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Onboard Monocular Vision for Landing of an MAV on a Landing Site
Specified by a Single Reference Image

Shaowu Yang, Sebastian A. Scherer, Konstantin Schauwecker and Andreas Zell

Abstract— This paper presents a real-time monocular vision
solution for MAVs to autonomously search for and land on
an arbitrary landing site. The autonomous MAV is provided
with only one single reference image of the landing site with
an unknown size before initiating this task. To search for such
landing sites, we extend a well-known visual SLAM algorithm
that enables autonomous navigation of the MAV in unknown
environments. A multi-scale ORB feature based method is
implemented and integrated into the SLAM framework for
landing site detection. We use a RANSAC-based method to
locate the landing site within the map of the SLAM system,
taking advantage of those map points associated with the
detected landing site. We demonstrate the efficiency of the
presented vision system in autonomous flight, and compare
its accuracy with ground truth data provided by an external
tracking system.

I. Introduction

Micro Aerial Vehicles (MAVs) are a growing research area
that has attracted much attention in the robotics community
in recent years. One focus has been on using onboard sensors
such as cameras and laser scanners, which do not rely on any
external signal, to facilitate their autonomous flights. These
onboard sensors are important replacements for GPS sensors
in environments where GPS is unavailable or not reliable, as
e.g. indoors or in outdoor urban areas.

Compared with other sensors, cameras have a supe-
rior potential for environment perception, while still be-
ing lightweight, relatively low cost and energy efficient.
Furthermore, unlike stereo cameras with small baselines, a
monocular camera does not lose its functionality even for
large working distances, if scale information is provided.
Those advantages make monocular vision very attractive for
research on autonomous flight of MAVs, which in general
have very limited payload.

Autonomous landing is a basic but also challenging phase
for autonomous flights of MAVs. When the exact position of
a desired landing site is unknown, an MAV should be able
to search for and locate it autonomously, and then land on
it to finish an autonomous flight. Monocular visual simulta-
neous localization and mapping (SLAM) has brought more
flexibility to autonomous navigation of MAVs in unknown
environments [1]. In fact, it is especially well-suited for
the autonomous landing task of an MAV: The problem of
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Fig. 1: Our MAV navigating autonomously while searching
for a textured landing site.

slow scale drift, which is inherent to every purely visual
monocular SLAM system caused by the unobservability
of the scale factor, can hardly cause much effect in such
relatively small areas where the MAV is expected to land
on.

In this paper we show that the rich information provided
by a visual SLAM system can also benefit both the real
time detection of a known landing site and its localization.
Considering the limited computational power that is typically
available onboard an MAV, those processes are normally
difficult to be performed in parallel to visual autonomous
navigation. We achieve autonomous navigation of our MAV
by implementing a constant-time monocular visual SLAM
framework, while simultaneously detecting an arbitrary land-
ing site using ORB features [16], and estimating its global
pose. The resulting monocular vision system enables the
MAV to autonomously search for the landing site in unknown
environments (as depicted in Fig. 1), and then land on it once
it is found.

II. RelatedWork

Early research on autonomous navigation of Unmanned
Aerial Vehicles (UAVs) mainly relied on pose estimation
from GPS sensors, with fusing inertial navigation system
(INS) data. Such systems works well for high altitude
and long range tasks, but are not suitable in GPS-denied
environments. In recent years, more effort has been focused
on using computer vision to enable autonomous flight of
UAVs. Computer vision methods do not depend on external
signals. Moreover, they fit especially well to cases in which
precise position control relative to other objects is required,



e.g. for the landing tasks of UAVs. Thus, they are highly
appreciated for research towards full autonomy of UAVs.

In [19], the landing task of a helicopter is solved by using
image moments for object recognition, while the estimation
of the relative position with respect to the landing pad still
relies on precise height information provided by differential
GPS. Garcia-Pardo et al. [8] present a strategy to find a
safe landing area by searching the image for a circular area
in which all the pixels have a level of contrast below a
given threshold. The vision system developed in [6] allows a
remote user to define target areas as waypoints or a landing
area for a UAV from a high resolution aerial or satellite
image. In this work, a Scale Invariant Feature Transform
(SIFT) based image-matching algorithm is implemented to
find the natural landmarks, and an optical-flow-based method
is used for the detection of a safe landing area.

Recently, more vision solutions for autonomous navigation
and landing have been presented, due to the fast growing in-
terest in MAVs, and especially quadrotors. Mahony et al. [12]
provide a tutorial introduction to modelling, pose estimation
and control of such multi-rotor MAVs. Meier et al. [14]
present a new self-developed quadrotor system capable of
autonomous flight with onboard pose estimation from vision
and an Inertial Measurement Unit (IMU), while relying on
artificial visual markers. Previous work in [24] features an
onboard monocular vision solution for autonomous takeoff,
hovering and landing of an MAV based on a circular landing
pad. Those works, achieving autonomous flight of MAVs,
still depend on pose estimates from artificial landmarks, and
are thus not flexible enough for long-term autonomy.

One way to be independent of artificial landmarks is to
implement visual odometry or visual SLAM method on
MAVs. Fraundorfer et al. [7] extended the system in [14]
with autonomous mapping and exploration based on stereo
cameras. In [2], [23], Parallel Tracking and Mapping (PTAM)
[9] is implemented as a monocular visual SLAM framework
for autonomous navigation of MAVs in unknown and GPS-
denied environments. Achtelik [1] also use PTAM to provide
position estimates for an MAV, while fusing data from an air
pressure sensor and accelerometers to estimate the unknown
metric scale factor of the monocular vision system. In [22],
a modified PTAM, which integrates depth information as
presented in [21], is used for position control of an MAV
based on stereo vision.

In our work, we also implement our visual SLAM frame-
work based on PTAM, to enable autonomous navigation of
an MAV, because of its robustness and its ability to generate
an accurate map with a large number of map points from the
environment. To land an MAV on an arbitrary landing site,
we implement an ORB-feature-based method for landing
site detection, running in parallel with the visual SLAM.
Furthermore, based on the existing map points, we show that
it is possible to robustly estimate the 3D pose of the detected
landing site even if the size of it is unknown. This is different
from those methods that estimate a relative pose of an MAV
with respect to a landing site only based on observations from
the landing site itself. An example of such methods is the

work in [13], which estimates the 3D pose of a camera for
the control of UAVs by tracking a planar object with a known
size. Since our pose estimation for MAV position control is
provided by a SLAM system, high frequency landing site
tracking and pose estimation become unnecessary without
losing the final landing accuracy.

III. Visual SLAM for Autonomous Navigation

The visual SLAM framework we use for autonomous
navigation of our MAV is based on PTAM. In order to
overcome the lack of a scale factor, we implemented an
automatic initialization method for PTAM, which can cope
with cluttered environments and provides a high accuracy.
Additionally, we modify the mapping thread of PTAM to
achieve a nearly constant processing time during navigation.

A. Basic Functionality of PTAM

The original PTAM implementation can produce detailed
environmental maps with a large number of landmarks,
which can be used for accurately tracking the pose of a
monocular camera at a high frequency. In order to achieve
real-time operation, a main idea proposed in PTAM is to
split tracking and mapping into two separate threads, which
can be processed in parallel on a dual-core computer. One
thread is responsible for tracking the camera motion relative
to the current map. The other thread extends this map, which
consists of 3D point features that are organized in keyframes,
and refines it using bundle adjustment.

In the thread responsible for tracking the camera pose, the
FAST corner detector [18] is applied to each image at four
pyramid levels, and all map points are projected to the current
image coordinate frame, based on a prior pose estimate. The
map points located inside the image after this projection
are then used for tracking: To locate those points in the
current camera image, a fixed-range image search around
their predicted positions is performed. During this search,
only the FAST corner locations are evaluated for finding the
best matches. In our work, those FAST corners will further
be used for feature-based object detection, without increasing
the computation time in this thread.

The mapping thread integrates new keyframes into the
map when requested by the tracking thread, and creates new
map points by triangulating FAST corner matches between
the new keyframe and its closest neighbors. Local bundle
adjustment and global bundle adjustment are continuously
performed to refine the map for the rest of the time. Since the
map points are actually landmarks of the real-world scene,
we will take advantage of their known 3D position for our
landing site pose estimation.

B. Automatic Initialization of PTAM

Since there exists a common scale ambiguity inherent to
monocular camera systems, PTAM naturally requires addi-
tional metric scale information. Since PTAM was originally
intended for augmented reality applications [9], an accurate
metric scale was not necessary, thus only a coarse scale
estimate is applied to the triangulation of the initialization



Fig. 2: A scene when PTAM is initialised. Top left, original
image. Top right, detected circular pattern, labelled with a
orange cross. Bottom left, vision features in different levels.
Bottom right, chosen map points.

phase. We deal with this initialization issue by implementing
the monocular solution presented in [24], which can robustly
estimate the camera pose based on the image projection of a
helicopter landing pad pattern, which also works in cluttered
environments. Using this method, we can achieve accurate
automatic initialization of PTAM during the takoff phase of
our MAV, without requiring any additional sensors. Fig. 2
shows an example scene and related results of PTAM, when
initialized with this method.

1) Pose Estimation from a Circular Pattern: In [24], we
estimated the 6DOF camera pose based on the perspective
projection of a typical helicopter landing pad, which consists
of a letter “H” surrounded by a circle with a known diameter.

This pad is detected with a method similar to the one
presented in [20]. Using adaptive thresholding, we obtain a
binarized image that is used to find connected components
with a run-based two-scan labeling algorithm. The compo-
nents are then classified using an artificial neural network.
Finally a geometric constraint is applied, enforcing that the
letter “H” must be surrounded by a circle. This allows us to
detect the pad robustly in real-time with a high frequency.

After applying a Canny edge detector to the image pattern
associated with the above pad, we can retrieve the ellipse
that corresponds to the projection of the circle in the pad.
At this point, we can obtain a 5DOF pose of the camera
coordinate frame C with respect to the world coordinate
frame W, which is defined by the pad and obtained by
using a computational geometry method based on the known
quadratic equation of the projected ellipse. During this step,
we also integrate IMU data to eliminate the remaining geo-
metric ambiguity. Finally, fitting an ellipse to the projected
contour of the letter “H” provides us with the last DOF of
the camera pose, i.e. its yaw angle.

2) Initializing PTAM During Takeoff: Once we obtain an
estimate of the camera pose with a height larger than a
threshold hi, then this pose estimate and the image associated

with it are sent to PTAM for initialization. If more than
a minimum number of FAST features with non-maximum
suppression are detected on all four pyramid levels of this
image, then we use them to initialize the map of PTAM. We
obtain the 3D position of those feature points by assuming
that they all lie on the ground plane and by projecting them
from their image coordinates to the z = 0 plane in the world
coordinate frameW. In this way, the world coordinate frame
defined in PTAM coincides with W.

C. Using PTAM with Constant Computation Time

Bundle adjustment, which is used for map managing, is
the most computationally intensive task in PTAM. To enable
PTAM to achieve a nearly constant computation time, we
only retain its local bundle adjustment and abandon the
global bundle adjustment, since it is very computationally
expensive and can stop the mapping thread from adding
enough keyframes to facilitate successful tracking. However,
we still keep the complete map during exploration.

IV. Landing Site Detection and Pose Estimation

To search for an arbitrary landing site during autonomous
navigation of our MAV, we implemented a feature-based ob-
ject detection scheme. Using one pre-set reference image of
the designated landing site, a set of feature matches between
the reference image and the currently visible scene can be
established. Then the landing site is detected by using a
robust RANSAC-based method to estimate the corresponding
homography. Because some of the map points produced by
PTAM can be associated with the matched features, we can
use the 3D position estimates of those map points to estimate
the global 3D pose of the landing site, even though there
exists no absolute scale information for the landing site. The
above process is integrated in the mapping thread of PTAM,
as shown in Fig. 3.

A. Brief Overview of ORB

Rublee et al. [16] proposed the ORB (Oriented FAST and
Rotated BRIEF) feature based on the FAST keypoint detector

Fig. 3: Landing site detection and pose estimation integrated
in PTAM framework.



and the BRIEF descriptor [5], both of which are known for
their high computational efficiency. BRIEF uses a binary
string constructed from a set of binary intensity tests as an
efficient point feature descriptor. Because BRIEF was not
designed to be aware of the orientation of a feature point, it
is notably lacking rotation invariance [16], which is, however,
important for feature-matching-based object detection.

To cope with this issue, Rublee et al. proposed to compute
an orientation component for each FAST interest point
(oFAST) by using the so-called intensity centroid, which is
computed from image moments. BRIEF descriptors for those
points are then efficiently rotated according to the orientation
component, and thus form the steered BRIEF descriptor.
Furthermore, a learning method is developed for choosing
a good subset of binary tests, in order to increase the feature
variance and reduce correlation among the binary tests, both
of which are important for a discriminative feature. The
resulting descriptor is named rBRIEF.

B. Applying Multi-Scale ORB to the PTAM Framework

We chose ORB as the feature descriptor for our landing
site detection because of its low time cost and high discrim-
ination capability for feature matching. ORB achieves scale
invariance by applying the FAST detector to a scale-space
pyramid of the original image. Since in the tracking thread
of PTAM, FAST points have been detected in four-level
pyramid images of the current scene, it is straightforward
for us to use those points for further feature description.
We chose such a multi-scale method in order to avoid the
computation of further pyramid levels, as a compromise be-
tween matching performance and time cost. In the mapping
thread, we compute orientation components of the FAST
points to obtain oFAST features, and use rBRIEF for feature
description. We perform both of these operations individually
at pyramid level 0 and 1, resulting in two sets of descriptors
{Dc

i | i = 0,1}, each with a size ni. We discard higher pyramid
levels, since at higher levels, a landing site appears too
small for us to obtain useful features for matching. For the
reference image of the landing site, the number of pyramid
levels and the scale factor for producing the pyramid images
can vary according to the requirements of scale invariance
and available computation time. In this paper we apply a
three level pyramid with a scale factor of 1.2 to the reference
image, obtaining the reference descriptor sets {Dr

i | i = 0,1,2}.
A Gaussian blur is applied to each pyramid level before
feature detection.

C. Landing Site Detection by Feature Matching

1) Feature Matching: We use a standard feature match-
ing scheme to obtain a set of good feature matches from
{Dr

i | i = 0,1,2} to {Dc
i | i = 0,1}, for estimating the homography

Hrc between the reference image of the landing site and
the current image frame. For finding all possible matches,
we employ a brute-force matcher without cross checking,
implemented in OpenCV [4]. It finds the k descriptors with
the closest normalized Hamming distances in {Dc

i | i = 0,1}
for each descriptor in {Dr

i | i = 0,1,2}. Similar to [10], [11],

(a) (b) (c)

Fig. 4: Examples of homography estimation results shown
in one pyramid level. After eliminating false estimates, only
(c) will be regarded as a correct homography estimate.

we consider a match between a reference descriptor and the
corresponding descriptor with the closest distance to be valid,
if the ratio of the closest to the second closest distance is
smaller than a threshold Tr.

2) Homography Estimation: As the ORB feature is ap-
plied at different individual pyramid levels of the current
camera image, we project all matched feature points to the
source pyramid level for calculating the homography. The
homography Hrc is estimated by using RANSAC, and then
further refined by using the Levenberg-Marquardt method
to minimize the image projection error. Please note that we
limit the iterations in RANSAC to a relatively small number,
in order to make this process more efficient. Since our later
landing site pose estimation can cope well with a lower true
positive detection rate, we opt in favor of a higher processing
performance.

3) Eliminating False Estimates: The reference image
forms a quadrilateral Qr when transformed with Hrc to the
current image frame. Some examples of the homography
estimates we received can be seen in Fig. 4. We dramatically
eliminate false estimates by evaluating some basic properties
of this quadrilateral: First, it is required to be a convex
polygon. Second, all four vertexes of it should have a
reasonable relative distances to their centroid and to each
other. This will eliminate estimates like the one shown in
Fig. 4b: Although the reference image can be found in the
current image frame, we reject this frame since we will not
achieve a correct pose estimate of the landing site according
to this homography estimate. Third, the number of matched
features that are inside of this quadrilateral should be larger
than a threshold nq. We determine whether a point locates
inside a polygon using a crossing-number-based method.

D. Locating the Landing Site in the Map

After the landing site has been detected in the current
camera image by using the above method, we locate its
3D pose in the world coordinate frame. For this task we
take advantage of the environment map produced by PTAM,
which can consist of a large number of map points. Doing
this provides us with much more tolerance towards false
negative detections: Even if the landing site is not tracked
at camera frame rate, its final pose estimate will be hardly
affected, as the landing site should retain a static position
in respect to the environment map. Thus, our method is
very flexible in respect to the time intervals at which the



mapping thread decides to add a new frame for landing site
detection. Furthermore, using the map points ensures that
only discriminative features are used for locating the landing
site.

We first project all map points to a rectified image frame
based on their 3D positions and the calibrated camera
model [3]. Again, we use a crossing number method to
check whether a projected map points is located within the
quadrilateral Qr (see Sect. IV-C.3). Those inside points form
the map points subset {pl}.

If the size of {pl} is larger than a threshold nlmin, a
RANSAC-based method is applied to the points in {pl} to es-
timate the dominant plane Pd of the landing site. We perform
this step in a similar fashion as in [9]: Many sets of three
points are randomly selected to form a plane hypothesis,
while the remaining points are tested for consensus. The
winning hypothesis is further refined by using the consensus
set, resulting in the detected plane normal np. Together with
the mean 3D coordinate value of all consensus set points
xm, this normal defines the plane Pd. Once an estimate
for Pd is achieved, we use its corresponding measurements
np and xm as the initial guess for the RANSAC procedure
when evaluating the next image frame. Thus, a much smaller
threshold for the number of RANSAC iterations can be
applied, which further reduce time costs.

The pose of the landing site can be calculated by pro-
jecting the quadrilateral Qr to the plane Pd. We define
xp

i , i = 0,1,2,3, as the four vertices of Qr, which are the
image projections of the four corners Pi of the landing site,
with the corresponding world coordinate positions xw

i . After
projecting xp

i to a normalized image frame with rectified
lens distortions, we obtain the normalized coordinates xn

i =

(xn
i ,y

n
i ,1)T . In the camera coordinate frame, we then have

xc
i = s · (xn

i ,y
n
i ,1)T , with s being an undetermined scale factor.

Thus, in the world coordinate frame we have

xw
i = s ·Rwc ·xn

i + twc, (1)

with {Rwc, twc} being the camera pose in the world coordinate
frame, obtained by the tracking thread. Since Pi is located
on the plane Pd, we have

np · (xw
i −xm) = 0. (2)

From (1) and (2), we can calculate xw
i . The landing site pose

is then obtained as xk =
3∑

i=0
xw

i , where k is the current image

frame index.
We further refine the landing site pose by integrating m

successful estimates of xk. Estimates with a large difference

to xLm =
m∑

k=0
xk are assumed to be outliers. The mean value of

the remaining inlier is then assumed to be the final landing
site pose estimate xL.

V. Experiments and Results

A. Experimental Setup

1) Quadrotor Platform: Our MAV is based on the open
source and open hardware quadrotor platform developed by

the PIXHAWK project from ETH Zürich described in [14],
which can be found in Fig. 1. The onboard computer is
a Kontron microETXexpress computer-on-module (COM)
featuring an Intel Core 2 Duo 1.86GHz CPU, 2 GB DDR3
RAM and a 32Gb SSD. The pxIMU inertial measurement
unit and autopilot board that we use mainly consists of
a MicroController Unit (MCU), and sensors including an
accelerometer and a gyroscope. The MCU is a 60 MHz
ARM7 microcontroller for sensor readout and fusion, as well
as position and attitude control. A PointGrey Firefly MV
monochrome camera of only 37 g weight is mounted on the
MAV in a downward-facing pose. This camera has an image
resolution of 640×480, a maximum frame rate of 60 fps, and
is equipped with a lens featuring a 90 degrees viewing angle.

2) External Tracking System: To measure ground truth
data of the 6 DOF quadrotor pose and landing site poses,
we use an external Optitrack tracking system manufactured
by Naturalpoint 1, which comprises 9 infrared cameras in
our case. After attaching several highly reflective markers to
the quadrotor, the tracking system can provide 6 DOF pose
estimates of the quadrotor with a frequency of up to 100 fps.
According to our tests, the deviation of the position estimates
for a static quadrotor is in the order of only few millimeters.

3) Software: We implemented our software system in
several modules using the open-source Robot Operating
System (ROS) [17] on Ubuntu Linux 12.04, as it provides the
infrastructure for efficient communication among different
modules and for logging all onboard data.

B. Navigation and Flight Control Algorithm

1) Nested PID Pose Control: Mellinger et al. [15] de-
scribe a nested PID controller that consists of a separate
attitude and a position controller. Using a dynamic model of
a quadrotor and an accurate 6 DoF pose estimate from an
external tracking system, they achieved precise hovering and
3D trajectory control of a quadrotor MAV. To evaluate our
vision system, we control the pose of our quadrotor using a
very similar controller, which is implemented in the original
pxIMU code from the PIXHAWK project. In our case, we
set the desired yaw angle to a constant value of ψdes = 0.
The 3D position estimates from the onboard vision system
are used as feedback to the position controller, and a basic
Kalman Filter is applied to smooth pose estimation for low
level control. The attitude control runs at a frequency of 200
Hz, using the roll and pitch estimates by the IMU, and only
the yaw angle is provided by the onboard vision system.

2) Setpoint Path Following for Navigation: In order to
search for the landing site, we navigate our MAV with a
setpoint-based method, where the MAV follows a predefined
searching path. We assume that the MAV has reached a
setpoint, if its distance to this point is smaller than a threshold
ds for a period of time ts. In this case we advance to the
next set point on the searching path. Once an initial pose of
the landing site xlini is estimated, we change the setpoint to
be above this area, keeping our searching height hs. After

1http://www.naturalpoint.com/optitrack/products/tracking-tools-bundles
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Fig. 5: (a) A scene from the MAV, (b), (c), (d) and (e) are
the reference images of the poster landing pad (size 500×
500, height 4.5), the book (size 246× 175, height 33), the
mail package (size 380×335, height 140) and the computer
package (size 650× 435, height 235), respectively. All size
and height are measured in mm.

the final refined pose of the landing site xl = (xl,yl,zl)T is
determined, we define the end of the searching path to be
(xl,yl,hs)T . Finally, the landing strategy we implemented in
[24] is used to land the MAV on the landing site.

C. Landing Site Pose Estimation Results

We evaluate the landing site detection and pose estimation
result by processing a video logfile from a manual flight of
our MAV above different objects with planar surfaces, which
are used to represent different landing sites: a poster pad, a
book, a mail package, and a computer package. Each of them
has different texture features. Moreover, they are different in
size and height. We control the MAV to takeoff from another
pad nearby those objects, such that our SLAM algorithm can
be initialized by this pad as described in Sect. III-B. Fig. 5a
shows a scene during this flight. Reference images of those
landing sites are captured by manually holding the MAV
above them in different illumination conditions, as show in
Fig. 5. Please note that to confirm that our object detection
method is invariant to the rotation of a reference image, they
are rotated by 180 degrees for this experiment.

We process the same recorded video sequence four times,
with each time selecting one of these reference images
for landing site detection. The identical MAV trajectory
estimated by the visual SLAM algorithm is shown in Fig.
6c and 6f. Fig. 6a, 6b, 6d and 6e show the distribution of
the final detection and pose estimation results for the landing
sites. The pose estimates of the detected landing sites are
projected to the x− y and x− z plane (the world coordinates
are indicated as the RGB axis in Fig. 7). The few estimates

TABLE I: RMSEs (mm) of position estimates for different
landing sites during a manual flight.

RMSE poster book mail Pack. PC Pack.
x-y 24 8 34 43
z 1 8 6 2
3D 24 12 35 43

Fig. 7: The built map and MAV trajectory during a searching
and landing task.

with relatively large errors do not affect the autonomous
navigation since they can be excluded if there is a pose refine
process as described in Sect. IV-D. In Fig. 6c, we mark the
height of the detected poster pad with black crosses, if it is
detected at the corresponding time. Similarly, in Fig. 6f, we
mark the MAV yaw angle estimates when the pad is detected.
It shows that the poster pad is detected when the MAV is at
different positions and yaw angles.

The poster pad provides a total number of 481 ORB
features on all three levels, while the book 69, the mail
package 153 and the computer package 97 features. Despite
their differences we mentioned above, they can be correctly
detected and located. The Root Mean Square Errors (RM-
SEs) of their 3D position estimation are listed in Tab. I.

D. Autonomous Navigation and Landing Results

In this experiment, we use the poster pad shown in Fig. 5b
as the target landing site. Our MAV autonomously navigates
in the environment to search for the landing site and finally
lands on it. The trajectory of this searching and landing task,
as estimated by our onboard vision system, is shown in Fig.
7. The map points from SLAM are triangulated and refined
if new keyframes are added. The pose of each keyframe
has been depicted as a three red axes in the final map. The
searching strategy should depend on the expected complexity
of the landing area. In this experiment, a simple rectangular
searching path with height h′s = 1.2m is implemented. The
MAV autonomously navigates along this searching path after
takeoff and initialization of the visual SLAM. The landing
site is detected when the MAV is at the position P1 =
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Fig. 6: (a) Position estimates for the poster pad, (b) for the book, (d) for the mail package, and (e) for the PC package. (c)
Trajectory of the MAV, and (f) the corresponding yaw angle estimates (a cross is marked if the landing site is detected at
the corresponding time).

(2.001,−1.556,1.197)T (m), relative to the starting position.
When it is at P2 = (2.337,−1.616,1.201)T (m), landing site
detection stops with the computation of the refined landing
site pose, which is visualized as a bold color quadrilateral.

Figure 8 shows that the above MAV trajectory fits well
with the ground truth data, which proves the accuracy of both
the SLAM algorithm and its initialization module. Position
P1 is marked with a blue cross in Fig. 8b , P2 with a
green cross. The initial position estimate of the landing
site on the x− y plane is marked with a blue square, and
the final refined estimate with a green circle. Both position
estimates are close to the ground truth data, which is marked
with a black square. The blue and green crosses in Fig.
8a show the initial and final height estimate, comparing
with the ground truth height marked with squares. With
the landing site size being 500× 500 (mm), the initial and
final position estimation error is (−19,−26,−6)T (mm) and
(−11,−27,−5)T (mm), respectively. Table II lists the RMSE
of the on-board MAV-pose estimation when compared to the
ground truth data.

VI. Conclusions and Discussion

In this paper we have presented a monocular vision system
which enables an MAV to navigate autonomously in an
unknown environment, and search for the landing site on
which it is designated to land. Pose estimates for the control
of the MAV are provided by a visual SLAM framework. We

TABLE II: MAV pose RMSEs of the whole trajectory, with
position erros in mm and attitude errors in degrees

x y z 3D roll pitch yaw
RMSE 8.6 13.6 14.3 21.6 1.04 0.85 1.49

solve the landing site detection by integrating a multi-scale
ORB feature matching scheme into the mapping thread of
the SLAM framework. We take advantage of the map points
produced by the SLAM system to accurately estimate the 3D
pose of the landing site, using a RANSAC-based method. No
absolute scale information of the landing site is needed for
its pose estimation.

By evaluating the pose estimation results of different
landing sites, we show that our method is flexible and
accurate enough for the proposed task of searching for and
landing on an arbitrary landing site. Finally, we demonstrate
our claim by means of an autonomous navigation and landing
flight. Pose estimates of both the landing site and the MAV
during this flight have been compared with ground truth data
provided by an external tracking system, which shows the
high accuracy of our vision system.

For an autonomous landing phase at the end of a long-
term mission of an UAV, we propose to fuse IMU data to
get its accurate short-term relative pose estimates, which
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Fig. 8: (a) Position estimates of our vision system on x,y,z axis. (b) MAV trajectory projected to x−y plane. The initial and
final position estimates of the landing site and the associated MAV poses are also marked.

can provide a metric scale constraint to initialize PTAM.
Thus, autonomous searching for and landing on an arbitrary
landing site could be achieved with a similar strategy as
proposed in this paper. Although we have achieved promising
results within a relatively small area, future work could be
fusing IMU data to extend the current monocular visual
SLAM system to fulfil large scale tasks. This could not
only be used to correct the pose estimates resulting from a
monocular SLAM system , but also improve the localization
and mapping accuracy of the SLAM system itself.
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