
Framework for Autonomous Onboard
Navigation with the AR.Drone

Jacobo Jiménez Lugo and Andreas Zell
Cognitive Systems, University of Tübingen

Tübingen, Germany
Email: {jacobo.jimenez,andreas.zell}@uni-tuebingen.de

Abstract—We present a framework for autonomous
flying using the AR.Drone low cost quadrotor. The
system performs all sensing and computations on-
board, making the system independent of any base
station or remote control. High level navigation and
control tasks are carried out in a microcontroller that
steers the vehicle to a desired location. We experimen-
tally demonstrate the properties and capabilities of
the system autonomously following several trajectory
patterns of different complexity levels and evaluate
the performance of our system.

I. INTRODUCTION

The popularity of the research on micro un-
manned aerial vehicles has increased in the recent
years. Quadrotors are a very popular choice among
MAV platforms due to their robustness, mechan-
ical simplicity, low weight and small size. Their
agility and maneuverability have been demonstrated
through triple flips [1], ball juggling [2] and ag-
gressive maneuvering through windows [3]. These
characteristics make the quadrotor an ideal platform
for operations such as exploration, surveillance,
search and rescue or even artistic performances.

Several quadrotor platforms are available for the
research community. Commercial quadrotors from
companies like Ascending Technologies1 or Mi-
crodrones2 are among the most frequently used in
research due to their robustness, though they are
expensive and the firmware is not always customiz-
able. The other option for researchers is to develop
their own platforms according to the application’s
needs. This idea was exploited in several projects,

1www.asctec.de
2www.microdrones.com

for example, the Stanford’s STARMAC quadrotor
testbed [4] created for multi agent experimentation
or the pixhawk project from ETH Zurich [5] de-
signed for on-board computer vision, which features
a single board computer with a multi-core pro-
cessor. Using an already available flight controller
boards can speed up the process of building a
quadrotor. Lim et al. [6] provide an overview of
the characteristics of many open source platforms.

However, building a platform can be expensive
and requires time and knowledge to design a flight
controller. Low cost solutions are favored in sce-
narios with a high risk of losing the vehicle. For
example, Tayebi et al. [7] exploited low cost gyro-
scopes for attitude estimation. Low cost sensors can
be used for autonomous navigation of quadrotors.
The infrared camera of the Nintendo Wii remote
controller was used for autonomous take off and
landing on a moving ground vehicle [8] and for fol-
lowing another quadrotor [9]. The camera tracked
active markers on the targets to estimate the relative
position of the quadrotor.

In 2010, the french company Parrot launched the
AR.Drone, a $300 quadrotor that was developed
for the mass market of video games. It quickly
attracted the attention of the research community
with features such as on-board cameras and stable
hovering. The AR.Drone has become a popular plat-
form for research and education. It has been used
for object following, position stabilization and au-
tonomous navigation [10]. Faigl et al. [11] used the
AR.Drone for surveillance. The AR.Drone’s camera
was used to learn a feature map of a determined
area. In subsequent flights the feature map was used

together with the AR.Drone’s odometry to navigate
through the area. Bills et al. [12] classified indoor
environments based on images from the AR.Drone.
They used visual cues inherent in the environment
to fly through it. Engel et al. [13] demonstrated
figure flying using images from the AR.Drone as an
input for the parallel tracking and mapping (PTAM)
algorithm [14]. The output of PTAM was fused
with the vehicle’s inertial measurement unit (IMU)
data to produce a more accurate position estimate.
The mentioned AR.Drone applications depend on
a base station that extracts relevant information for
path planning, navigation, control algorithms and
generate a steering command. The base station com-
municates with the AR.Drone through a wireless
network, which limits the working distance of the
system and introduces a delay in the information
exchange of sensor data and control commands.

The motivation behind this work is to extend
the AR.Drone to enable autonomous flight and
show that figure flying is possible with a low-cost
system just over $300. The system does not need
a base station, relying only on on-board sensing
and processing, thus minimizing the communication
delays.

We present a framework for autonomous nav-
igation of the AR.Drone with minimal hardware
and software additions. The framework can be
easily customized or upgraded. We implemented
high level control and trajectory planning tasks for
autonomous figure flying. We evaluated our system
in a series of indoor experiments.

The remainder of the paper is as follows. We pro-
vide an overview of the AR.Drone’s hardware and
software including vision and control algorithms in
section II. We describe our system’s architecture
in section III. We present the evaluation results in
section IV and conclude the paper in section V.

II. AR.DRONE PLATFORM

This section provides a brief overview of the
AR.Drone quadrotor. A more complete description
of the algorithms can be found in [15].

A. Hardware

The AR.Drone is a quadrotor with a size of 55 cm
rotor-tip to rotor-tip and 380-420 grams of weight

Fig. 1: Low cost quadrotor AR.Drone version 1.0
and 8-bit microcontroller. The AR.Drone used for
trajectory following experiments. The microcon-
troller is in charge of path planning and control
tasks.

(see Figure 1). The central cross of the AR.Drone
is made of carbon fiber tubes joined by a central
plastic plate. A brushless motor is mounted at the
end of each arm. The electronics are housed by
a plastic basket on the center of the cross and an
Expanded Poly Propylene body.
The electronic hardware comprises two boards con-
nected to each other and attached to the plastic
basket in the center of the cross to reduce vibrations.
One board, the motherboard, contains the main
processing unit (an ARM9 processor running at
468 MHz on AR.Drone 1.0 and an ARM Cortex-A8
at 1 GHz on AR.Drone 2.0), two cameras, a Wi-Fi
module and a connector for software flashing and
debugging. The cameras have different orientations.
One is oriented vertically, pointing to the ground.
It has an opening angle of 63 ◦, a frame rate of
60 frames per second (fps) and a a resolution of
320× 240 pixels. This camera is used to estimate
the horizontal speed of the vehicle. The second
camera is pointing forwards. It has an opening angle
of 93 ◦, a frame rate of 15 fps and a resolution of
640× 480 pixels on version 1.0. Version 2.0 has
an improved front camera that can deliver high

definition images at 720p resolution at 30 fps . Both
cameras can be used for detection of markers such
as stickers, caps or hulls of other AR.Drones.
The second board, the navigation board, contains
all the sensors necessary for the state estimation
of the quadrotor. The sensor suite includes a low
cost inertial measurement unit (IMU) that updates
the state of the AR.Drone at 200 Hz. The IMU
consists of a 3-axis accelerometer, 2-axis gyroscope
to measure angular velocities on pitch and roll
axes and a more precise gyroscope to measure the
angular velocity on the yaw axis. The distance to
the ground is measured by an ultrasonic sensor with
a maximum range of 6 m. The AR.Drone version
2.0 also equips a barometric sensor to measure its
height beyond the range of the ultrasonic sensor.
This measurement is also used to determine the
scene depth in the images of the vertical camera and
to calculate vertical displacement of the vehicle.

B. Software

The AR.Drone can be remote controlled via a
smartphone or a tablet PC. It can also accept
commands or send data to a PC via an AR.Drone
API. The drone can send two types of data streams:
a navdata stream that contains data related to the
state of the vehicle and a video stream that provides
encoded video from the cameras. The navigation
data includes the status of the vehicle, motors and
communications as well as raw and filtered IMU
measurements, attitude (roll, pitch, yaw), altitude,
linear velocities and an position with respect to take
off point computed from visual information. The
navigation data also includes information from the
detection of visual tags. The received video can
be from either of the two cameras or a picture-
in-picture video with one of the camera images
superposed on the top left corner of the other one.

The ARM processor runs an embedded Linux
operating system that simultaneously manages the
wireless communications, visual-inertial state esti-
mation and control algorithms.

1) Navigation Algorithms: The AR.Drone pro-
vides sophisticated navigation algorithms and as-
sistance in maneuvers such as take off, landing
and hovering-in-position to ensure user’s safety.

To achieve a stable hovering and position control,
the AR.Drone estimates its horizontal velocity us-
ing its vertical camera. Two different algorithms
are used to estimate the horizontal velocity. One
tracks local interest points (FAST corners [16])
over different frames and calculates the velocity
from the displacement of these points. It provides
a more accurate estimate of the velocity and is
used when the vehicle’s speed is low and there is
enough texture in the picture. The second algorithm
estimates the horizontal speed by computing the
optical flow on pyramidal images. It is the default
algorithm during flight. It is less precise but more
robust since it does not rely on highly textured or
high-contrast scenes.

The AR.Drone uses inertial information from its
IMU for estimating the state of the vehicle. It fuses
the IMU data with information from the vision
algorithms and an aerodynamics model to estimate
the velocity of the vehicle.

2) Control: The control of the AR.Drone is
performed in a nested fashion. The innermost loop
controls the attitude of the vehicle using a PID
controller to compute a desired angular rate based
on the difference between the current estimate of
the attitude and the attitude set point defined by the
user controls. The second loop uses a proportional
controller to drive the motors.

When the controls are released, the AR.Drone
computes a trajectory that will take it to zero
velocity and zero attitude in a short time. This
technique is designed off-line and uses feed-forward
control over the inverted dynamics of the quadrotor.

III. SYSTEM ARCHITECTURE

Our system consists of two main components: a
microcontroller and a proxy program that serves as
a bridge between the AR.Drone and the microcon-
troller (Figure 2). The microcontroller we used is
an ATMEL ATmega 1284 8-bit microcontroller. It
runs at 14.7456 Mhz, has 128 Kb of memory, 32 I/O
pins, counters and timers with PWM capabilities
as well as two USART ports and a 10-bit analog
to digital converter. It extends the capabilities of
the AR.Drone to enable autonomous flying with-
out the need of a ground station or any remote

Microcontroller:

Optional Base Station:

Proxy:

Sensors:

AR. Drone

Serial

Serial, I2C...
Serial
Xbee

-Get navigation data
-Redirect control commands

-Range
-Temperature
-GPS

-Path selection
-Parameter config
-Logging

-Sensor processing
-Path planning
-Control

Fig. 2: System software components. The proxy
application runs on the AR.Drone and enables ex-
change of information with the microcontroller. The
microcontroller plans a trajectory using the position
estimation of the AR.Drone and computes control
commands for the vehicle. The microcontroller can
interface with different. An optional base station
communicates with the microcontroller to configure
the flight and log flight data.

control device, thus widening its application range
and eliminating delays that may be caused by the
communication with the base. The microcontroller
(Figure 1) is fitted inside the hull and plugged into
the serial (debugging) port on the motherboard.

1) AR.Drone Proxy: We uploaded an external
application to the AR.Drone to exchange infor-
mation with the microcontroller, i.e. send steering
commands, retrieve its status, sensor measurements,
attitude and pose estimates. The microcontroller
starts the application after the AR.Drone finishes
its booting sequence. The application connects to
the navigation and command ports of the AR.Drone
main program and requests the navigation data
(velocities, altitude, orientation and position from
take off point). The application acts as a proxy: It

listens on the navigation port for incoming data,
sorts the data, packs it into a binary message and
sends it to the microcontroller. At the same time
it listens for AR.Drone’s configuration or control
commands coming from the microcontroller. These
commands are directly forwarded to the AR.Drone’s
command port.

2) Microcontroller: To execute autonomous nav-
igation and control algorithms on board, we at-
tached the microcontroller to the debugging port of
the AR.Drone. With these algorithms running on the
microcontroller all the computational resources on
the AR.Drone are reserved for its pose estimation
and control algorithms.The microcontroller allows
us to interface with a wide variety of sensors for
example, ultrasonic or infrared range sensors, GPS,
temperature sensors or radio communications. The
number of sensors that can be added is limited
by the microcontroller’s specifications, their power
consumption and the payload of the AR.Drone.

The additional hardware weights approximately
25 g. With the weight located at the center of
the AR.Drone, there is no noticeable influence on
flight performance with the outdoor protective hull
and a 10 cm height loss on the hovering after the
take off which the controllers are able to correct.
With our current setup, flight time is reduced by
approximately 2-3 minutes due to the extra weight
and power consumption of the microcontroller.

The software framework for autonomous fig-
ure flying runs on this microcontroller. It consists
of three modules: position estimation, path plan-
ning and control. The first module exploits the
AR.Drone’s position estimates from vision algo-
rithms (see section II). The position and heading
are provided in world coordinates with the origin
at the take off location and the height value as the
current measurement over the ground. The proxy
application gets these data from the AR.Drone’s
navigation data stream. Then the proxy applica-
tion builds a binary message with the AR.Drone’s
status, its position and heading and sends it to
the microcontroller. We treat the AR.Drone as an
additional sensor providing position information to
the planning and control modules running on the
microcontroller.

The second module, path planning, computes a
trajectory for the AR.Drone to follow, based on
predefined shapes or user defined waypoints. To
follow a predefined shape, which can be a simple
straight line, a circle or an eight shape, we calcu-
lated mathematical equations that parametrize the
shape according to its size. To follow waypoints,
we define a series of coordinates that outline a
desired trajectory. Each waypoint w is defined as
a triplet w = [x, y, z] where x, y, z are in world
coordinates with the origin as the take off location
of the vehicle. The trajectory is computed as a series
of smooth connected functions of time for each of
the axes. The individual functions have the form
at+ bt2 + ct3 where the coefficients a, b and c are
computed before the flight using the desired veloc-
ity of the vehicle. The yaw angle φ is computed
so that the front camera of the AR.Drone points in
the direction of the next waypoint. Navigating in
this way keeps the camera pointing always in the
direction of flight but is not optimal for the control
of quadrotors. Yaw rotation produces centrifugal
forces that push the vehicle away from the desired
path requiring additional maneuvering to correct its
trajectory.

In the third module, trajectory following control,
we feed the AR.Drone’s position estimate and the
planned set point position to four PID controllers.
The PID controllers compute commands for the roll,
pitch and yaw angles and for the desired height of
the vehicle independently from each other. These
commands are then sent back to the AR.Drone via
the proxy application that redirects it to the vehicle’s
command port. The control gains for each controller
were experimentally determined.

Path planning and PID controller parameters can
be configured from an optional base station. The
base station communicates with the microcontroller
on the AR.Drone via a radio module. It records
flight data and displays useful information from
the vehicle like its status and battery level and a
visualization of the path.

Fig. 3: Indoor environment for the path planning
experiments. The room is equipped with a motion
capture system to provide positioning ground truth.
The figure of eight is marked on the floor to provide
texture for the AR.Drone’s vision algorithms.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

To test the capabilities of our system and an-
alyze its performance, we performed a series of
autonomous flights. We used an AR.Drone version
1.0 communicating with the microcontroller as de-
scribed in section III. Flight data are logged at
a frequency of approximately 30 Hz on the base
station that communicates with the microcontroller
using a radio module. The flight experiments were
performed in two different rooms, both equipped
with a motion capture system that monitors the
position of the vehicle at a frequency of 100 Hz
with millimeter precision for accurate ground truth
measurements. One environment was a small room
where the motion capture system covers a volume
of 3× 3× 2 m3. The room has a carpet that pro-
vides texture for the estimation algorithms of the
AR.Drone. The second room covers a larger volume
of 10× 12× 6 m3. This room lacks texture on the
floor so we laid colored paper on the floor forming
the figure of an eight to provide the texture (see
Figure 3).

To test the trajectory following, we defined way-
points within a 2× 2 m2 area of the small room
arranged to form different patterns. After loading
parameters for the flight to the microcontroller, it
calculated the trajectory to follow. We then com-
manded the AR.Drone to hover at 1.10 m height
and then start the autonomous flight. The AR.Drone
flew three figures with varying level of difficulty: a
square, a zig-zag and a spiral. In the larger room,

Fig. 4: Measurements from a typical trajectory
following experiment. The AR.Drone was com-
manded to follow an eight shape trajectory of size
5 m× 1.75 m at an altitude of 1.10 m. Planned path
(solid blue), AR.Drone’s estimated position (dash-
dotted red) and the ground truth (dashed green) are
shown. Note that the yaw angle trajectory is smooth
and the plot shows the wraparound at 360 ◦.

the AR.Drone was commanded to fly a predefined
figure-eight of 5 m length and 1.75 m width over
the marked figure on the floor of the room while
keeping a constant height of 1.10 m.

B. Results

To evaluate the performance of our system, we
analyzed the data collected from 20 flights. We first
synchronized the data logged on the base station
with the data provided by the tracking system. The
data from both systems is synchronized by noting
the start of the experiment (movement along x-y
axis) on both data logs, the end of the AR.Drone’s
log and the total time of the experiment from these

TABLE I: Error analysis of AR.Drone’s odometry

Short trajectory
x [cm] y [cm] z [cm] yaw [deg.]

RMSE 4.88 3.14 0.69 3.05
Std. Dev. 2.77 3.01 0.78 1.50
Max Error 11.81 10.32 6.74 6.40

Long trajectory
x [cm] y [cm] z [cm] yaw [deg.]

RMSE 8.04 12.82 1.21 9.20
Std. Dev. 6.04 11.57 1.18 5.80
Max Error 25.26 40.60 10.28 17.74

TABLE II: Error analysis of trajectory tracking

Short trajectory
x [cm] y [cm] z [cm] yaw [deg.]

RMSE 7.55 12.02 3.06 4.02
Std. Dev. 7.23 7.28 2.74 2.82
Max Error 25.7 29.7 11.30 13.90

Long trajectory
x [cm] y [cm] z [cm] yaw [deg.]

RMSE 7.58 11.34 3.14 5.93
Std. Dev. 4.91 6.90 2.04 3.34
Max Error 23.20 26.00 12.50 14.51

data and interpolating the tracking system’s data at
the time marked by the AR.Drone’s data log times-
tamp. We measured the accuracy of the AR.Drone
pose estimation by comparing it with ground truth
data (see Table I). The root mean square error on
the short trajectories was smaller than 5 cm and
on the longer trajectory around 10 cm on x and y
axes while on the yaw angle the RMSE was around
3 ◦ and 10 ◦, respectively. The difference in error
values can be caused by drift in the sensors, which
translates to a small drift of the position estimation.
As it was expected, the height estimation from the
ultrasonic range sensor yields comparable results
in both experiments (around 1 cm). The errors and
standard deviations in all axes showed that the
AR.Drone’s odometry provides enough accuracy for
flying figures autonomously.

Figure 4 shows the measurements of the position
and heading of the vehicle during a typical flight
of the figure eight. A top view of one of the
experiments where we flew the figure eight is shown
in Figure 5. Figure 6 shows the top view of the
spiral, zig-zag and square figures flown in the small
room.

We analyzed the performance of the controllers

(a) spiral (b) ZigZag

(c) Square

Fig. 6: X-Y projections of typical flights of the spiral, zig-zag and square figures flown in the small room.
The different trajectories were computed from waypoints defined in the 3× 3× 2 m3 volume of the room.

for trajectory following by comparing the planned
trajectory with the pose estimate of the AR.Drone
(see Table II). The controllers performed very sim-
ilar on both short and long trajectories as suggested
by the RMSE and standard deviation values on all
axes. There was a slightly larger error and standard
deviation on the shorter flights, since the trajectories
involved more changes in the heading direction of
the vehicle than in the larger figure-eight, and in the
case of the spiral, the changes were increasingly
faster. With these properties, our controllers are
capable of autonomous operation of the AR.Drone
in reduced and narrow spaces with average errors
5 times smaller than the size of the vehicle and
maximum errors of about half a vehicle length.

V. CONCLUSION

We presented a framework that allows the low-
cost quadrotor AR.Drone to perform autonomous
flights. Our method uses on board sensing only,
and all the computations performed are on board as
well. The system can be used for extended distances
since it does not require any base station or remote
control to operate. It can be easily customized and
extended with additional sensors or a more powerful
microcontroller that can speed up the computa-
tions or carry out more computationally challenging
tasks.

We evaluated the system capabilities by follow-
ing predefined trajectories and a series of user

Fig. 5: X-Y projection of a typical eight shape
trajectory flight In our experiments in the large
room the AR.Drone followed an eight shape tra-
jectory at a constant height of 1.10 m. The stating
point is chosen so the AR.Drone starts with a yaw
angle of 0 ◦. Planned path (solid blue), AR.Drone’s
estimated position (dash-dotted red) and the ground
truth (dashed green) are shown.

defined waypoints. We used the AR.Drone’s visual
odometry which provided reliable estimates for this
task. The trajectory tracking errors were small in
comparison with the size of the quadrotor. This
shows that our system is capable of flying in narrow
environments.

We found that sometimes the visual odometry
of the AR.Drone delivers position estimates with
a very high error leading ultimately to a large
deviation from the planned trajectory without the
system being able to correct it. The problem was
solved after resetting the AR.Drone. Another re-
striction is the limited computational power of the
microcontroller which is insufficient to process the
images of the on board cameras. This will be
solved in the future by mounting a more powerful,
lightweight single board computer.

ACKNOWLEDGMENT

The authors would like to thank Volker Grabe and
Dr. Paolo Robuffo Giordano from the Max Planck
Institute of Biological Cybernetics for letting us use

their tracking system room and Karl E. Wenzel for
his valuable input and advice with the AR.Drone.

REFERENCES

[1] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea,
“A simple learning strategy for high-speed quadrocopter
multi-flips,” IEEE International Conference on Robotics
and Automation, pp. 1642–1648, 2010.

[2] M. Muller, S. Lupashin, and R. D’Andrea, “Quadrocopter
ball juggling,” IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 5113–5120, 2011.

[3] D. Mellinger, N. Michael, and V. Kumar, “Trajectory gen-
eration and control for precise aggressive manuevers with
quadrotors,” International Journal of Robotics Research,
2012.

[4] G. Hoffmann, D. Rajnarayan, S. Waslander, D. Dostal,
J. Jang, and C. Tomlin, “The stanford testbed of au-
tonomous rotorcraft for multi agent control (starmac),” in
Digital Avionics Systems Conference, 2004. DASC 04. The
23rd, vol. 2. IEEE, 2004, pp. 12–E.

[5] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Polle-
feys, “Pixhawk: A system for autonomous flight using
onboard computer vision,” IEEE International Conference
on Robotics and Automation (ICRA), 2011., pp. 2992 –
2997, may 2011.

[6] H. Lim, J. Park, D. Lee, and H. J. Kim, “Build your
own quadrotor: Open-source projects on unmanned aerial
vehicles,” IEEE Robot. Automat. Mag., vol. 19, no. 3, pp.
33–45, 2012.

[7] A. Tayebi, S. McGilvray, A. Roberts, and M. Moallem,
“Attitude estimation and stabilization of a rigid body using
low-cost sensors,” 46th IEEE Conference on Decision and
Control, 2007., pp. 6424 –6429, dec. 2007.

[8] K. Wenzel, A. Masselli, and A. Zell, “Automatic take off,
tracking and landing of a miniature uav on a moving carrier
vehicle,” Journal of Intelligent & Robotic Systems, vol. 61,
pp. 221–238, 2011, 10.1007/s10846-010-9473-0.

[9] K. E. Wenzel, A. Masselli, and A. Zell, “Visual tracking
and following of a quadrocopter by another quadrocopter,”
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2012), pp. 1–6, October 7-12 2012,
accepted for publication.

[10] M. Saska, T. Krajnı́k, J. Faigl, V. Vonásek, and L. Preucil,
“Low cost mav platform ar-drone in experimental verifi-
cations of methods for vision based autonomous naviga-
tion,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2012), 2012, pp. 4808–4809.

[11] J. Faigl, T. Krajnı́k, V. Vonásek, and L. Přeučil,
“Surveillance planning with localization uncertainty for
uavs,” pp. –, 2010. [Online]. Available: http://www.
icr2010.org.il/

[12] C. Bills, J. Chen, and A. Saxena, “Autonomous mav flight
in indoor environments using single image perspective
cues,” IEEE International Conference on Robotics and
Automation, pp. 5776 –5783, may 2011.

[13] J. Engel, J. Sturm, and D. Cremers, “Camera-based naviga-
tion of a low-cost quadrocopter,” Proc. of the International
Conference on Intelligent Robot Systems (IROS), Oct. 2012.

[14] G. Klein and D. Murray, “Parallel tracking and mapping
for small AR workspaces,” in Proc. Sixth IEEE and ACM
International Symposium on Mixed and Augmented Reality
(ISMAR’07), Nara, Japan, November 2007.

[15] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The
navigation and control technology inside the ar.drone micro

uav,” in 18th IFAC World Congress, Milano, Italy, 2011, pp.
1477–1484.

[16] M. Trajkovic and M. Hedley, “Fast corner detection,”
Image and Vision Computing, vol. 16, no. 2, pp. 75 – 87,
1998.

