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Abstract— For a mobile robot to navigate safely and ef-
ficiently in an outdoor environment, it has to recognize its
surrounding terrain. Our robot is equipped with a low–
resolution 3D LIDAR and a color camera. The data from both
sensors are fused to classify the terrain in front of the robot.
Therefore, the ground plane is divided into a grid and each cell
is classified as either asphalt, cobblestones, grass or gravel. We
use height and intensity features for the LIDAR data and Local
ternary patterns for the image data. By additionally taking into
account the context–sensitive nature of the terrain, the results
can be improved significantly. We present a method based on
Conditional Random Fields and compare it with a Markov
Random Field based approach. We show that the Conditional
Random Field model is better suited for our task. We achieve
an average true positive rate of 94.2% for classifying the grid
cells into the four terrain classes.

I. INTRODUCTION

A mobile robot that operates in outdoor environments is
faced with challenges quite different from those occuring
in factories and office buildings. A major issue here is the
changing and differently navigable terrain. On the one hand,
the knowledge of the terrain around the robot is essential for
safe and efficient navigation, on the other side, the terrain
can give clues about where the robot is located. Thus, terrain
classification is a fundamental ability for further tasks such
as path planning and localization.

In previous work [LKBZ12] we classified the terrain using
a low–resolution 3D LIDAR and a color camera separately,
each sensor with its own advantages and drawbacks. For
both types of sensor data we used a grid–based approach,
which means that the image (in the case of the camera),
and respectively the ground plane (in the case of the laser)
are divided into a Cartesian grid, and then each grid cell is
classified individually as either asphalt, cobblestones, grass
or gravel. Now, in this work, in order to use the data of
both sensors in the same coordinate system, we project the
ground plane onto the image to get the corresponding pixels
for feature extraction and classification.

Important for improving the classification results is the
insight that terrain appears in contiguous areas — a fact
that is ignored when the grid cells are considered only
independently of each other. Only very rarely will one find
terrain that varies greatly within a small range. To account
for this, a suitable mathematical model is needed, which
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exists in the form of a Markov Random Field (MRF) or a
Conditional Random Field (CRF). An MRF is a generative
model, which means that it models the joint probability
of labels and features. In contrast, a CRF models the
conditional probability of the labels given the features
directly; such a model is called discriminative. Although
MRFs have proven themselves to give good results for many
tasks, including terrain classification, we will show that
MRFs are not suitable for our specific problem, whereas a
CRF achieves very good classification results.

In Sec. II we discuss related work where MRFs and
CRFs are used. Our outdoor robot and its sensors can
be seen in Sec. III. In Sec. IV we describe our terrain–
classification method, that is, the LIDAR– and camera–based
classification, the sensor fusion, and the context–sensitive
classification of the grid cells, where we will look at MRFs
and CRFs and their differences in more detail, as this is
essential for our work. In Sec. V we present our experiments
and results and conclude in Sec. VI.

II. RELATED WORK

There exist several approaches for terrain classification
that use range and image data in combination as mentioned
in the Related Works section of [LKBZ12]. In our work,
however, we not only differentiate between passable and non-
passable terrain but also classify the type of terrain using a
camera and a low-resolution LIDAR.

Our work is inspired by Häselich et al. [HALP11]. They
use data from the high–resolution 3D LIDAR Velodyne
HDL-64E S2 in addition to color and texture information
from color cameras to classify the terrain into three classes:
road, rough and obstacle. To take into account the context-
sensitivity of the individual terrain grid cells, they apply an
MRF and get a recall ratio of about 90%.

A couple of works show that CRFs are more appropriate
than MRFs for many classification tasks. In [KH03] they
compare both models for the task of detecting man-made
structures in images, where they also divide the images into
grids. The CRF yields higher detection rates with lower false
positives. Multiscale CRFs are used in [HZCP04] for the
task of image labeling. Their CRFs model local and global
structures and yield better results than a MRF, which requires
stricter independence assumptions.

A two–stage training is used in [FVS09] for identifying
and localizing object classes in images. In the first stage,
superpixels (small image regions obtained by segmentation)
are trained with an SVM, and in the second stage they refine



their results by using a CRF. A similar approach is used in
[LEN10] for detecting shadows in images. They first use
a decision tree to find potential shadow contours and then
optimize the results with a CRF. The model we use for
classifing the cells of the terrain grid comes closest to theirs.

An excellent introduction to CRFs is given in [SM12], and
also in [NL11] with a focus on applications in Computer
Vision.

III. HARDWARE

Our outdoor robot Thorin, which can be seen in Fig. 1, was
used for the experiments in this work. The robot is equipped
with a Mini-ITX computer featuring a dual–core CPU and
has, among other sensors, an AVT Marlin F-046 C Color
Camera and a Nippon Signal FX6 3D LIDAR.

Fig. 1. Outdoor robot Thorin with a Nippon Signal FX6 3D LIDAR and
an AVT Marlin F-046 C color camera

Marlin F-046 C Color Camera
Vendor Allied Vision Technologies GmbH

Resolution 638 x 480 pixels
Frame Rate Max. 53 Hz
FX6 3D LIDAR

Vendor Nippon Signal Co., Ltd.
Resolution 29 x 59 data points
Frame Rate 8 or 16 Hz

Range 16 m
Scan Area 50◦ (hor.) and 60◦ (vert.)

The color camera is able to take pictures at a frame rate of
up to 53 Hz. It has both manual and automatic white balance
as well as an auto shutter and auto gain function. All three
auto functions were enabled for the experiments.

The FX6 sensor uses a pulse laser in the near-IR
range. It is lightweight and robust and largely illumination-
independent, so that it works with ambient light of up to
100,000 Lux. A drawback of the sensor, however, is its low
resolution with only 29 x 59 data points. In addition to the
distance an intensity value is returned for each point, which
indicates the proportion of the emitted light which arrives
back at the sensor.

IV. TERRAIN CLASSIFICATION
We use a two–stage approach for terrain classification. In

the first stage, laser and image features are extracted for each
terrain grid cell. Here, each grid cell is projected onto the
image to get the corresponding image patch. Using these
features Random Forests then assign to each cell a terrain
label.

In the second stage we exploit the context–sensitive nature
of the terrain grid cells to improve the classification results.
We discuss Markov Random Fields (MRF) and Conditional
Random Fields (CRF), which are probabilistic graphical
models for context–sensitive classification. To find an op-
timal label configuration of the terrain grid, we use a Gibbs
sampler with a simulated–annealing scheme.

A. 3D LIDAR– and Camera–Based Classification

In the first stage of our terrain classification method we
train per–cell classifiers for the LIDAR and the image data
separately. By converting the range values of the LIDAR
into Cartesian coordinates we get a 3D point cloud wherein
a RANSAC–based method finds the ground plane on which
the robot drives (see Fig. 2(a)). This plane is divided into
a grid and the grid cells are to be classified into the
given terrain classes. As features we use the height of the
points above the ground plane, and the distribution of the
intensity values. Details can be found in [LKBZ12]. The
cells in which the height exceeds a threshold are marked
as obstacles and are not further classified. Since the LIDAR
has a very low resolution, only for cells that are closer than
about two meters to the front of the robot enough laser
measurements are available to provide a meaningful analysis
of the terrain (see Fig. 2(b)). For the small number of cells,
however, the classification works very well, especially when
distinguishing vegetation from non–vegetation.

In previous work [KKZ11] we used a grid–based method
also for the camera–based classification, where the image is
divided into equally–sized grid cells, and local features are
computed across the grid. In this work, the grid cells of the
ground plane are projected onto the image and determine the
relevant image patches for feature extraction (see Fig. 2(c)).
For the projection we need to know the transformation be-
tween the LIDAR and the camera coordinate system, which
we compute using a calibration method with a checkerboard
[Bou08], [UH05]. As features we use Local ternary patterns
(LTP) [TT10], which are an extension of Local binary
patterns (LBP) [OPH96]. LBPs are essentially histograms of
binary-encoded differences in pixel brightness. While LBP
is parameter–free, LTP has a parameter to threshold pixel
differences into three values and yields a 512–dimensional
feature vector.

For classification we use Random Forests [Bre01]. A
Random Forest is a collection of multiple decision trees,
in which each tree takes different samples of the training
instances, and each node considers a different random subset
of the features. Each tree votes for one label, and the label
with the majority of votes is assigned to the corresponding
cell. This allows us to assign to each grid cell i the probability



p(yi | xi) that this cell has label yi given the features xi, as
the proportion of the trees that have voted for yi. For grid
cells where data of both sensors are present, the probabilities
are combined: p = kplidar +(1− k)pimage, with a weighting
factor k.

B. Context–Sensitive Classification

Fig. 2(d) shows a typical result of the sensor–fusion
process and although quite good, many grid cells are still
misclassified. As mentioned above, classifying each grid cell
indivdually ignores the context-sensitive nature of the terrain
that occurs in contiguous areas.

Let y be a configuration of labels for the entire terrain
grid and x the corresponding features. Then the classification
problem can be stated as finding the label configuration y∗
that maximizes the probability p(y | x) of the configuration
given the observed features x. So far we have implicitly
assumed this probability to be:

p(y | x) =
M

∏
i=1

p(yi | xi) (1)

where M is the number of grid cells and the probabilities
p(yi | xi) are obtained by the Random Forest classifiers
independently for each cell.

In [HALP11] they successfully use a Markov Random
Field (MRF) to account for spatial dependencies between
grid cells. We will now look at MRFs and Conditional
Random Fields (CRF) in more detail. We compare the two
models and look at the differences in order to understand
why the MRF does not work for our problem.

An MRF defines a family of joint probability distributions
by means of an undirected graph. It explicitly attempts to
model the joint probability distribution p(y,x) and factorizes
as follows:

p(y | x) ∝ p(y,x) = p(x | y)p(y) (2)
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∏
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Eq. 2 – 4 point out the two components of an MRF:

• A conditional probability distribution p(x | y) that mod-
els how the labels generate the features

• A probability distribution p(y) that models the a–priori
probability of a label configuration

The conditional probabilities p(xi | yi) are calculated for
each grid cell by assuming a Gaussian distribution (see Eq.
3), where xik is the kth component of the K–dimensional fea-
ture vector of cell i. µik and σik are the corresponding means
and standard deviations, which are learned from training data
for every class and every feature component. The probability
distribution p(y) does not depend on the features and is only
tractable by assuming certain neighborhood relationships.
That is, the probability that the ith cell has label yi given
all the other cells is equal to the probability given only the
cells of the neighborhood N .

p(yi | Y\{yi}) = p(yi | {y j : (i, j) ∈N }) (5)

This Markovian property of the Random Field makes it,
according to the Hammersley–Clifford theorem [GG84],
equivalent to a Gibbs field that has the form of Eq. 4. βi, j
is a factor that weights the neighbors impact and δ (yi,y j)
is −1 if yi = y j and +1 otherwise. Z is the normalization
factor and sums over all labels y ∈ Y .

The MRF model has some shortcomings. E.g., we have
to implicitly model the probability distribution p(x) of the
features. This distribution can be very complex, and making
simplifying assumtions, like modeling it as a Gaussian dis-
tribution, can be a too strong restriction. The pairwise factor
ψ encourages agreement, but the way in which it does so is
inflexible. The probability that two neighboring cells have the
same label should be higher when the corresponding features
are similar, and vice versa, but ψ in this model is independent
of the features x.

An alternative is to model the terrain grid as a CRF. A
CRF is a discriminative model and it models the conditional
distribution p(y | x) directly, which is all that is needed for
classification. It does not include a model of the probability
distribution p(x), which is difficult to model and not required
anyway. A CRF is better suited to including rich, overlapping
features.

p(y | x) =
1

Z(x)
exp

(
−λ

M

∑
i=1

φi(yi,xi)

− ∑
(i, j)∈N

ψi, j(yi,y j,xi,x j)

)
(6)

φi(yi,xi) = − log(p(yi | xi)) (7)
ψi, j(yi,y j,xi,x j) = 1{yi 6=y j} exp

(
−β (xi− x j)

2) (8)

This CRF model [LEN10] can be seen in analogy to Eq.
2 – 4 defining the MRF model. In the CRF the conditional



(a) Scan points of the LIDAR (b) LIDAR–based classification with
height and intensity features

(c) Projection of ground plane
onto image for feature extrac-
tion

(d) Fused classification result

Fig. 2. Fusion of LIDAR– and image–based terrain classification. Each cell of the terrain grid is classified based on height and intensity features of
the corresponding scan points of the LIDAR. To integrate the image data, the terrain grid is projected onto the image and then, for every projected cell,
features based on Local ternary patterns are extracted. (Gray: asphalt, blue: cobblestones, green: grass, yellow: gravel)

probability distribution p(y | x) is modeled directly as a
Gibbs distribution. The factor φi(yi,xi) models the feature–
dependent component and ψi, j(yi,y j,xi,x j) models the label
distribution. The influence of each of the two components
is controlled by the parameter λ . It is now no longer
necessary to model the feature distribution p(x) and we get
the conditional distribution p(yi | xi) as output of the Random
Forest classifier, which as we shall see, provides significantly
better results. While in Eq. 4 the same dissimilarity penalty is
imposed regardless of x, we choose the factor ψ as proposed
in [BJ01] to account for this. The idea behind Eq. 8 is that
the probability that two neighboring grid cells belong to the
same terrain class is high, but if they belong to different
classes, their appearence (measured by feature vector x) must
also differ. It turned out that using LTPs here takes too much
computation time, so we used simpler features, namely the
average RGB color values. Thus, we are using LTPs in Eq. 7
as global features, which describe the overall appearance of
a terrain patch, and in Eq. 8 we are using the average color
to describe the relative change between neighboring patches.

C. Inference with Gibbs–Sampler

After observing the features x, we are interested in the
labeling y∗ which is the single most likely labeling given the
new input x. This can be stated as an energy minimization
problem:

y∗ = argmax
y

p(y | x) (9)

= argmax
y

1
Z(x)
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)
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So maximizing the probability p(y | x) is the same as
minimizing the sum of the energies EF of all factors F .
The same is true for the MRF. The energy equivalents of
the MRF factors are:
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In the same way, the energy equivalents of the CRF factors
are:

E1(y,x) = −λ

M

∑
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log(p(yi | xi)) (12)

E2(y,x) = ∑
(i, j)∈N

1{yi 6=y j} exp
(
−β (xi− x j)

2) (13)

Note that the energy term in Eq. 13 additionally depends
on the features x.

Unfortunately, to get the most likely labeling y∗, we
would have to compute the energies of all possible label
configurations y ∈Y M , which is an exponentially large num-
ber, and so not tractable. We therefore use an approximate
inference method, namely a Gibbs sampler with a simulated–
annealing scheme [GG84], [BKYZ96], like in [HALP11]. In
this scheme, the label configuration is changed iteratively
until a convergence criterion is reached. In each iteration,
for every cell a new label is sampled from the conditional
probability distribution that describes the probability that this
cell has a certain label given all the other cells.

V. EXPERIMENTS AND RESULTS

In our experiments we consider four types of terrain that
are often encountered, namely asphalt, cobblestones, grass,
and gravel. There is great variations within the terrain classes.
For example, the grass has varying height and density, some
spots are covered with moss. The pattern of the cobblestones
varies and gravel and asphalt show different textures at
different spots.

The ground in front of the robot is divided into a grid
with a cell size of 20 cm by 20 cm, which is a high enough
resolution for subsequent tasks such as path planning. For
the LIDAR–based classification only cells with at least ten
scan points are considered. Therefore, because of the low
resolution of the FX6, only cells that are closer than about
two meters to the front of the robot can be classified with
this sensor. The projection of the terrain grid determines the
size of the individual image patches. Only patches with at
least 200 pixels are considered, so cells that are closer than
about three to four meters are classified with the image data.

To evaluate the different classifiers we need a set of
frames (scans and corresponding images) with ground–truth



data for the terrain grid. We therefore hand–labeled 135
images, which build the basis for the labeling of the terrain
grid. This labeling was refined using the scan points of the
LIDAR. Then a 10–fold cross validation was performed on
this data set.

It turns out that the Gaussian model yields very poor
results in our case. Only regarding the LIDAR data, the
true positive rate is 49.5%. Using the simulated–annealing
scheme only moderately improves the classification result
to 54.9%. For the image data the results using the Gaus-
sian model are even worse with 33.8%. With such a bad
feature–dependent classification, it makes no sense to try to
improve the classification by considering the neighborhood
of the cells. The poor results show that the assumption of a
Gaussian distribution for the features used in our work does
not hold.

TABLE I
CLASSIFICATION RESULTS

Classification method True positive rate in %
Image–based 80.4

Fusion of LIDAR and image data 81.5
Conditional Random Field 94.2

True positive rates after 10–fold cross validation for the image–based
classification with Local Ternary Patterns (LTP), the fused classification,
and the classification with a Conditional Random Field.

For training the Random Forests, we used 100 trees for
each. Using only the LIDAR data and the Random Forest
classifier we get a true positive rate of 93.1%. This result
seems very good, but it also has to be considered that only
a small area in front of the robot can be classified hereby.
Therefore, it can not be directly compared with the other
results. Using Random Forest with the LTP features of the
image (where a threshold value of 2 gave the best results)
yields a rate of 80.4%. By fusing both sensor data this can
be improved to 81.5%, whereby each sensor was equally
weighted. Again, the reason that this improvement is so low
is due to the small area which is covered by the laser.

For the CRF we set λ = 0.5 and β = 2.0. With this setting
the CRF achieves a true positive rate of 94.2%, which is a
huge improvement. A few typical classification results can
be seen in Fig. 3, where transitions between terrain types
are shown, as these are the most interesting cases.

Since we want to use the classification on the robot in real–
time, we are interested in the runtimes of the algorithms. The
following table shows the average runtimes of the main parts,
namely the feature extraction of the LIDAR and image data,
the initialization of the CRF, which corresponds to the fused
classification, and finally the simulated–annealing scheme
(using a CPU with 3.20GHz).

The features of the LIDAR data are very fast and simple
to compute and the total computation takes only 5.0 ms. The
initialization of the CRF takes 8.2 ms in average. The Gibbs
sampler with the simulated–annealing scheme also does not

TABLE II
AVERAGE RUNTIMES OF THE MAIN PARTS OF THE ALGORITHM

Average time [ms] Std. dev. [ms]
LIDAR features 5.0 1.1
Image features 123.4 4.4

Initialization of CRF 8.2 1.1
Simulated annealing 11.4 11.1

Total 148.0 17.7

take much time, but it has a higher standard deviation as it
stops when the error falls below a certain threshold, which
can vary greatly. Since the feature–dependent classification
alone is already good, we initialize the annealing process
with this classification and start with a low temperature,
which accelerates the convergence. The real bottleneck is
the calculation of the LTPs, so our focus in future work lies
here. We can speed up things by parallizing, or we have to
use a different local image descriptor, which achieves similar
results, but which is faster to compute.

VI. CONCLUSIONS

We presented a method for context–sensitive terrain classi-
fication based on 3D LIDAR and camera data. We discussed
in greater detail MRFs and CRFs, and showed the advantages
of the latter. In a classification setting with four terrain
classes the classification with a CRF got the best results
with a true positive rate of 94.2%. The reason that the
MRF does not work for our problem lies in the type of
features that we use. Since we not only differentiate between
passable and non-passable terrain but also classify the type
of terrain, we need a model that is suited to more complex
dependencies between the features. For simple features, that
can be modeled as Gaussians, however, the MRF can provide
great results as shown in [HALP11].

In order to build a local map of the environment we have
to take into account several consecutive frames. For that
purpose we plan using an Occupancy Grid Map where at
each time step, as a preprocess, the current classification
result is obtained using the method presented here. In this
way, we obtain a classification that takes into account spatial
and temporal dependencies.
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