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Abstract—We consider a leader-following problem with two
flying robots with different sensor configurations. The follower is
equipped with a camera to detect the leader robot. The platforms
are based on the low-cost Parrot AR.Drone quadrotor modified
for on-board sensing and computing. Our approach relies on
detecting artificial passive markers on the leader quadrotor to
compute the relative distance between the vehicles. We solve the
perspective-n-point problem using an algorithm based on the
inscribed angle theorem that runs efficiently on resource-limited
platforms. We validate the position estimation algorithm and
leader-following controllers with autonomously flown figures.

I. INTRODUCTION

During the last years, the interest in research on unmanned

aerial vehicles (UAV) has increased. In particular the quadrotor

has become a popular platform due to its size, agility and ma-

neuverability. These abilities have been demonstrated through

execution of triple flips [1] and aggressive flying [2]. Quadro-

tors have been used in applications like surveillance [3],

mapping [4], inspection [5] and the aid of human teams during

a search and rescue mission [6]. The variety of quadrotor

platforms ranges from expensive high quality platforms to

toys.
The AR.Drone quadrotor appeared in 2010 as a toy with

sensors such as two cameras and a gyroscope and basic

autonomous behaviors such as assisted take off, hovering

and landing. Due to its relatively high performance and low

price, it immediately captured the interest of the research

community. Its practical applications usually concern tasks

where the images from the AR.Drone cameras are used for

navigation [7], [8]. It has been used for cooperative tasks

with ground robots, where it was used to have a bird’s-eye

view of the team and helped them to coordinate to overcome

obstacles [9], [10], [11]. Multiple AR.Drones can be acquired

for multi-robot research due to its low price of around $300.
In a team of robots, it is necessary to estimate the position of

a robot relative to other team members. The relative position

can be estimated using sensors in the environment, such as

motion capture systems or cameras covering the operation

range of the robots. Such systems are often used to develop

control algorithms for multi-quadrotor teams [12]. They are

fast and precise but they limit the range of application of the

robots to a controlled environment. A decentralized approach

is to equip the robots with sensors that can detect other

team members, for example cameras. This approach resembles

flocks of birds that rely on vision to estimate the position

and velocity of other members of the group. Vision based

approaches have been used to estimate relative bearings to

other vehicles of a team of ground robots [13], [14]. This

requires more computing power to process the sensor data and

extract the positions of the other robots which makes it slower

and less accurate than motion capture systems but allow the

robots to go outside the laboratory.

With the fast dynamics of a quadrotor it is difficult for a

vehicle to pause and plan its next move as it is usually done

in ground robot teams. In order to have an application outside

of a laboratory, a quadrotor requires real time relative position

estimation that allows for fast control of the vehicle. Systems

computing the position of a fixed known pattern have been

used on a computationally limited quadrotor [15], [16]. In a

previous work [17] the leader was tracked using an infrared

camera from a Nintendo Wii remote controller, limiting the

application range to indoor environments because of the infra

red interference of sunlight. We overcome these problems

using a vision system that is not affected by sunlight and can

be used outdoors.

In this work we consider the problem of following an

autonomous quadrotor using a single camera for relative

position estimation of the leader with on-board processing

only. We use two AR.Drones, which were modified to be

able to autonomously fly predefined trajectories and to perform

computer vision on board. The relative position to the leader

quadrotor is estimated from three passive visual markers

placed on the leader in a known pattern. The pose estimation

is fed to our controllers to track the leader. The algorithms

are experimentally verified by letting the leader quadrotor

fly autonomously different trajectories followed by another

quadrotor.

The remainder of this paper is structured as follows: in

Section II we describe the autonomous robot platform based on

the AR.Drone. In Section III we present the relative position

estimation algorithm. Section IV describes the control strategy.

In Section V we describe our experiments, present and discuss

the results obtained. Finally we draw the conclusions in

Section VI.

II. HARDWARE

In our setup, the leader and the follower vehicles have

different hardware configurations. The leader is capable of

flying a predetermined trajectory autonomously. It carries



Fig. 1: The leader vehicle setup consisting of a modified

AR.Drone version 1.0. The leader carries a microcontroller

that uses the AR.Drones visual odometry to fly a predefined

trajectory. It carries three orange table tennis balls as passive

markers. In the coordinate frame of the pattern the x-axis

points away (to the back of the AR.Drone), the y-axis points

to the right and the z-axis points down.

a pattern formed with orange table tennis balls as passive

markers. The follower is equipped with a color camera and a

mini computer to detect the markers on the leader and compute

its relative position with respect to the markers. The follower

then tracks the leader’s movements using the estimated relative

position. Both leader and follower are completely autonomous

and perform sensing and computations on board.

A. Leader

The leader quadrotor is a modified AR.Drone version 1.0.

The AR.Drone is a low-cost toy quadrotor available for $300.

Its sensor suite includes an internal measurement unit (IMU),

an ultrasonic sensor and two cameras. One camera is at the

front of the vehicle. It delivers images at 15 frames per second

(fps) at a resolution of 640×480 pixels. The second camera

points down; it has a resolution of 320×240 pixels and delivers

images at 60 fps. This camera is used to extract information

of the horizontal position and velocity of the AR.Drone. All

the sensor processing and control of the vehicle is performed

by an ARM processor running Linux.

To enable autonomous flight on the AR.Drone we use

the framework proposed in [18]. We added an 8-bit micro-

controller running at 14.745 MHz. The microcontroller runs

navigation algorithms to generate a trajectory for the leader

and according control commands to track it. The trajectory is

defined as a series of intermediary waypoints computed using

a formula describing the shape of the trajectory. The formula

depends on time and is parametrized by the desired velocity

of the vehicle and the length of the trajectory.

The microcontroller receives position information from the

AR.Drone’s visual odometry navigation data for position con-

trol.

Fig. 2: The follower vehicle setup consisting of a modified

AR.Drone version 2.0, a Gumstix micro computer and a Point

Grey firefly camera. The Gumstix microcomputer processes

the images to find the markers and compute the relative

distance to the leader. It computes the control commands and

sends them to the AR.Drone.

The microcontroller communicates with the AR.Drone via

the debugging port located on the main board. We uploaded

to the AR.Drone’s own microprocessor an application that

retrieves the navigation data and sends it to the microcontroller

and redirects the control commands from the microcontroller

to the AR.Drone’s control program.

The leader has three orange table tennis balls as passive

markers. The markers are arranged in a 22 cm × 10 cm triangle

pattern parallel to the ground. This configuration allows for a

better estimate of the relative height of the follower.

The follower uses the markers to locate the leader and

estimate its relative position (See Figure 1). In the coordinate

frame of the pattern the x-axis points to the back of the drone;

the y-axis points to the right and the z-axis points down.

B. Follower

The follower quadrotor is a modified AR.Drone version 2.0.

This version of the AR.Drone has similar characteristics to

the version 1.0 previously described. Its main difference is

the front camera, which delivers images in 1280×720 pixels

resolution at 30 fps. The newer AR.Drone version extends its

sensor suite with an air pressure sensor that is combined with

the ultrasonic sensor to estimate its altitude. We extended this

AR.Drone to perform computer vision on board. The front

camera of the AR.Drone is not suitable for our application

since the images are too big to process in real time. Therefore

we equipped the AR.Drone with an additional camera. The

camera is a Point Grey Firefly that delivers images at 60 fps

with a resolution of 640×480 pixels. We mounted a single-

board computer to process the images and extract the location

of the markers to estimate its position relative to the leader.

The computer is a Gumstix Overo Fire with an ARM Cortex-

A8 processor running at 700 MHz and 256 MB of RAM. The

setup is shown in Figure 2.



Similarly to the leader, the Gumstix computer is connected

to the debugging port of the AR.Drone. The proxy application

runs on the AR.Drone, redirecting control commands to the

main control program.

III. POSE ESTIMATION

In this section we describe how to retrieve the relative pose

of the follower from the table tennis balls visible in the camera

image.

The method has been formerly used in [16] and is split

in two stages: First we detect the orange ball markers within

the camera image. Second we calculate the pose based on

the pixel coordinates of the detected markers. The algorithm

has been optimized for low performance hardware, which is

usually found on MAVs due to weight and power limits. We

managed the ARM processor of the Gumstix to process all of

the 60 frames from the camera.

A. Marker Detection

To ensure fast evaluation, we skip debayering the whole

image and operate on the raw image itself. We apply color

segmentation to extract all orange regions from the image,

using a lookup table for faster processing. The pixel’s color

is only evaluated when being tested as a candidate for a ball

pixel. This test is not applied to all pixels in the image, since

we assume each ball marker to be at least 3 pixels big in

radius in the image. Therefore the image is scanned in a

4× 4 grid. For pixels with a color matching with the lookup

table a floodfill algorithm is applied, filling each orange pixel

within the surrounding region and incrementally determining

the region’s bounding box. This strategy speeds up the color

segmentation by almost 16 compared to scanning the whole

image, since the markers appear rarely in the image. The next

step excludes those regions having bounding boxes either too

small or with implausible aspect ratios. The contour of the

remaining regions is determined and tested for being similar to

a circle with the Randomized Hough Transform [19]. Finally

the three largest round regions are considered to be the ball

markers of the pattern. The centers of their bounding boxes

are passed to the pose estimation. Their size is too small to

provide usable distance information from their size itself.

B. Retrieving the Pose

In the next step we calculate the position of the camera

relative to the pattern using the pixel position from the ball

detection described above. The problem that has to be solved

in this stage is well-known in literature as the Perspective-3-

Point Problem (P3P), in general PnP problem for n points.

Fischler and Bolles [20] introduce the PnP problem as being

equivalent to the ”Location Determination Problem” (LDP),

which they define as follows:

Given a set of m control points, whose 3-dimensional

coordinates are known in some coordinate frame, and given an

image in which some subset of the m control points is visible,

determine the location (relative to the coordinate system of

the control points) from which the image was obtained.

Before solving the P3P, the correspondences between world

and image points have to be known. This can easily be done

by regarding the operating range of the quadrotor. First it is

always following the pattern, second the quadrotor does not

fly upside down. Therefore we can sort the image points along

their y-coordinate (recall the camera is vertically mounted) and

identify them as Li, Mi and Ri. In general, P3P yields up to

four solutions [20]. Considering the limits of the operating

range of the quadrotor again, we can exclude three of these

solutions and therefore estimate the full pose with only three

markers.

Solving the P3P is described in detail in[16].

By applying a fixed transformation from the camera to the

quadrotor frame, we get the position of the quadrotor from the

camera position relative to the leader.

IV. CONTROL

To maintain a desired distance to the leader, the fol-

lower uses three independent proportional-integral-derivative

(PID) controllers for roll, pitch angles and its height. A fast

proportional-derivative (PD) controller is used for the yaw

angle in order to maintain the pattern in the center of the

image. The controllers use the relative pose estimate of our

algorithm that has been previously smoothed by a low pass

filter. The controller gains were experimentally determined to

ensure stability of the vehicle.

V. EXPERIMENTS AND RESULTS

To analyze the performance of our system we carried out

a series of flights in different shapes with the quadrotor setup

described in Section II.

We first evaluated the accuracy of the position estimation al-

gorithm. To obtain ground truth measurements, we performed

the first experiment in a room equipped with a motion capture

system. The motion capture system covers an approximate

volume of 3× 2×2m3 and is able to track objects with a

precision of 1mm. The operation range of our system is from

0.5 m to 3 m approximately due to the size and placement of

the markers and the total width of the pattern. The pattern of

the leader is at a fixed position inside the tracked volume at

an approximate height of 1.2m. We command the follower

quadrotor to hover at a fixed distance from the pattern of

160 cm on the x-axis, and 0 cm on y- and z-axes. We track

the quadrotors position over a period of 10 minutes over

multiple flights. Then the relative distance is computed from

the difference in position from the quadrotor and the pattern.

The position estimated by the follower is then compared to the

relative position computed from the motion capture system

data to get the accuracy of the measurements made by the

follower. Overall our method showed a position estimation

error of less than 2 cm and a standard deviation over 1 cm

(See Table I). This accuracy is sufficient for tracking another

vehicle for our following experiments. Figure 3 shows the

position estimate from our algorithm and ground truth data of

the relative position between the fixed pattern and the hovering

quadrotor. The overlap of the two plots show that the accuracy



TABLE I: Error analysis of position estimation algorithm.

Errors
x [cm] y [cm] z [cm]

RMSE 1.98 1.48 1.27
Std. Dev. 1.27 1.10 1.09
Max Error 7.30 4.46 4.52

Fig. 3: Relative distance plots showing the estimates of our

vision system (green), ground truth measurements obtained

from a motion capture system (red dashed) and desired rela-

tive position for the follower quadrotor hovering (blue). The

overlap of the vision estimate and ground truth plots show the

accuracy of our method to estimate relative position.

of our method is sufficient for relative position measurements.

We tested the performance of our controllers in two different

scenarios. One scenario tests the capabilities to hold a desired

position at a fixed distance from the pattern. The other scenario

regards tracking of another quadrotor carrying the pattern

while it flies predefined trajectories autonomously.

We achieved an average error of 10 cm on the x-axis, 7 cm

on the y-axis and a height difference of only 2.6 cm (See

Table II). The results show that our method is able to hold

its position based on the data received by the vision system

within a small space. The position of the follower during fifty

seconds of hovering is plotted in Figure 3.

The capture volume of our motion capture system is un-

TABLE II: Error analysis of hovering control.

Errors
x [cm] y [cm] z [cm]

RMSE 10.08 12.70 2.66
Std. Dev. 7.33 10.33 2.37
Max Error 25.2 30.90 11.10

TABLE III: Error analysis of line trajectory.

Errors
x [cm] y [cm] z [cm]

RMSE 16.76 43.97 3.28
Std. Dev. 16.07 26.07 2.18
Max Error 64.22 93.01 14.87

suitable for two quadrotors to maneuver while being tracked.

In the previous experiment we demonstrated the accuracy of

the estimates of our algorithm. Therefore, we consider the

position estimates from our vision system as ground truth for

our further experiments.

The first flight with both quadrotors was a straight line

of 1.5m flown sideways six times. The leader flew in one

direction until it reached the specified distance of 1.5m and

then reversed its direction. The resulting trajectory was a

series of start-accelerate-break sequences along the leader’s

y-axis with a reversal in direction at the start and end of the

trajectories length. The follower flew at the same height as the

leader keeping a distance 1.6m behind it.

The mean error along the x-axis is around 16 cm (See

Table III). The error along the y-axis was larger since it was

the direction in which the follower had to correct larger errors.

Like in the hovering experiment the height error remained

around 3 cm.

The large errors are caused by sudden change in direction

of the leader at the end of the line trajectory. The follower

reacts to this change in direction without losing track of the

pattern.

The second figure was a circle with a diameter of 2m.

The leader trajectory is planned such that the x-axis of the

vehicle is always perpendicular to the circumference of the

circle. This keeps the pattern pointing always to the center of

the circle. With the follower quadrotor at a distance of 1.6m,

the space needed to fly the figure is reduced and the target

position of the follower remains always inside the circle. We

calculated statistics of the errors achieved during 5 rounds of

a 2m diameter circle (See Table IV). The errors on the x-axis

of 23 cm and y-axis of 18 cm are about half the length of

the quadrotor, indicating a good track of the trajectory. The

errors on the height difference remained around 3 cm as in the

previous tests. The height difference is kept since the leader

TABLE IV: Error analysis of circle trajectory.

Errors
x [cm] y [cm] z [cm]

RMSE 23.83 18.85 3.11
Std. Dev. 21.92 15.19 2.39
Max Error 59.03 64.00 15.04



Fig. 4: Two rounds of a 2m circle path flown. The red dashed

line is the path flown by the leader as reported by its odometry.

The blue line is the path of the follower computed from the

relative distance estimated by our method.

flew at a constant height with little variance on its height.

This trajectory involves fast changes in the leaders yaw angle.

That induces a large error on the follower’s x- and y-axes

since it flies behinds the leader. The controller of the follower

reacts quickly to avoid losing the markers in a disadvantageous

perspective where they will be behind each other or merged

into one blob.

An example of two rounds of the circular trajectory is shown

in Figure 4. The trajectory on the outside is computed from the

leader’s visual odometry. The follower’s trajectory is computed

from the relative position reported by the vision system. The

follower trajectory always remains inside the diameter of

the circle, showing the robustness of the controllers against

changes in yaw angle of the leader.

VI. CONCLUSION

We have presented a system capable of following an au-

tonomous leader using vision to estimate the relative distance

between the vehicles. The leader and follower are based on the

low cost quadrotor AR.Drone enhanced with a microcontroller

and a microcomputer-camera setup for autonomous flight with

on-board sensing and computing. The vision system estimates

the relative distance to the leader using passive markers on

the leader that are detected and identified by the follower.

We solve the P3P problem with an algorithm based on the

inscribed angle theorem and a unique solution is found using

constraints inherent to the task. Furthermore the algorithm is

able to run on a microcomputer at 60 Hz. The precision of

this algorithm was found to be around 2 cm. The experiments

showed that the follower quadrotor is able to track the position

of a leader with a mean error of around 23 cm on the x-axis

and 43 cm on the y-axis under sudden direction and heading

changes of the leader. With these errors being less than one

length of the quadrotor the system is capable to fly in space

constrained environments.
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