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Abstract— We present a method of utilizing depth informa-
tion as provided by RGBD sensors for robust real-time visual
simultaneous localisation and mapping (SLAM) by augmenting
monocular visual SLAM to take into account depth data. This
is implemented based on the feely available software ‘Parallel
Tracking and Mapping” by Georg Klein. Our modifications
allow PTAM to be used as a 6D visual SLAM system even
without any additional information about odometry or from
an inertial measurement unit.

1. INTRODUCTION

A. RGBD Sensors

RGBD sensors are cameras that provide a regular color
(RGB) image augmented by depth measurements (D) for
a large number of image pixels. Early research on RGBD
sensors was based on combining color images with depth
measurements from time-of-flight cameras or laser rangefind-
ers. These usually produce only few depth measurements
compared to the number of pixels within the RGB image.

With the introduction of Microsoft’s Kinect, cheap and
lightweight 3D sensors with high resolution became widely
available and research on RGBD sensors greatly increased.
The depth sensing system of Microsoft’s Kinect was de-
veloped by and licensed from PrimeSense, whose reference
design is very similar and was available to a small group of
developers even before the release of the Kinect.

Both sensors provide frames at VGA resolution (640x480
pixels). If we want the depth image to be aligned pixel-
by-pixel to its color counterpart, we need to calibrate both
cameras and transform all points in the depth image into
RGB pixel coordinates, as the center of projection of both
cameras can never be at the same position. Fortunately, the
Kinect can do this transformation in Hardware already.

Fig. 1.
regular color (RGB) image (shown left) and a depth image (shown right,
visualized as a heatmap). Note that the latter is transformed such that each
position in both RGB and depth image correspond to the same ray in 3D.

Example RGBD frame captured using a Kinect. It consists of a
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B. Visual SLAM

There has been a large amount of work on visual si-
multaneous localisation and mapping already. The problem
of inferring camera poses and mapping its environment
given only images is also known as “structure and motion”
in the computer vision literature and as the problem of
photogrammetry, which dates back more than a century. The
main difference to visual SLAM in robotics is the need for
real-time algorithms: An autonomous robot needs to know
where it is while driving though an unknown environment.

Work on real-time visual SLAM started to spread after
Andrew Davison’s work on MonoSLAM in 2003 ([4]), which
used an Extended Kalman Filter (EKF) to track image
features and the camera pose. Due to the computational
complexity of the EKF, however, it can only track a very
limited number of features at the same time. Nistér in [10]
demonstrated that Visual Odometry (VO) can be computed
efficiently even by matching large numbers of interest points
in successive frames.

C. SLAM using RGBD Sensors

When using RGBD sensors, a whole new class of SLAM
approaches become available if we assume that there is
always a large number of depth measurements. Henry et al.
[7] match image features between successive RGB frames,
use depth to determine their 3D positions in each camera
frame, and estimate the transform between both frames by
aligning both sets of points, e.g. using one of the algorithms
described in [5]. After that they refine this transform by
running Iterative Closest Point (ICP) on both full point
clouds.

If it is always possible to extract the full 6D transform
between successive frames, the SLAM task can be divided
into a frontend estimating transforms between frames and a
backend optimizing the pose graph only, as in [6].

D. Our Approach

In constrast to the approaches mentioned before, we do
not want to rely on having depth measurements at almost all
pixel positions for two main reasons:

First, even modern RGBD sensors produce dense depth
images only under certain constrained conditions: They are
limited by their minimum and maximum range, they have
serious problems with glass and black material, and they
cannot cope with direct sunlight. This is demonstrated in
Fig. 2] We therefore want a SLAM system that integrates
depth data, if available, but can always fall back to pure
monocular SLAM using only the RGB image if there is no
depth information available.



Fig. 2.
depth information too much: Depths higher than the sensors’s operating
range, (indirect) sunlight, and both reflective and opaque surfaces lead to a
rather sparse depth image.

Example RGBD frame illustrating why we should not rely on

Secondly, we would like to integrate depth measurements
from sensors that work under a wider range of environmental
conditions but provide only very sparse depth information,
e.g. 2D or 3D laser rangefinders, in future work. We therefore
decided to start with an existing monocular SLAM system
and augment it so it takes depth measurements into account
for improved accuracy.

The main contribution of this paper is providing a tech-
nique to integrate depth measurements into an existing
monocular visual SLAM system. This consists of several
rather straightforward changes but also on a way to use depth
measurements as additional constraints in bundle adjustment,
which, to our knowledge, has not yet been explored.

II. PARALLEL TRACKING AND MAPPING REVISITED

Parallel Tracking and Mapping is available in source codeﬂ
and described in [8]. The original software builds keyframe-
based maps from data acquired by a monocular camera and
uses tracking to compute camera pose estimates relative to
the map at high frequencies. This is achieved by two threads
running in parallel: One thread is responsible for tracking
the camera relative to the map, a second thread integrates
new keyframes into the map and refines it using bundle
adjustment.

The map is stored keyframe-based and represents both
camera poses and map points in a global coordinate system.
It consists of an array of keyframes, an array of map points,
and maps both from each keyframe to the map points seen in
it and from each map point to all keyframes in which it was
found. Keyframes in turn contain a pyramidal representation
of a camera image, interest points for all levels of the image
pyramid, and an estimate for the camera pose from which
the image was captured. Map points are represented i 3D
coordinates and associated with an image patch around the
position in the keyframe where it was seen for the first time.

A. Tracking

A tracking thread tracks the camera position relative to the
existing map of the environment using the following steps:

o Predict the camera pose using a simple damped
constant-velocity motion model.

o Project all map points and keep only those that could
be visible at the predicted pose.

Ihttp://www.robots.ox.ac.uk/~gk/PTAM/

« Warp patches associated with these map points to ac-
count for the new viewpoint.

o Try to find these patches at the locations of FAST cor-
ners close to the expected position by comparing zero-
mean sum of squared differences of pixel intensities.

« Refine detections to sub-pixel positions.

« Update the predicted camera pose using Gaufl-Newton,
minimizing the reprojection error.

o Decide whether the current frame should be added to
the map as a new keyframe.

B. Mapping

The second mapping thread running in parallel integrates
keyframes whenever the tracking thread tells it to and spends
the rest of the time refining the map. It operates in an infinite
loop doing the following tasks:

1) Do local bundle adjustment, modifying the keyframes
closest to the most recently added only.

2) Try to find recently added map points in previous
keyframes.

3) Do global bundle adjustment, possibly modifying all
but the initial keyframe.

4) Clean up the map: Remove measurements that are
outliers, remove map points that are supported by too
few measurements.

5) Add new keyframe, if available.

Steps 2) to 4) are interrupted as soon as a new keyframe
should be added to the map.

C. Problems and Limitations

There are several problems and limitations that prevent
PTAM from being widely used for visual SLAM for mobile
robots.

1) Scale: Scale ambiguity is an inherent problem of
monocular visual SLAM. Using only a monocular camera,
we can infer the scale of the map and the camera motion
only if we have prior information about one of these two.
But even if we had a way of removing the global scale
ambiguity, e.g. by starting looking at a scene with known
dimensions, applying monocular visual SLAM systems on
long trajectories often introduces considerable scale drift.

2) Need For Triangulation: Another problem arises from
the fact that PTAM represents all map points as points
in 3D space. A point seen in a single monocular image,
however, can lie anywhere on a ray through the scene, so
PTAM needs to triangulate any point before it can add it
to the map. Because of this, PTAM cannot cope with pure
rotational movements: It can track previously triangulated
map points while rotating. But while they leave the field
of view of the camera, it cannot add new map points and
will finally lose track of the map. Requiring triangulation
also wastes information: Each map point has to be found
in two keyframes before it can be added to the map and
finally be used for tracking a third keyframe. If the map
point was added after the first detection, it could provide
useful information for tracking the second keyframe already.
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3) Large-Scale Mapping: PTAM was originally im-
plemented for augmented reality applications in small
workspaces and never intended for large-scale mapping. It
is therefore neither prepared to cope with loop closures nor
with processing too big maps. This affects both tracking, as it
iterates over all map point in each step, and mapping, which
cannot complete the global bundle adjustment step for maps
with too many keyframes and map points.

III. UsING DEPTH IN PARALLEL TRACKING AND MAPPING

This section describes small changes we made to PTAM in
order to efficiently employ depth information as provided by
an RGBD sensor, i.e. depth measurements for a large ratio
of image pixels. The changes decribed in this section are
rather specific to the PTAM software. Our most important
modification, using depth in bundle adjustment, can easily
be integrated into all systems based on bundle adjustment
and is therefore described in detail in Sec[[V]

A. Storing Depth Information

Up to now, our system considers depth information only
at the position of interest points in the color image. We
therefore store one depth value per interest point instead of
the full depth image.

B. Initialization

The original implementation of PTAM requires an inter-
active initialization procedure: The user needs to manually
select two frames viewing the same planar scene as an initial
stereo pair, from which it computes the relative transform by
homography estimation, triangulates corresponding points,
and uses these as the initial map. This initialization step
is trivial with depth information: We create the initial map
with a single keyframe from the first RGBD frame and add
map points for those interest points (FAST corners with non-
maximum suppression), for which we have valid depth data
available, as we can easily obtain the 3D position of any
point using its image coordinates and its depth.

C. Adding Keyframes and Points

When a new keyframe is added, PTAM tries to triangulate
interest points of the current keyframe using the previous
one and add it as a new map point. If depth is available,
we skip epipolar search and just add a new map point using
measured depth to obtain a 3D position. If there is no valid
depth measurement, we still use epipolar search to try and
triangulate it.

IV. BUNDLE ADJUSTMENT

Bundle Adjustment (BA) is the iterative optimization of
both camera poses and map points in order to minimize the
reprojection error, i.e the distance between the expected and
actually measured projected position of a map point within
the image of the camera at a certain pose. An extensive
overview over all facets of BA can be found in [13].

Using the notation of Klein in [8], BA minimizes the
following objective function:
N
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Where u; is the representation of the pose of camera i,
p; is the position of map point j, |le;|| is the reprojection
error of map point j in camera i, o j; its estimated standard
deviation, o7 is a robust standard deviation estimate across
all reprojection errors based on their median (see [14]), and
Obj is a robust objective function, e.g. Tukey’s biweight
function.

For regular BA, the reprojection error is the difference
between the expected position @t of a map point within the
image based on the current estimates of y; and p; and the
actual measured position u.

ejl:u—ﬁ (2)

For the rest of this paper, will assume the 2D reprojection
error to be measured in actual pixel positions. Minimizing it
in normalized image coordinates is an alternative, but using
pixel coordinates allows us to intuitively provide an estimate
for its standard deviation o j; (see Sect. [V-A).

A. Projection Model

PTAM models the position p € R® of map points in
world coordinates and camera poses A € SE(3) with the
corresponding transformation matrix T(A) € R™" using their
inverse pose, i.e. the position of point p relative to the camera
at pose A is:

pa=T(A)-p=Aep 3)

Where the latter is the composition of a 6D pose and a 3D
point using the notation as defined in [1].
The complete projection model used in PTAM is

u=c(h(T(A)-p)) @)

where:

« ueR? is the projected pixel position of the point T(A)-p
in camera coordinates,

e h:R> 5 R?, (px,py,pz)T - (&, &)T is the basic per-
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spective projection,

e ¢:R? - R? transforms normalized image coordinates
to actual pixel coordinates, considering the camera
calibration matrix and its distortion model.

B. Optimization

Minimizing Eq. (I) is usually performed by choosing Obj
according to an M-estimator and treating the minimization as
an iteratively reweighted (nonlinear) least squares problem.
This assumes we can approximate the cumulative objective
function by:

N
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Where the vector f consists of all reprojection errors
stacked to form a vector and W ist a weight matrix
weighing all measurements according to the value of the
objective function. This can then be optimized e.g. using the
Levenberg-Marquardt method. A detailed introduction would
go beyond the scope of this paper but can be found in [11].

In order to compute optimization update steps efficiently,
we need to know the Jacobians of the reprojection error
function with respect to the estimated point position and
estimated camera pose. The tutorial in [1] is an invaluable
resource for hints on this. For the projection model above, the
Jacobian Jj, of the reprojection error of a single measurement
of point p seen at pose A with respect to the point position
can be computed using the chain rule as:
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The first factor in this matrix product is the Jacobian of the
camera’s intrinsic calibration model. The second term can
easily be computed to be:
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i.e., the Rotation matrix associated with the pose A (see
[1] Eq. 7.13). Similarly, the Jacobian Js with respect to the
camera pose is:
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Only the last factor is different from Jp, i.e.:
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C. Integrating Depth

If we can gather additional information about the environ-
ment (here: depth data), we should really use this additional
information in BA for higher accuracy by adding more or
different measurements to be considered when optimizing
Eq. (I). Two alternatives quickly come to mind:
« Using the full 3D reprojection error, i.e. computing the
difference between expected and measured position of
a point in 3D instead of in 2D.

« Relying on the conventional 2D reprojection error with
an additional constraint for the deviation of measured
depth from the expected depth estimate.

It is important to realize that it does not matter whether we
mix measurements of different units or magnitudes in Eq. (I
as long as we provide a reasonable estimate of the error o7;
for each measurement.

D. BA with full 3D reprojection error

The idea of minimizing the full 3D reprojecting error is
convincingly simple: According to the RGBD assumption,
the full 3D position in camera coordinates of the point
corresponding to each pixel with depth available can be
computed from its normalized image coordinates n and depth
d:

(1)

Instead of minimizing the 2D reprojection error (c.f.
Eq. (2)), we can now minimize the 3D reprojection error:
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This leads to much simpler Jacobians compared to the 2D
case:
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The problem with using this representation, however, is the
fact that the 2D position of a measurement and its depth value
both introduce different types of errors, which we cannot
accurately acccount for by using only one single scale factor
in Eq. (T). We might be able to fix this by considering the 3D
covariance matrix. There is, however, a much more elegant
solution:

E. BA with depth reprojection errors

A much cleaner way of integrating depth is adding one
single 1D constraint per depth measurement in addition to
regular 2D constraints derived from the RGB image alone.

d=(T(A)-p), (15)

This is equivalent to using only the last row of Eq. (I2). The
corresponding Jacobians each consist of the last rows of Eq.
(13) and (T4), respectively.

By adding separate measurements for 2D and depth, we
can also treat their errors individually. Estimating these
errors is described in Sect. [V-Al and In addition to
modeling errors more accurately, we can also decide for each
measurement individually whether it is an outlier or not: If
the depth measurement at a certain position is completely
off and should be discarded as an outlier, there is still a
chance that the 2D measurement is correct and adds useful
information to the optimization system.

V. EXPERIMENTS

This section describes experiments conducted to model
measurement noise and to evaluate the gain in accuracy by
using the proposed way of integrating depth into monocular
visual SLAM.

We did our experiments on data recorded on a Metral.abs
SCITOS G5 rolling mobile robot with a differential drive
mechanism, a SICK S300 laser rangefinder for 2D locali-
sation, and a forward-looking Microsoft Kinect mounted on
its top. It traveled ca. 106 meters along a long corridor and
drove through a museum room with old computers behind



several glass cabinets. Long, weakly textured walls, reflecting
surfaces, and a mixture of artificial light and sunlight shining
through windows made this a challenging environment.

A. Modeling 2D Reprojection Errors

Klein and Murray in [8] already use observations with
different measurement noise estimates: Even using sub-pixel
refinement, we will expect the matching accuracy to be
proportional to the length of a pixel in the image that was
used for matching. This varies as map points can be found
at different levels of the image pyramid, yet their measured
image coordinates are given with respect to scale level 0.
The measurement noise is thus modeled as:

0';j=k~s,~j (16)

Where s is the scale of the pyramid level at which map point
j was found in keyframe i and k is an unknown scale factor.
The value of k is dropped in the original PTAM system as it
is the same constant for all 2D measurements and applying
a global scale factor to all measurements does not change
the optimization outcome.

In our case, however, we do need to estimate k in order to
combine 2D image point measurements with depth placing
neither too much nor too low confidence on either type of
measurement. We did this by running PTAM using only 2D
measurements and estimating k from the distribution of all
remaining reprojection errors, which yielded k = 0.987

B. Modeling Depth Errors

We used the Kinect sensor to record RGBD frames of a
single large planar wall seen at distances ranging from 0.5m
to 3.5m as we expected the error to depend on the true depth.
We used the LO-RANSAC algorithm [3] to estimate a planar
model of the wall for each of these frames and used this
model to compute the depth error, i.e. the z component of
the vector connecting the 3D point with the point at which
its corresponding ray in the scene intersects the plane.

In a second step we sorted all depth errors by the true
depth into bins of 10cm width and calculated the standard
deviation o, for each bin b. One can clearly see from Fig. 3]
(sampled standard deviation) that the error is proportional to
the depth squared, so we modeled the standard deviation by
a second order polynomial function

od)=a-d* 17)

where d is the depth of a reading. We estimated the parameter
a =3.331-10"3 by minimizing the relative error e, of the
model with respect to the standard deviations of the sampled

bins:
. _Z(Tb_o'(db)
b = 4 o

(18)

This noise model was measured using the easiest scenario
possible for a 3D sensor and assuming that all depth mea-
surements are statistically independent of each other. Due to
the measurement method of the Kinect, we can not expect
that this model is still valid for more complex or cluttered
environments. However, we can expect that the noise can

Noise of the Kinect sensor
0.040 I I I I

0.035 H — estimated noise model
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Fig. 3. Standard deviations of the Kinect sensor we determined exper-

imentally for different distances and the model we estimated from these
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Fig. 4. Trajectories as estimated by laser localisation (red), monocular

visual SLAM (yellow), monocular visual SLAM with 3D initialization
(blue), and SLAM with depth constraints (green).

still be modeled by function for complex scenarios but
with a higher value for a.

C. Evaluating SLAM accuracy

For accuracy evaluation, we modified our version of
PTAM to run in batch-mode in a single thread to process
every single frame recorded by the robot without randomly
dropping frames due to thread timings or the hard disk not
keeping up with the required bandwidth while playing back.
Ground truth data is available from 2D laser-based localisa-
tion within an existing 2D map of this environment. Fig. [
shows the trajectories estimated using different methods of
integrating depth data. The yellow line shows the resulting
trajectory of using regular monocular visual SLAM. Only
depth measurements from the very first RGBD frame are
used to initialize the map at the correct scale. If we did
not do this, the resulting map and trajectory would be of
arbitrary scale and we could not compare it to any other
result. The blue line in Figl] shows the trajectory obtained
by using depth information for initial 3D estimates of points
before they are added to the map. If there is no depth
information available for a prominent interest point, we still
fall back to epipolar search. The green line, finally, combines
using depth for initial 3D estimates and bundle adjustment
using depth data. We can clearly see the scale drift when
using monocular SLAM without additional information. In

TABLE I

LOCALIZATION ERROR AT THE END OF THE RUN.

[ [[ position error [m] [ orientation error [ ° ] |

monocular VO 16.78 2.61
with 3D initialization 9.64 2.28
with depth constraint 2.13 3.30




Fig. 5. A part of the environment (museum room) passed by our
mobile robot while recording the evaluation dataset. Each red dot shows
a pose estimate obtained after processing a single RGBD frame. Top: Full
colored point clouds of some of the keyframes, transformed according to
camera poses as reconstructed by bundle adjustment with depth information.
Bottom: Same perspective, but only actual map points are drawn.

our experiments, PTAM generally underestimated scale. This
could be due to the damped constant-velocity motion model,
which always underestimates the motion of a robot moving
at a constant speed. Tracking and bundle adjustment will
then iteratively approach the true motion of the robot but
rarely overshoot. Using depth for map point initialization
improves the estimated trajectory. There is, however, still a
a considerably large difference compared to the ground truth
trajectory due to scale drift. Only by adding depth constraints
to bundle adjustment we can finally get results very close to
what we expect from laser-based localisation.

VI. REsurrs
A. Conclusions

Even though modern 3D sensors are capable of providing
dense RGBD frames in some environments, relying on this
fact for SLAM in arbitrary environments is probably not a
good idea. As a simple alternative, we demonstrate an easy
way to utilize sparse depth information in a visual monocular
SLAM system without negative impact on its computational
complexity. We show that even using only these sparse
depth measurements effectively removes the scale drift and
improves the accuracy considerably from 16.78 meters down
to 2.13 meters over a traveled distance of 106 meters. This
is equivalent to a position error of 2.01%.

There are still some problems inherent to PTAM which we
did not solve in this work: As the map grows larger in the
number of keyframes () and the number of map points (M),
its global bundle adjustment step will at some point fail to
finish even a single iteration before it gets interrupted by new
keyframes being added, whis is due to its runtime complexity
of O(N?+ N>M). This could be sped up by utilizing the
sparse secondary structure of bundle adjustment as shown in
[9] or by optimizing the global system using faster iterations

that converge slower, e.g. by using conjugate gradient bundle
adjustment ([2]).

Global bundle adjustment would still not scale arbitrarily,
but using a combination of local bundle adjustment with
global pose graph optimization or a relative representation
as in [12] could solve this problem.

B. Future Work

Our future work will involve using different depth sensors
that might provide a much smaller number of depth mea-
surements, but work more reliably: We will try and utilize
depth information from 2D or 3D laser rangefinders in visual
SLAM. The hard part in this case, however, is inferring depth
at pixel positions when the next depth measurement is a
certain distance (in image coordinates) away.

We plan to deploy the system described in this paper for
SLAM on micro aerial vehicles. Due to the fast tracking
speed of PTAM even on constrained hardware we believe
it can provide pose estimates fast enough to control these
during autonomous flight.
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