sim(gt , f jk)dt(gt , f jk) (10)

Where dt(gt , f jk) is the RSS difference of the fingerprints gt
and f jk . We assume the closest fingerprint to approximately

represent the same position and therefore have similar RSS

values for each detected tag. We use this difference as an

approximation for the distance of the robot to the reference

path. Since, in our setup (see Fig. 1(a)), the two antennas

span an angle of 180◦, dt(gt , f jk) can be expressed as:

dt(gt , f jk) =
L

∑
l=1

A

∑
a=1

(−1)a(g
(a,l)
t − f

(a,l)
jk

) (11)

IV. CONTROL ALGORITHM

Both the odometry and the RFID measurements are used

for the navigation of the robot. The movement of the robot is

divided into two independent components: translational (v)

and rotational velocity (ω). Let Km and K f be two manually

set scalar parameters describing the number of the closest

reference fingerprints taken for the estimation of v and ω ,

respectively. Then the estimated velocities vt,e and ωt,e can

be computed as the weighted average over the K ∈ {Km,K f }
closest reference fingerprints:

ωt,e(K) =
1

∑
it+K
k=it

sim(gt , fk)

it+K

∑
k=it

sim(gt , fk)ωk (12)

vt,e(K) =
1

∑
it+K
k=it

sim(gt , fk)

it+K

∑
k=it

sim(gt , fk)vk (13)

The parameter Km is used to control the translational speed

vt . It makes the robot speed down from its current speed and

thus prepare for a turn so that it can correct its position at

a lower speed. The translational velocity vt is computed as

follows:
{

vt = vt,e(Km), ωt,e(Km)>
ωmax
Km

vt = vmax, else
(14)

K f determines whether the robot should rely on RSS mea-

surements during the navigation stage and determines the

rotational speed vt . The rotational velocity is defined as:
{

ωt = ωt,e(K f ), ωt,e(K f )>
ωmax
K f

ωt = ωt, f , else
(15)

ωmax is the maximum rotation speed among all reference

fingerprints. ωt, f is the PID controller component, that com-

bines the orientation et,θ as well as the RSS difference et,d
to ensure that the robot follows the reference path. Since, in

our case, the RFID sample frequency is 2Hz and the robot

needs certain time to speed down from a higher speed, we

constrain Km to be larger than K f , otherwise the robot would

deviate from its tracking path.

V. EXPERIMENTS

A. Setup

The experiments were carried out with a SCITOS G5

service robot from MetraLabs, as shown in Fig. 1. The

robot is equipped with a laser range finder (SICK S300,

240◦ field of view), and a UHF RFID reader from Impinj,

Inc.. The laser scanner is used throughout our experiments

to provide the ground truth. The reader is equipped with

two circularly polarized antennas by Laird Technologies.
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TABLE I

DESCRIPTION OF EXPERIMENTAL DATA: RANGES (MIN.-MAX.), MEAN VALUES (∅)

Environment
Power Level

(dBm)
Number of RFID
measurements

Trajectory length
(m)

Duration
(s)

Tags detected
per inquiry

Number of unique
tags detected

Library 30.0 1076 50.76 538 10-144, ∅ :50.00 3313

Library 27.0 1072 52.86 536 5-136, ∅ :33.60 2397

Library 24.0 1067 53.12 533.5 3-70, ∅ :17.52 1363

Hallway 30.0 2910 140.73 1455 0-210, ∅ :21.21 725

(a) (b)

Fig. 3. The two experimental environments. (a): A library (9m×20m)
with shelves (red boxes) of books tagged with RFID labels. (b): Hallway
environment (50m×80m) which consists of an artificial supermarket lab-
oratory (red box), a computer museum (green box), and corridors (orange
boxes). Especially the corridor (dashed orange box) is used for performance
evaluation using different parameters like varying tag densities.

It features a maximum RSS sensitivity of -80 dBm and a

maximum read range up to approximately 7m.

We carried out our experiments in two kinds of environ-

ments: a library and a large indoor environment consisting

of mainly hallways, as depicted in Fig. 3. Firstly, we tested

our approach in a single corridor environment with varying

tag densities to obtain an optimal set of parameters. The set

of parameters was evaluated in another set of experiments

carried out in an RFID-tagged library. In a final stage, we

evaluated and verified the effectiveness and robustness of our

method in a large hallway environment (Fig. 3(b)).

The library contains about 7,000 books that are labeled

with passive UHF RFID tags (Alien Technology Squiggle,

ISO/IEC 18000-6C), as shown in Fig. 1(b). The books are

distributed on shelves at different heights reaching from

0.2m to 3m. We additionally placed tags on the walls of the

adjacent corridors (at intervals of about 0.5m and different

heights) to ensure an appropriate tag density in the untagged

areas. For the second environment, that was partly also

used by Vorst et al. in [12] (see Fig. 3(b)), we additionally

placed 250 tags at the walls of the long hallway part (see

solid orange box in Fig. 3(b)). These tags were distributed at

different densities to verify the robustness of our algorithm

under varying tag setups.

For the teaching stage, we manually steered the robot

in the corridor and recorded reference log files under four

kinds of tag densities, highest (23.0 tags per inquiry), high

(14.7 tags per inquiry), middle (7.8 tags per inquiry) and

low (6.1 tags per inquiry). The ground truth positions of the

robot, computed with a laser-based Monte Carlo localization

method, were recorded at the same time. For the purpose of

TABLE II

TRACKING ERRORS AND AVERAGE RUN-TIMES FOR VARYING NUMBER

OF PARTICLES IN THE HALLWAY ENVIRONMENT WITH A HIGH TAG

DENSITY.

Number of
particles (N)

Mean ± std. dev.
Tracking Errors (m)

Max. Tracking
Errors (m)

Run-times
(s)

50 0.1094±0.0806 0.3486 0.010

100 0.0946±0.0530 0.4412 0.011

500 0.0659±0.0377 0.1748 0.015

1000 0.0577±0.0484 0.1917 0.029

2000 0.0660±0.0554 0.2287 0.041

comparing the performance of our approach under similar

conditions, the recording of the references was performed

on similar paths. The sample frequency of the RFID reader

was set to 2Hz, and the maximum speed of the robot was

limited to 0.1m/s. In the library, three log files under different

RFID power configurations were also recorded as reference

data. As shown in Tab. I, approx. 1,100 measurements were

recorded for each log file, with a distance traveled of about

50m and a duration of about 10 minutes. In case of the

hallway environment, the robot traveled around 140m and

the tag density was slightly lower.

B. Impact of Particle Filter

The influence of the number of particles (N) on the

tracking accuracy and the run-times of the navigation was

examined in the first series of experiments. The algorithm

was running on an Intel Core i5-2410M @ 2.3GHz CPU,

with 4GB RAM. As shown in Tab. II, the tracking results get

worse with small N (e.g., N=50 or 100). We observed that

the robot could not navigate with smaller N than 20. With

N > 100, we achieved nearly the same navigation accuracy.

On the other hand, for larger N, the mean computational

times increase due to the amount of particles.

In the next series of experiments, we investigated the

stability of our approach for varying noise-levels (λ ) added
to the odometry input, as shown in Fig. 4(a). For small λ
(less than 0.2) the results are notably worse, whereas large

λ only decrease the tracking accuracy slightly. Obviously,

too small λ values lead to an underestimation of the actual

odometry error, and thus give bad results. On the other hand,

if the error is assumed to be too high, the particles are spread

more, and the overall particle density becomes lower. Still

the estimation domain is completely sampled and covered

with particles, whereas a lower particle density leads to

slightly worse results due to the lower resolution. Finally,

the best results regarding the experiments were achieved

with λ = 1.0, which seems to give the best estimation of

the control input’s error.
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Fig. 4. Tracking accuracy under different parameters. (a): Mean and median tracking errors for varying noise λ ; (b): Mean and std. dev. of tracking errors
for varying tag densities; (c): Impact of different transmission power levels and K f on tracking errors.

C. Influence of Different Tag Densities

We fixed N = 1000 and λ = 1 and measured the effective-

ness of our approach for various tag densities and different K.

The experiments were carried out in a corridor in front of the

supermarket laboratory. The results are shown in Fig. 4(b).

As can be seen, higher tag densities lead to better results

and increase the precision of our method by approx. 0.5m

as compared to the environment with the lowest density

(for K = 8). Moreover, we observed that the robot was

able to track the path at a maximum speed of 0.7m/s for

environments providing higher densities.

Generally, the choice of K = 8 produced the best results

for high tag densities. Surprisingly, this is not the case if

the environment features middle and low tag densities. It

is difficult to explain the direct relationship between the

tracking accuracy and K under middle and low tag densities.

Still, an optimization of K generates an enhancement in

navigation precision up to 0.13m and 0.2m for environments

with middle and low tag densities, respectively, and thus has

a major impact on the tracking accuracy.

D. Parameter Evaluation

In the next experiments, we investigated the average speed

that the robot can travel in the library under different maxi-

mum speeds vmax and Km, as shown in Fig. 5. We observed

that the speed and the accuracy always conflict with each

other. The largest Km lead to the best precision, but the

average speeds slightly decreased. This is because the robot

spends more time to move at a low speed while adjusting its

position before doing a turn. On the other hand, a smaller Km

results in a higher average speed but higher tracking errors.

In our experiments, the robot lost the path it needed to follow

for Km = 8 and vmax = 0.4m/s. Yet, in the library, the turning

activity happens quite often (18 times), which amounts to

70% of the whole path and thus obviously limits the overall

speed of the robot. In case of large environments with less

curves, the average speed would be far higher.

The hallway environment achieved a slightly lower ac-

curacy with mean errors of 0.2m (cf. Fig. 6(b)), which is

due to the lower tag density. At some areas of the track,

the RFID observations consisted of only one or even no

tag measurements at all. As a result, the tracking accuracy
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Fig. 5. Speed vs. accuracy. (a): Tracking accuracy under different maximum
speeds vmax and Km; (b): Average navigation speed.

dropped to 0.6m, since the measured RFID readings were

not sufficient to compensate for the error.

E. Impact of Transmission Power

In the next experiments, we examined the influence of

K f under different power configurations in the library. The

maximum navigation speed was set to 0.1 m/s and the

particle filter was running with a fixed amount of particles

of N = 1000. As can be seen in Fig. 4(c), a too large or

too small K f leads to higher tracking errors. The reason

is, that a large K f gives the robot a higher belief in the

odometry observations. Therefore, the robot relies too early

on odometry at a turning place and thus wastes time to adjust

its position through RFID observations. On the contrary, a

small K f makes the robot trust in the RFID measurements too

much and results in a delay for the robot to make a turn, since

RFID observations are used to make up for the errors of the
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Fig. 6. Ground truth, raw odometry data, and actual trajectory. (a):
Navigation results in the library: vmax = 0.1m/s, K f = 8, mean tracking
error of 0.064m. (b): Navigation results in the hallway environment:
vmax = 0.2m/s, K f = 8, mean tracking error of 0.2m. For a speed of 0.3m/s
or higher, the robot lost its tracking path at areas with a low tag density.

odometry and not to make the robot turn fast. Overall, K f = 8

and K f = 12 lead to roughly the same accuracy. At full power

and K f = 8, the robot achieves mean errors below 0.07m

with standard deviations of approx. 0.08m. An example of

an actual trajectory under full power with K f = 8 is shown

in Fig. 6. Compared with the mean error of 0.18m for the

raw odometry trajectory, our approach is more precise. Due

to its cumulative characteristic, the localization accuracy of

odometry will even get far worse for longer tracks. This can

be seen in the hallway environment (Fig. 6(b)), where the

mean error of odometry grows to 0.9m.

Fig. 4(c) also shows an interesting result for different

transmission power levels of the RFID reader: the tracking

accuracy remains the same or even improves if the power

is reduced from full power (30 dBm) to 27 dBm. But, if the

power is too low (24 dBm), the results get worse. By reducing

the power, the read range becomes smaller and less tags are

detected, thus the position uncertainty is lower. On the other

hand, a higher transmission power will report more tags per

inquiry and a larger band of RSS values. The additional

observations seem to make up for the uncertainty introduced

by the higher read range.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel path following approach

for mobile robots in RFID tagged environments using fused

RFID and odometry fingerprints. Our method does not rely

on an explicit map of the environment and is based on

the teaching and playback scheme. Key parameters were

evaluated in a library environment with thousands of tags.

The performance of our approach was validated in a large

hallway environment in regard to different setups.

At a max. speed of 0.3m/s and an RFID sample frequency

of 2Hz, our method achieved mean abs. tracking errors

of approx. 0.07m in the library. In our current work, the

max. speed of the robot is only 0.1m/s during the recording

stage, which is slightly different to our previous work [3].

There, the robot moved along a corridor at a max. speed of

0.3m/s during the teaching stage. However, the tag density

(about 12 tags per inquiry) was far lower than in the

library, supermarket and hallway scenarios, thus the inquiry

frequency was at 5Hz. If the reader was able to report tags

in high density environments more frequently, the recording

speed of the robot could be improved.

In the future, we are going to enhance the sample fre-

quency of the RFID reader to improve the recording speed

of the robot and thus minimize the efforts for the training

stage. We also plan to investigate practical applications of the

approach in regard to topological maps. There, paths between

nodes could be used to connect distinct places through edges.

A navigation from a starting node to a goal node could be

achieved by traversing the appropriate edges, which would

enable the robot to reach arbitrary predefined places by

graph-based path planning in large-scale environments.
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