
Real Time Face Detection using Geometric
Constraints, Navigation and Depth-based Skin

Segmentation on Mobile Robots
Vo Duc My

Cognitive Systems Group
Computer Science Department

University of Tuebingen
Sand 1, D-72076 Tuebingen, Germany
Email: duc-my.vo@uni-tuebingen.de

Andreas Masselli
Cognitive Systems Group

Computer Science Department
University of Tuebingen

Sand 1, D-72076 Tuebingen, Germany
Email: andreas.masselli@uni-tuebingen.de

Andreas Zell
Cognitive Systems Group

Computer Science Department
University of Tuebingen

Sand 1, D-72076 Tuebingen, Germany
Email: andreas.zell@uni-tuebingen.de

Abstract—Face detection is an important component for mobile
robots to interact with humans in a natural way. Various face
detection algorithms for mobile robots have been proposed;
however, almost all of them have not yet met the requirements
of the accuracy and the speed to run in real time on a robot
platform. In this paper, we present a method of combining color
and depth images provided by a Kinect camera and navigation
information for face detection on mobile robots. This method is
shown to be very fast and accurate and runs in real time in
indoor environments.

I. INTRODUCTION

Face detection is a necessary step for many other algorithms
of face analysis such as face recognition, face tracking and
facial expression recognition. With increased development of
sensor technology, robots will be equipped with more and
more different sensing modules, such as laser range scanners,
sonar sensors and Kinect cameras. Among them, the Kinect
is a relatively new device from which we can extract the
depth values and color values of an arbitrary position in the
image. Therefore, the Kinect becomes a powerful device to
help robots to explore objects in 3D real world space. In
this paper, we describe the way to combine color and depth
images from the Kinect with navigation data to build a real
time system of face detection. This combination gives us some
advantages. First, we can compute 3D geometric constraints
of objects based on depth values from the Kinect, which are
used for removing non-face regions. Second, we can apply a
new technique of depth-based skin segmentation for improving
the efficiency of finding human skin as well as increasing the
speed of detecting faces. By combining depth values, we can
isolate skin areas in different objects and in different distances.
Furthermore, we can determine the distance from them to
the Kinect camera; and therefore, we can limit the size of
potential faces in every skin region to reduce processing time.
Third, the combination of depth values and navigation data
gives robots an opportunity to determine 3D coordinates of
every position in real world space. Thus, robots can easily
ignore background regions, and only focus on the potential
facial regions. We tested our method and achieved remarkable

Fig. 1. Our face detection is able to run in real time on a robot platform
in an indoor environment. By using geometric constraints, navigation and
depth-based skin segmentation, the average processing time can be reduced
by a factor of 50, and false positives are decreased by several tens of times

results of computational speed and accuracy. Figure 1 shows
an example of our face detection which runs on the mobile
robot platform SCITOS G5.

The remainder of this paper is organized as follows: We
present previous researches on face detection in Section II. In
Section III, our method is described in detail. In Section V,
the experimental results obtained from our database are shown
and conclusions are given in Section VI.

II. RELATED WORK

There is a long history of researching face detection in
images and in videos. Some of these approaches can be applied
to detect faces in real time, such as using skin color [8], depth
information [11] and machine learning techniques [10], [9].

Especially, in applications for mobile robots, range data
is used to make face detection faster. Blanco [3] utilized
laser range scanners to determine potential candidates before
applying face detection methods. Fritsch [7] used a stereo
microphone to localize the voice of a talking person and detect
the persons legs using a laser range finder. Such methods that
use 2D laser range scanners do not give highly accurate results
because lasers provide poor features that let robots confuse
human legs with table legs or chair legs.

Additionally, geometric constraints based on depth informa-
tion or lasers are also used to limit the search of facial regions,
which was proved in [6]. Their approach uses geometric

constraints on possible human height and human facial size
and can remarkably reduce the amount of average computation
as well as decrease a large number of false positives. Even
though this approach can reduce the computational cost by 85
percent, it has not yet met the real-time requirements for an
image resolution of 640×480.

One further approach of face detection using depth infor-
mation is reported in [4]. Their method uses depth data from
a stereo camera to calculate the corresponding size of faces,
applies distance thresholding to avoid detecting faces in the
areas that are too far from the camera with too few face
pixels. In addition, they suppose that with traditional stereo
cameras, which provide sparse information, it is impossible
to calculate depth values in the areas without texture, and
in such areas, face detection methods do not work. There-
fore, the locations that do not contain depth information are
unnecessary to detect. In addition, the combination of depth
values and context information helps a robot to avoid finding
faces in irrelevant locations, such as ceiling, floor plane, etc.
This method improved the processing time of face detection
significantly . It is able to decrease the computational cost by
80 percent, but it reduces detection rate in the case that faces
are far from the camera or the faces are close to the image
bolder.

III. APPROACH

In this section, we describe our approach of real time face
detection in detail. Our approach includes six steps: First, we
use a strategy of sampling to reduce computational costs while
not affecting the accuracy of the algorithm. Instead of scanning
the whole image, we only collect data from several hundred
sampling points that span the whole image. In the second step,
we evaluate these sampling points under geometric constraints
to select appropriate points for finding potential face regions.
Similar to the second step, in our third step, we use constraints
of navigation to extract the sampling points that belong to
foreground and remove those which belong to the background.
In the fourth step, skin detection is applied to the regions that
are around the filtered sampling points. If the density of the
skin pixels around a sampling point is over a given threshold,
this sampling point will be kept for the next step. In the fifth
step, all selected sampling points are used for depth-based
skin segmentation to isolate potential face regions as well as
to estimate the sizes of the faces that possibly occur in these
regions. In the last step, these regions are scanned by a face
detector to localize human faces.
A. Sampling

A popular and efficient technique that we applied in this
paper is a sampling technique. For not losing the information
of potential face areas, the sampling interval must be small
enough to detect the smallest faces, which in our experiments
have the size of 20×20 pixels . We choose a sampling interval
of 10 pixels in both horizontal and vertical directions as
described in Figure 2. In addition, the sampling positions in
the color image and in the depth image must have the same
coordinates. In every sampling point, the information set of

depth value, skin region and navigation data is collected and
processed to serve the next preprocessing steps.

B. Geometric constraints
Based on the combination of color and depth images from

the Kinect and knowledge of the camera’s geometry, we can
compute 3D coordinates of every point. The robot can now
estimate the appropriate size of a human face at a certain
sampling point. A sampling point which is too far from the
camera can be ignored because the robot can not detect any
faces there even if they occur. The robot is also able to
ignore irrelevant regions which do not contain human faces for
instance, floor and ceiling. Furthermore, we limit the height of
the search area because we know the minimum and maximum
height of humans when they sit on a chair, stand or walk. We
now describe how to apply geometric constraints for a mobile
robot to limit the search space by using depth values collected
at sampling points:

First, we present the way to compute the transformation
between coordinates of the robot frame and 2D coordinates
of the images. We denote the 3D coordinates of an arbitrary
point in the robot frame with respect to the Kinect camera
with (cxp,

c yp,
c zp); ixp is the depth value of this point in the

depth image; iyp and izp are 2D coordinates of this point in the
color image. We mount the Kinect camera on the robot such
that the normal vector of the depth image plane is parallel to
the cxp axis and cyp and czp axes are parallel to iyp and izp
axes of depth image, respectively. We can now compute the
(cxp,

c yp,
c zp) coordinates

cxp =
ixp (1)

cyp =
(iyo− iyp)

ixp

fy
(2)

czp =
(izo− izp)

ixp

fz
(3)

where iyo and izo are 2D coordinates of the principal point,
fy and fz are the focus lengths of depth camera. Now the
height in robot frame coordinates of sampling points in the
depth image can be computed. The sampling points which are
out of range from minimum height hmin to maximum height
hmax are ignored since they are unlikely in potential facial
areas. Furthermore, the sampling points that are too far from
the camera are also ignored, as mentioned above

In addition, the robot can estimate the appropriate size of
human faces in different distances; therefore, it can limit the
range of scales to detect faces. We assume that average size of
a human face is 0.15 meters; therefore, the formula to estimate
the size of faces in images is

s f ace =
0.15 fy

d
(4)

where s f ace is the average size of faces in the distance of d
meters. The constraint of face size contributes to a significant
reduction of processing time because the robot only has to scan
potential facial areas in one scale instead of multiple scales.

Fig. 2. Example of sampling. The sampling interval is 10 pixels in both
horizontal and vertical directions

C. Navigation
One of the advantages of current robot software is that

it contains different modules, including cameras and other
sensors, motion control, navigation, etc. These modules run
concurrently and are able to share data. In our face detection
task, we utilize the navigation module for reducing the space
of searching faces. We found that the Kinect camera allows
a robot to determine 3D coordinates of every object with
respect to robot coordinates, while the navigation module
provides a robot with its 3D coordinates with respect to world
coordinates. Therefore, we can track human activity around the
robot. The fusion of these modules gives a robot the ability
to map the points in Kinect images to cells of an occupancy
grid map. This mapping helps the robot to avoid searching the
background regions whose corresponding cells are occupied in
the grid map, and focus on the regions of human activities,
whose corresponding cells are free.

We note that (rxc,
r yc,

r zc) are 3D coordinates of the Kinect
camera with respect to robot coordinates, (wxr,

w yr,
w zr) are

the coordinates of the robot with respect to the origin of the
navigation map and θ is the rotating angle of the robot. Thus,
the coordinates of an arbitrary point in the world space with
respect to robot coordinates, (rxp,

r yp,
r zp), are computed asrxp

ryp
rzp

=

rxc
ryc
rzc

+

cxp
cyp
czp

 (5)

After that the coordinates of this point with respect to the
origin of the grid map, (wxp,

w yp,
w zp), are computed by the

following formulas:wxp
wyp
wzp

=

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

rxp
ryp
rzp

+

wxr
wyr
wzr

 (6)

These coordinates are mapped to an occupancy grid map
to determine the corresponding cell. As a result, we use the
above formulas for updating navigation information for every
sampling point. A sampling point would not be used for
segmenting potential face regions when it is mapped to an
occupied cell in the grid map because it belongs to a certain
background area.

D. Skin detection
In this section, we explain a skin detection technique

mentioned in [8]. In general, the idea of this method is that

it tries to eliminate the influence of non-standard illumination
before using a set of simple rules which are very efficient to
classify skin and non-skin pixels under standard illumination
conditions. In order quickly eliminate non-standard illumi-
nation from images we use the Gray World assumption of
color compensation. The Gray World theory is built on the
presumption that the average surface color on the image is
achromatic. With this presumption, we try to find the scale
factors which adjust the color channels R, G and B in such a
way that their mean values are equal to the ones under standard
illumination. The scale factors are calculated as follow

sn =
tn
an

(7)

where sn is the scale factor of channel n, tn is the standard
gray value of channel n, and an is the average value of channel
n. Because the computation of the gray world method in
the whole image is a quite expensive while the illumination
does not change too much in short time, the scale factors are
only adjusted every second. After eliminating non-standard
illumination, image pixels are classified as skin or non-skin
using a set of fast and simple rules. So we denote I(i, j) as
the skin value in a point at row i and column j in the color
image. I(i, j) is equal to 1 if following rules [8] are satisfied
and equal to 0 if not:

R > 95 AND G > 40 AND B > 20 AND

Max{R, G, B}−Min{R, G, B}> 15 AND

|R−G|> 15 AND R > G AND R > B

where R,G,B are three values of red, green, and blue
elements in an arbitrary pixel, respectively. Such skin detection
method will be applied to determine whether the area around
a sampling point in color image is skin or not. T (m,n) is
defined as the sum of skin values in a set of pixels around the
sampling point at coordinates (m,n) and is computed by the
following formula:

T (m,n) =
2

∑
i=−2

2

∑
j=−2

I(sm+2i,sn+2 j) (8)

where s is the sampling interval. The area around the
sampling point at coordinates (m,n) is a skin area if T (m,n)
is higher than a threshold, otherwise it is non-skin area. The
calculation of skin areas around sampling points improves the
skin segmentation that will be mentioned in the next session.

E. Depth-based skin segmentation
Color-based skin segmentation is known to be a fast and

efficient method of finding potential facial regions. However,
a drawback of this method is that it is much influenced by
different illumination sources and also detects skin-tone color
objects (wood, hair, some clothes...), which both cause the
segmentation to fail. In many cases, segmented areas would
occupy a big part of the image. It makes the face detection
system run very slowly and less accurate. Furthermore, the
previous method of skin segmentation is used for classifying

Fig. 3. Result of depth-based skin segmentation. The skin regions such as
face, hand are segmented while false positives in background are removed by
constraints of geometry and navigation

every pixel into differently labelled skin regions, which takes
a lot of time. In this section, we describe our technique of
depth-based skin segmentation which improves efficiency of
finding human skin as well as reduces the computational
cost. Instead of classifying every pixel, we try to label every
sampling point in such a way that two sampling points have
the same label if their sets of conditions of depth values,
geometric constraints, navigation constraints, and skin values
are similar. The technique of skin segmentation using sampling
points remarkably reduces the processing time, in our case
by a factor of 100. The number of sampling points would
be reduced further if we use constraints of geometry and
navigation together with skin detection to filter sampling
points out of interest ranges. After using such constraints,
unnecessary sampling points are removed, and we use a fast
and accurate algorithm to segment these filtered sampling
points. This algorithm is used to classify filtered sampling
points into different labelled regions instead of classifying
image pixels. In our algorithm, two filtered sampling points A
and B will have the same label if the distance between them
is under a threshold, which is set to a half of the average size
of a face estimated at the sampling points. This threshold is
applied to remove the effect of disconnected skin regions on
a face which are made by noise and concave areas around
eyes. With such a strategy, all filtered sampling points are
classified rapidly into different skin regions as described in
Figure 3. In this figure, the false positives in the background
are removed by using constraints of geometry and navigation,
and the depth-based skin segmentation is applied to isolate
potential face regions.

The algorithm of depth-based skin segmentation is shown
to be faster and more accurate than previous algorithms of
connected components since we can remove false positives
in background and eliminate affect of noise without using
expensive operators of erosion and dilation

F. Face detection

In our system, we use the Viola-Jones algorithm [10] for
our system of face detection because it can process images
extremely quickly and is very accurate. There are three key
contributions that result in the extremely efficient Viola-Jones

algorithm: the integral image, Adaboost learning, and the
cascade architecture. The integral image is an effective image
representation to reduce computational costs when testing or
training Haar features. Adaboost learning allows to train a fast
and accurate classifier by selecting a small number of the best
features from tens of thousands of possible features. Finally,
these classifiers are combined to make a cascade architecture
model to quickly reject a large number of false positives in
the stages until achieving a high detection rate. Based on
these contributions, the Viola-Jones method is likely the fastest
machine learning method for face detection. However, when
dealing with a high resolution image, for instance, 640×480
in our system, the Viola-Jones method alone does not meet
the requirement of a real time face detection system for
mobile robots. Therefore, in our system, we apply the above
preprocessing steps to reduce the computational cost before
using the Viola-Jones face detector.

IV. EXPERIMENTAL SETUP

In this section, we present the experimental evaluation of our
system by using different constraints. To evaluate the accuracy
as well as the speed of our algorithm, we compared it with the
performance of Viola-Jones algorithm of face detection built
in the Intel OpenCV library [1]. All experiments are based
on our database collected from two kinds of mobile robots,
PR2 and SCITOS G5, and from different indoor environments,
including offices, corridors, kitchen, museum and laboratory.
The robots are equipped with Kinect sensors and Sick S300
laser scanners. We use a PC with a 2.4 GHz Intel Core 2 CPU
to test our algorithms in these experiments.

A. Datasets
To evaluate our face detection algorithm, we used two

challenge datasets. The first one is the Michigan dataset which
comprises seven ROS log files spanning from one to three
minutes, which are selected from datasets of detecting and
tracking humans [5]. The selected log files must contain front
faces in color images in different indoor environments, and
in different illuminations conditions. These log files in the
Michigan dataset recorded only Kinect color and depth images
at 30 frames per second, but do not contain an occupancy grid
map; therefore, we just use it for the first experiment which
does not require constraints of navigation. All these log files
are collected from the a Willow Garage mobile robot PR2
that moves around an office building with kitchens, corridors,
meeting rooms and departments to detect human front faces.
The mobile robot PR2 is equipped with a Kinect camera that is
mounted 2.0 meters high on the top of robot’s head, and looks
downward. The second dataset is the Tuebingen dataset which
consists of seven ROS log files collected from a MetraLabs
mobile robot SCITOS G5. Every log file lasts from one minute
to three minutes, and contains Kinect color and depth images,
tf transform messages, and laser range data. This mobile robot
used a Kinect camera mounted 1.1 meters high and looking
forward. To record the log files, the mobile robot had to
move around in our office building, including the laboratory,
the corridors and the museum with different backgrounds,

and different illumination conditions. Moreover, we provided
an occupancy grid map of our building for mobile robots;
therefore, the Tuebingen dataset can be used for both of the
experiments to test face detectors with or without navigation.
B. Implementation Details

To evaluate the efficiency of the constraints in improving
the processing time and accuracy, we carried out two different
experiments, in which we compared our algorithm with the
OpenCV face detector. The OpenCV face detector was run
from a smallest size of 20×20 pixels and scaled up by a factor
1.2 in whole images. The first experiment was implemented to
evaluate the role of geometric constraints and depth-based skin
segmentation in improving the face detection performance. A
face detector using geometric constraints, depth-based skin
segmentation but not navigation is shown to can run efficiently
in real time on mobile robot platforms as well as in surveil-
lance systems. This detector was compared with the OpenCV
face detector in accuracy and processing time. In the second
experiment, a second face detector using geometric constraints,
navigation and depth-based skin segmentation was compared
with the above face detector without using navigation and
the OpenCV face detector. This experiment was performed
to demonstrate the efficiency of navigation information in
reducing the number of false positives and the computational
cost.

Our whole system is programmed based on the ROS system
[2]. ROS is a powerful system for software developers which
provides libraries, tools, message-passing, package manage-
ment for building robot applications. Our robot system consists
of many ROS nodes such as the node of controlling the laser
range-finder, the node of performing localization, the node
of managing the Kinect operation, the node of providing the
graphical view, and the node of process odometry information.
By using ROS, the color and depth images from the Kinect
can be synchronized and fused with other sensors, and robot
coordinates are also updated frequently based on the tf package
which is responsible for computing 3D coordinate frames.
Furthermore, an occupancy grid map of our building is used
to provide the information of background for mobile robots.

Our face detection system can run at 7.9 milliseconds per
frame on average with an accuracy of over 95 % in our datasets

V. RESULTS
In this section, we compare the results of the accuracy and

speed between our face detection algorithm and the OpenCV
face detector. The first experiment of testing the efficiency
of geometric constraints and depth-based skin segmentation
was implemented in both datasets. The second experiment for
testing the influence of navigation ran on the Tuebingen dataset
which includes the occupancy grid map.

A. Processing time
Table I shows a distinguished difference between our de-

tector and the OpenCV face detector in processing time when
they are run on both datasets. We denote the first method
as the face detection method using geometric constraints and
depth-based skin segmentation.

TABLE I
COMPARISON OF PROCESSING TIME BETWEEN THE OPENCV FACE

DETECTOR AND THE FIRST METHOD.

Datasets OpenCV First Method

Michigan 500.1 ms 8.7 ms
Tuebingen 530.9 ms 13.1 ms

TABLE II
COMPARISON OF PROCESSING TIME AMONG THE OPENCV FACE

DETECTOR, THE FIRST METHOD AND THE SECOND METHOD.

Dataset OpenCV First Method Second Method

Tuebingen 530.9 ms 13.1 ms 7.9 ms

We can find that processing time of the face detector using
geometric constraints and depth-based skin segmentation is
much less than that of the OpenCV face detector because its
average processing time is only 8.7 ms in the Michigan dataset,
and 13.1 ms in the Tuebingen dataset. At such speed, it runs as
much as 41 to 57 times faster than the OpenCV face detector.
It also means that the use of geometric constraints and depth-
based skin segmentation can reduce the computational cost by
98 %.

To evaluate the contribution of navigation, we continued
implementing the second experiment to compare the face
detector using geometric constraints, navigation and depth-
based skin segmentation with two above detectors. Table II
shows the results of the three methods which are run in the
Tuebingen dataset. We denote the second method as the face
detection method using geometric constraints, navigation and
depth-based skin segmentation.

With average processing time of 7.9 ms, the second method
is even faster than the first method, and it also means that
the computational cost are reduced by 99 %. Therefore, the
navigation information plays an important role in avoiding
searching irrelevant regions as well as avoiding unnecessary
computations. That is one of the advantages of mobile robot
in building such real time systems as face detection, or face
recognition.

B. Accuracy
To evaluate the accuracy of a face detection method, we

have to consider both the ratio of true positives and the ratio of
false positives detected in the datasets. A good algorithm must
not only achieve a high detection rate of true positives but also
limit false positives in an image. In the experiments, we found
that besides the advantage of processing speed, our methods
can also improve the accuracy of face detection significantly:
the ratio of detected true positives is similar to the OpenCV
face detector, the ratio of false positives is much lower.

In the first experiment, we use both datasets without the
occupancy grid map for testing the OpenCV face detector
and the first method. Table III shows the comparison of the
accuracy between these face detectors. The correct detection
rate of our method is still high, 95 %, even though it is a little
lower than the OpenCV face detector, 96 %. But our method
improved remarkably the average false positives per frame,
only 0.003, compared to the OpenCV face detector with 21
times more, 0.063. In general, the accuracy of our method is
still more reliable than the unmodified OpenCV face detector.

TABLE III
COMPARISON OF THE ACCURACY BETWEEN THE OPENCV FACE

DETECTOR AND THE FIRST METHOD.

Face
Detectors

Correct Detection
Rate (%)

Average False
Positives per Frame

OpenCV 96 0.063
First Method 95 0.003

TABLE IV
COMPARISON OF THE ACCURACY AMONG THE OPENCV FACE DETECTOR,

THE FIRST METHOD AND THE SECOND METHOD.

Face Detectors Correct Detection
Rate (%)

Average False
Positives per Frame

OpenCV 97 0.079
First Method 95 0.005

Second Method 95 0.005

In the second experiment, we only use the Tuebingen dataset
which contains the occupancy grid map for testing three face
detectors. Table IV shows the comparison of the accuracy
among them. We also compared the face detectors based on
two criteria of the correct detection rate and the average false
positives per frame. Both of the first and second methods
achieve the correct detection rate of 95 %, which is slightly
lower than the OpenCV face detector but their average false
positives per frame are 16 times less than the OpenCV face
detector. This showed that our face detectors are reliable for
mobile robots. The reason is that the preprocessing steps
eliminate almost all of the background which contains a lot
of false positives, but do not affect the correct detection rate
much.

Figure 4 shows the result of our face detection in different
cases: a group of people standing at roughly the same distance;
several people standing at different distances to the robot;
people standing near a wall; people with different skin color;
people at far distances.

VI. CONCLUSION

This paper demonstrates that the contributions of geomet-
ric constraints, navigation information and depth-based skin
segmentation to face detection are remarkable. Based on their
combination, mobile robots are able to localize human faces
in real time, and interact with humans in a more reliable
way. In our future work, we focus on a promising direction
of face tracking using navigation information. When human
moving directions are repetitive, a robot can compute prior
probabilities to predict the next face positions in 3D space.

REFERENCES
[1] Opencv, www.intel.com/research/mrl/research/opencv/.
[2] Ros, the robot operating system. http://www.ros.org/.
[3] J. Blanco, W. Burgard, R. Sanz, and J.L. Fernandez. Fast face detection

for mobile robots by integrating laser range data with vision. In Proc.
of the International Conference on Advanced Robotics (ICAR), 2003.

[4] Walker Burgin, Caroline Pantofaru, and William D. Smart. Using
depth information to improve face detection. In Proceedings of the
6th ACM/IEEE International Conference on Human-Robot Interaction
(Late Breaking Papers Track), Lausanne, Switzerland, 2011.

[5] Wongun Choi, C. Pantofaru, and S. Savarese. Detecting and tracking
people using an rgb-d camera via multiple detector fusion. In Com-
puter Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pages 1076 –1083, nov. 2011.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Result of our face detection in different cases. 4(b), 4(c): A group of
people standing at roughly the same distance; 4(a), 4(d), 4(e): Several people
standing at different distances to the robot; 4(g), 4(h): People standing near
a wall; 4(e): People with different skin color; 4(f): People at far distances

[6] M. Dixon, F. Heckel, R. Pless, and W.D. Smart. Faster and more accurate
face detection on mobile robots using geometric constraints. In Intel-
ligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on, pages 1041 –1046, 29 2007-nov. 2 2007.

[7] J. Fritsch, M. Kleinehagenbrock, S. Lang, G. A. Fink, and G. Sagerer.
Audiovisual person tracking with a mobile robot. In In Proc. Int. Conf.
on Intelligent Autonomous Systems, pages 898–906. IOS Press, 2004.

[8] J. Kovac, P. Peer, and F. Solina. Human skin color clustering for face
detection. In EUROCON 2003. Computer as a Tool. The IEEE Region
8, volume 2, pages 144 – 148 vol.2, sept. 2003.

[9] A. Treptow and A. Zell. Combining adaboost learning and evolutionary
search to select features for real-time object detection. In Evolutionary
Computation, 2004. CEC2004. Congress on, volume 2, pages 2107 –
2113 Vol.2, june 2004.

[10] Paul Viola and Michael J. Jones. Robust real-time face detection. Int.
J. Comput. Vision, 57(2):137–154, May 2004.

[11] Haiyuan Wu, Kazumasa Suzuki, Toshikazu Wada, and Qian Chen.
Accelerating face detection by using depth information. In Proceedings
of the 3rd Pacific Rim Symposium on Advances in Image and Video
Technology, PSIVT ’09, pages 657–667, Berlin, Heidelberg, 2008.
Springer-Verlag.

