
Loop Closure Detection using Depth Images

Sebastian A. Scherer∗ Alina Kloss∗ Andreas Zell∗
∗Department of Computer Science, University of Tuebingen, Tuebingen, Germany

Abstract— We investigate the question whether loop closure
detection using depth images is feasible using currently avail-
able depth features. For this reason, we collected a benchmark
dataset consisting of a total number of 15 logfiles with sev-
eral loops in various environments, implemented a modular
and easily extensible loop closure detector and used this to
evaluate the adequacy of state-of-the art depth features on
our benchmark dataset. To allow for a fair comparison, we
determined the best values for the sometimes large number of
user-chosen parameters using a large-scale grid search. Since
our benchmark dataset contains both depth and RGB images,
we can compare the performance relying on depth features with
the performance achieved when using intensity image features.

I. INTRODUCTION

Starting with the introduction of Microsoft’s Kinect, high-
resolution depth cameras became affordable and thus widely-
used in robotics and robot vision. While the Kinect and its
predecessor also included a regular color camera (see Fig. 1
for an example), there are now more compact devices like
the Asus Xtion PRO that only consist of a depth camera.

Using depth cameras as main devices for low-cost mobile
robots navigating in unknown environments and solving the
SLAM (simultaneous localization and mapping) problem im-
mediately comes to mind. There already is some interesting
work on fast registration for egomotion estimation using
depth images [1], but the still missing component towards
a full SLAM system using depth images is loop closure
detection.

There are, however, a plethora of attempts to visually
detect closed loops based on regular (intensity) camera im-
ages [2], [3], [4]. The general consensus about the approach
chosen for visual loop closure detection seems to contain
first finding the previous images that are most similar to
the current image (based on a content-based image retrieval
scheme) and afterwards discarding those that cannot be loops
due to heuristics or geometry consistency checks. The most
commonly used image retrieval scheme is Bag of Visual
Words (see sect. III for more details).

There are some alternatives to using Bag of Words for loop
closure detection that rely on using raw image descriptors [4]
or locality-sensitive hashing (LSH) [5]. In both cases, the
authors report to obtain much better results using alternative
approaches than using Bag of Words. We are not so sure
how representative that comparison is, however, due to very
small datasets used and the fact that Bag of Words was used
with very small vocabulary sizes: at most 2500 words were
used in [5] and at most 8000 in [4], as opposed to 1 million
in e.g. [6].

(a) RGB image (b) Depth image

Fig. 1. Example RGB and Depth Image Pair

II. LOCAL FEATURES FOR DEPTH IMAGES

We evaluate various interest point detectors and local
descriptors for depth images. Some algorithms contain both
interest point detection and local descriptor extraction, e.g.
Normal Aligned Radial Features (NARF) [7] or SIFT [8]. In
general, there are two classes of algorithms: Those which
were developed for depth images exclusively and those
which are adaptations of known algorithms for intensity
images.

A. Interest Points

Interest points or keypoints are image locations in regions
that contain a relatively high amount of information (i.e.
texture in intensity images). They are usually desired to
be distinctly located, which is typically the case for local
extrema or corners, and robust to changes of perspective.

1) Harris: The Harris corner detector [9] is a well known
interest point detector for intensity images. It evaluates the
variance of the intensity around each point. For a corner
and therefore a stable interest point, intensity variation in
both x and y direction needs to be high. This corresponds
to both eigenvalues of the so called Harris matrix H of the
patch having large positive values. The response C is usually
computed without explicitly determining the eigenvalues of
H:

H =

[
Î2x ÎxIy
ÎxIy Î2y

]
(1)

C = |H| − k · trace(H) (2)

Where Ix denotes the x-component of the intensity gradient
and ·̂ is a shorthand for the weighted sum over a certain
influence window. C above is the so-called Harris response.
An alternative response measure is the Shi and Tomasi
response: C = min(λ1, λ2), where λi are the eigenvalues
of H . When using depth images instead of intensity images,

the image gradients are roughly proportional to the x and y
components of the surface normals.

Keypoints detected by the Harris detector tend to lie
directly on the boundaries of objects. This works fine in
continuous 2D images but can easily become a problem
with depth images, as the border regions are often unstable
with regard to both surface normal estimation and depth
measurement.

2) FAST: Like Harris, the FAST keypoint detector [10]
was originally developed for intensity images. Its main idea
is to test the intensities of pixels on a Bresenham circle of
16 pixels diameter around each keypoint candidate p. If the
patch around p contains a corner, there should be at least n =
12 consecutive pixels on that circle that are either all darker
or all brighter than p by some threshold t. The order of pixel
tests is optimized such that non-corners can be eliminated as
soon as possible. Instead of using FAST on intensity values,
we can also easily ”abuse” it and apply it to depth values.

3) NARF: [7] NARF interest point detection begins with
border detection: For each point it tests whether there is
a border of an object above, below, to the left or to the
right of it. If a point has a border in its neighbourhood it is
assigned the direction of the border as its dominant direction
of surface change, otherwise the first principal component of
the curvature is used. The interest value of a point is then
influenced by two aspects:

• To encourage keypoints on stable surfaces, the interest
value of a point is decreased if there are points with
strong surface changes nearby.

• Points with pairs of neighbours with different directions
of surface have their interest values increased.

As a result, NARF interest points can be found near the
borders of objects but not directly on these borders, which
is usually good for depth images or point clouds.

B. Local Descriptors

Local descriptors are designed to describe an image patch
(usually located around an interest point) in a compact but
distinctive way. Similar to the location of interest points, a
point’s descriptor is usually desired to be invariant to changes
in scale and perspective.

1) NARF: The main idea of the NARF descriptor is
similar to 2D algorithms like SIFT: For each keypoint,
a normal aligned range value patch is computed that is
orthogonal to the surface normal of the point. Changes in
depth values are computed along 36 directions around the
keypoint and weighted by their distance to it. A unique
orientation is obtained by computing a direction histogram
over the descriptor values. The bin with the maximum value
is selected as the dominant orientation and the descriptor
can be made rotational invariant by rotating (shifting) the
histogram by this orientation. It should be noted that the
algorithm will compute multiple descriptors at a single
keypoint if there is more than one bin within the histogram
with values exceeding 80% of the maximum. Because of
this, NARF will often produce more descriptors than there
are keypoints for a given image.

2) Kernel Descriptors: Bo et al. in [11] introduce a kernel
view of SIFT and HOG features and demonstrate that com-
paring HOG descriptors can be interpreted as computing a
linear match kernel that combines two subkernels comparing
gradient orientation and magnitude of all pixel pair combi-
nations. They propose a slightly different orientation kernel
and add a gaussian position kernel to arrive at what they
call gradient kernels. The problem of these kernel features
is the fact that they are generally infinite-dimensional. Bo
et al. propose sampling basis vectors over a fine grid to
obtain finite-dimensional features. Those are still too high-
dimensional to be of any use, so a kernel PCA is used to
compact them to a 200-dimensional feature space. They show
that this notion of kernel descriptors can also be applied to
come up with completely new descriptors, e.g. color or shape
kernels and kernel descriptors can successfully be applied to
depth images [12].

3) BRIEF: [13] BRIEF is a very simple descriptor in the
form of a binary string. It was developed for intensity images
to allow for fast computation, efficient storage and also fast
comparison by using the Hamming distance instead of the
common L2 norm. To obtain the descriptor, the intensity
values of several point pairs in the neighbourhood of a
keypoint are compared after smoothing the patch to reduce
noise. The descriptor cell is then either 1 or 0, depending on
which of the points had the higher intensity.

III. BAG OF WORDS

Bag of Visual Words (BoW), also referred to as Bag of
Keypoints ([14]), is a technique widely used in computer
vision to compute a single global descriptor of an image,
given an arbitrary number of descriptors of local features
found within this image. The general idea is rooted in docu-
ment processing, where documents of arbitrary length can be
represented using a global descriptor by counting occurrence
of a finite number of n keywords (i.e. the vocabulary).
The resulting histograms, which we will call BoW vectors
from now on, can be interpreted as an n-dimensional global
descriptor of a document and efficiently compared using any
vector norm.

In computer vision, representative feature descriptors are
used as visual words. A visual vocabulary, i.e. a set of
representative feature descriptors, can be computed from
a large set of example features by clustering, typically k-
means clustering. Computing the BoW vector of a given
image consists of extracting all local features, determining
the corresponding visual word for each feature (e.g. using
fast linear approximate nearest neighbour search), and finally
counting the occurrence of each visual word.

The utility of Bag of Visual Words heavily depends on
the vocabulary size. The authors of [6] propose vocabularies
that contain on the order of millions of visual words and
claim that using such large vocabularies, image retrieval
works accurately even without considering the geometric
layout of visual words. In order to cope with this large
vocabulary sizes, they suggest hierarchical vocabulary trees:
During vocabulary creation, k-means clustering is performed

recursively on multiple levels up to a maximum tree depth,
clustering the set of all sample features that belong to one
cluster in the previous level in turn. Looking up the corre-
sponding visual word for a given feature involves traversing
the vocabulary tree down to a leaf node, finding the closest
representative descriptor on each level.

IV. LOOP CLOSURE DETECTION

Since the main focus of this work is evaluating different
features for loop closure detection, we employ only a very
basic loop closure detection method. For each image, it will
do the following steps:

1) Query the database of previous images to find and
return the most similar ones using Bag of Words as
described in sect. III.

2) Disregard all resulting candidates that belong to the
10 latest keyframes in order to prevent detecting loops
already when the robot is still at the same location.

3) Compute the similarity s of the current image with
each resulting candidate based on their BoW vectors
v1, v2 and disregard those whose similarity is below a
user-chosen threshold α. We use the similarity measure
described in [15], which is based on the L1 norm:

s(v1, v2) = 1− 1

2

∣∣∣∣ v1|v1|1 − v2
|v2|1

∣∣∣∣
1

4) Return the up to k images with the highest similarity
as loop closure candidates, where k can be chosen
by user. The choice of k will depend on how many
candidates can be further verified by checking the
geometric consistency within a reasonable amount of
time.

5) Finally, the current image is added to the database so
it can later be found as a loop closure candidate.

One could think of many more heuristics to filter out more
false positives in loop closure detection. Galvez-Lopez and
Tardos in [16] propose many more heuristics, e.g. enforcing
temporal consistency, i.e. requiring detection of the same
loop multiple times in a row before it is actually reported.

The final step within a real SLAM system, however,
should always be a geometric consistency check. This could
involve trying to register loop closure candidates (e.g. using
ICP) and determining their goodness of fit, or matching local
features within a RANSAC scheme and counting the number
of inliers. Also evaluating registration methods, however,
would go beyond the scope of a single paper, so we eval-
uate the performance of the returned loop closure detection
candidates without checking their geometric consistency.

V. IMPLEMENTATION

We implemented a highly modular (polymorphic) and
easily configurable loop closure detector in C++. The user
can choose among any of the interest point detectors and
local descriptors mentioned in sect. II and arbitrarily set all
of their parameters. Adding more interest point detectors
or local descriptors is easy and only involves writing one

more derived wrapper class, which will register with the
corresponding object factories.

We use the DBoW2 library [15], a very efficient open-
source implementation of the hierarchical vocabulary tree
approach mentioned in sect. III.

For SIFT, FAST, and BRIEF, we rely on their imple-
mentations found in OpenCV1. For Harris and NARF their
implementations in PCL2 are used. As the C-Version of
Kernel Descriptors3 only allows the computation of dense
Kernel Descriptors, i.e. sampled over a grid of overlapping
patches, we modified the source code to allow computation
of sparse Kernel Descriptors at given keypoint locations.

VI. BENCHMARK DATASET

In order to evaluate the performance of loop detection
algorithms, we need sequences of depth images with ground
truth pose information in environments as diverse as possible.
To our knowledge, there is currently only one applicable
dataset publicly available, published in [17], which features
sequences of RGBD images with ground truth 6D pose
information obtained by an external tracking system. The
number of loops in this dataset, however, is not high enough
for a proper evaluation of loop closure detection, so we
additionally recorded our own data.

We used a Scitos G5 robot by Metralabs with a forward-
looking Microsoft Kinect mounted on its top. Its 2D pose is
obtained by localizing it within a previously built map using
odometry and its laser range finder. We drove this robot on
multiple loops through various environments available in our
building. Our final set of sequences consists of:

• 5 runs within our robots laboratory and on the corridor
just outside of it,

• 4 runs within our department’s library,
• one run in which the robot enters different offices

several times
• one run within our department’s computer museum,
• one run within our kitchen,
• and 4 runs containing loops taken from the freiburg

dataset4 [17].
Instead of keeping full sequences of all these runs, we

significantly reduce the number of images to a subset of
keyframes, as it is usually sufficient to find loops for new
keyframes only in keyframe-based SLAM.

VII. EXPERIMENTS AND RESULTS

A. Evaluation

1) Determining True Loops: In order to evaluate the
performance of the loop closure detection the ground truth
must be established first. Depending on the dataset, poses
with three or six degrees of freedom were given for each
image. We determined whether two images were taken at
the same place by considering the euclidean distance of the

1http://opencv.org/
2http://pointclouds.org/
3http://www.cs.washington.edu/ai/Mobile Robotics/projects/kdes/
4We use the logfiles named ”freiburg1 360”, ”freiburg1 room”,

”freiburg2 large with loop”, and ”freiburg3 long office household”

(a) office (b) corridor

(c) library (d) laboratory

(e) kitchen (f) museum

Fig. 2. Examples of different scenes encountered by the robot.

translation and the angle between the orientations of both
poses: Two images are counted as a loop if their translation
is less than 2m and their angle is less than 30◦.

As we allow a distance of up to 2m between two images
belonging to a loop, it must be ensured that the images were
not taken on the same visit to this place. Therefore, there
must be at least 10 keyframes between two images in order
for them to be considered a loop.

2) Evaluating Classification Performance: At first glance,
loop closure detection is a binary classification problem:
Given a place described by an image and a database of
images, decide whether the place has been visited before.
Therefore it seems natural to evaluate the performance in
terms of sensitivity (SE) and specificity (SP) and e.g. cal-
culate a ROC curve (receiver operating characteristic). The
problem at hand, however, is not only to decide whether
a place has been visited before, but also to identify the
place correctly by retrieving a matching image from the
database. This makes the definition of true positives (TP),
false positives (FP), true negatives (TN) and false negatives
(FN) more difficult: If a place has been visited before and
no image from the database is retrieved, its a clear false
negative. If a correct image is found it is obviously a true
positive. But if a wrong image is retrieved for a previously
visited place this could be counted as false positive (the
retrieved image was not taken at the current position) as well
as false negative (as the loop was not detected correctly).

We called these cases wrong positives (WP) and decided to
count them towards the false negatives, as we consider an
undetected loop a graver mistake than a false loop candidate.
The reason for this is simply that false loop candidates could
be filtered out by further checks as discussed in section IV
whereas a missed loop is final. A diagram of the definitions
can be seen in Fig. 3. Based on these numbers, we can
compute the sensitivity (SE) and specificity (SP) in the
following way:

SE =
TP

TP + FN∗

SP =
TN

FP + TN

Where we apply the sum of both, false negatives and wrong
positives, instead of the classical false negative count:

FN∗ = FN +WP

query image

is a loop no loop

TP FN FPWP TN

correct
image no image

wrong
image

wrong
image

no image

evaluation:

loop detection:

ground truth:

Fig. 3. Classification of loop candidates into categories for evaluation.

B. Parameter Optimization

The performance of each of the algorithms employed in
loop closure detection (i.e. interest point detectors, local
descriptors, Bag of Words, and the actual decision about
loop closure detection) heavily depends on a certain number
of parameters. Finding universally good values for these
parameters is often impossible as the optimal values depend
on the problem, the input data provided to the algorithm,
and how its output is further processed. To allow a fair
comparison, however, we need to find the best parameter
values for the problem at hand, i.e. test the full system
including vocabulary creation and loop closure detection for
various parameter values.

Vocabulary creation involves k-means clustering, which is
usually implemented using a randomized algorithm. In order
to get meaningful results, we run it at least five times with
the same parameters and compute the mean over all runs.

This means we need to evaluate our loop detection system
on the benchmark dataset thousands of times, when a single
run can take up to a few hours for computationally expensive
local features. We utilized grid computing on a cluster of 8
nodes with 16 CPU cores each to run up to 128 evaluations
in parallel.

Conceptually, the task of loop closure detection using
Bag of Words consists of two major steps. The first step
involves using local features and Bag of Words to suggest
loop closure candidates. In this first step, our main objective
is a high sensitivity: If there is a loop, we want it to be
among the suggested candidates. In a second step, the actual
loop closure detection is performed based on the candidates
obtained in the first step. Here, we want to obtain a good
tradeoff between specificity and sensitivity by tuning the
receiver operator characteristic (ROC) curve.

1) Vocabulary size: We first try to determine a good
vocabulary size using default parameter values of various
methods used. The optimal vocabulary parameters of NARF
and FAST interest points with kernel descriptors were a
branching factor (i.e. the number of clusters during each
clustering step) of b = 20 and level (i.e. the maximum
tree depth of the resulting vocabulary tree) of l = 3, which
corresponds to an efficient vocabulary size of 203 = 8000.
Using FAST with BRIEF descriptors, the optimal vocabulary
size is smaller with b = 5 and l = 5, whereas the optimal
vocabulary size of SIFT is orders of magnitude bigger with
b = 20 and l = 4. Since we, however, wanted to focus
on depth features and use a consistent vocabulary size, we
decided to use b = 20 and l = 3 for further experiments,
which seems to work well for all methods.

2) Reference: SIFT on Intensity Images: Since our bench-
mark dataset consists of RGBD image pairs with both color
and depth images, we first try to detect loops using SIFT
features computed on the intensity images as a reference.

We tested various values for the parameters contrast
threshold ct ∈ {0.01, 0.02, 0.04, 0.08}, edge threshold et ∈
{2, 5, 10, 15} and sigma σ ∈ {1.2, 1.4, 1.6, 2.0, 2.5} and
found that ct = 0.01, et = 10 and σ = 2.5 obtained the
best sensitivity of 94.6%.

3) FAST & BRIEF: FAST has only one parameter (its
threshold) and we decided to keep BRIEF’s amount of bytes
constant at 32 bytes. We thus only had to vary one parameter:
The best FAST threshold t ∈ {6, 8, 10, 12, 14, 16, 18, 20, 22}
turned out to be t = 6, which resulted in the best sensitivity
of 87.5%. The choice of the lowest value for the threshold
t does not come as a surprise, since this basically means it
will consider a rather high number of interest points.

4) NARF: NARF features require the user to choose a
large number of features, which makes large-scale search on
the full high-dimensional grid computationally intractable.
We decided to always enable rotation invariance and fix the
angular resolution to ar = 0.3, as this appeared to be the
highest resolution for which we can still compute NARF fea-
tures within a reasonable amount of time. We tested various
values for the parameters support size ss ∈ {0.1, 0.2, 0.4},
minimum keypoint distance mkd ∈ {0.125, 0.25, 0.5}, op-
timal surface distances osd ∈ {0.125, 0.25, 0.5}, minimum
interest values miv = {0.225, 0.45, 0.9}, minimum surface
changes msc = {0.1, 0.2, 0.4}, and optimal patch size ops =
{51020}. This search lead to the optimal values ss = 0.1,
mkd = 0.125, osd = 0.125, miv = 0.225, msc = 0.10,
ops = 5, with which we obtained a maximum sensitivity of

Interest Points Descriptor best Sensitivity
FAST BRIEF 87.5 %
HARRIS BRIEF 88.1 %
NARF NARF 76.1 %
HARRIS NARF 79.8 %
FAST KDES 89.6 %
HARRIS KDES 89.6 %
NARF KDES 92.0 %
SIFT SIFT 94.6 %

TABLE I
BEST SENSITIVITIES OBTAINED FOR k = 3 LOOP DETECTION

CANDIDATES USING DIFFERENT INTEREST POINTS AND DESCRIPTORS

SE = 76.1%.
5) Harris Interest Points: We evaluated Harris inter-

est points combined with various descriptors from other
methods with their respective best parameters, optimizing
the parameters radius r ∈ {0.1, 0.05, 0.025, 0.01}, thresh-
old t ∈ {0.025, 0.01, 0.005, 0.0025}, and method m ∈
{Harris, Curvature, Tomasi,Noble}. Using BRIEF de-
scriptors, the best sensitivity 88.1% was achieved for r =
0.01, t = 0.0025 and m = Tomasi. In combination
with NARF descriptors, the best sensitivity 79.8% was also
obtained for the same values r = 0.0025, t = 0.01 and
m = Tomasi.

6) Sparse Kernel Descriptors: Since kernel descriptors do
not provide their own interest point locations, we need to
combine these with an interest point detector. Unfortunately,
the source code of Kernel Descriptors does not include the
functionality to train new kernel descriptors, so we only
used the pre-trained ones that come bundled with the source
code. They use a fixed patch size of 16 × 16 pixels. The
only parameter we can modify directly is low contrast:
The gradient magnitude for each image patch is normalized
by dividing it by its L2-norm or low contrast if it is
below low contrast. This protects from noise artifacts being
amplified too much when there is not much structure. The
original source code of kernel descriptors computes these
descriptors on heavily downscaled versions of input images.
We therefore introduced a new parameter scale factor by
which images (and keypoints) are scaled before computing
kernel descriptors.

We evaluated the performance of kernel descrip-
tors in combination with FAST, Harris, and NARF
interest points using their respective optimal param-
eters as determined before. We tried different val-
ues for lc ∈ {0.75, 0.9, 1.0, 1.1, 1.25} and rf ∈
{0.5, 0.25, 0.125, 0.1, 0.05} for each combination.

In all three cases, the same parameters lc = 0.9 and rf =
0.25 turned out as optimal, resulting in sensitivities of 89.6%
for FAST and Harris interest points and 92.0% using NARF
interest points.

7) Varying the Loop Closure Detection Parameter: Since
we are typically not only interested in a high sensitivity
but also a high specificity, we evaluated the loop closure
detection method described in sect. IV using various values
for α. This leads to one receiver operating characteristic

(ROC) curve for each interest point detector/descriptor pair,
which are drawn in Fig. 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Receiver Operating Characteristic

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

FAST/BRIEF

Harris/BRIEF

NARF

Harris/NARF

FAST/KDES

Harris/KDES

NARF/KDES

SIFT (Intensity)

Fig. 4. Receiver operating characteristic.

8) Varying the Number of Considered Loop Closure Can-
didates: In the previous experiments, we considered k = 3
loop candidates for each image. If a correct loop is among
these k, it counts as detected. The choice of k = 3 was made
by us rather arbitrarily. In practise this parameter should be
chosen depending on a combination of the desired sensitivity
and how computationally expensive it is to verify a loop
candidate geometrically (e.g. using iterative closest point
or based on feature matches). The influence of k on the
sensitivity is shown in Fig. 5. For this experiment, we ran
each method 10 times instead of 5 times to obtain more
meaningful estimates of the standard deviation, which is
shown using error bars.

0 1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Numbers of guesses considered

S
e

n
s
it
iv

it
y

Sensitivity over considered candidates

FAST/BRIEF

Harris/BRIEF

NARF

Harris/NARF

FAST/KDES

Harris/KDES

NARF/KDES

SIFT (Intensity)

Fig. 5. Sensitivity and its standard deviation vs. the number of considered
loop closure candidates.

VIII. CONCLUSION

A. Discussion

The results show that the performance of loop closure
detection using depth images with any kind of depth features
is always worse than when using intensity of color images.
This should not come as a surprise, since intensity images
typically contain more information useful for loop closure
detection: When the camera is pointed towards a planar wall
on a corridor for example, we cannot expect to reliably detect
any loop using depth images alone. The intensity image in
this case, however, might capture distinct texture information,
e.g. of a unique poster on the wall, which makes detecting
this loop much easier. An example of this scenario from our
dataset is shown in Fig. 6.

(a) RGB image (b) Depth image

Fig. 6. RGB and depth image pair from the dataset. The RGB image
clearly contains much more relevant information since the highly textured
poster is not “visible” to the depth camera.

But the results also show that loop closure detection using
depth images works surprisingly well. Even if we only
consider the single most similar image obtained using the
best combination of all methods tried, we can find close to
85% of all loops using NARF interest points with kernel
descriptors or roughly 73% using the computationally very
inexpensive combination of FAST interest points with BRIEF
descriptors. This should be more than enough for a typical
SLAM setting: When a robot enters a room for the second
time, we can expect it to detect one of usually several
possible loops eventually.

Considering the performance of the various individual
methods tested, we can make the following interesting ob-
servations:

1) The choice of interest points is not as important as
the choice of the descriptor: This is especially obvious from
Fig. 5, where we find the curves of different interest points in
combination with the same descriptor to be nearly identical.
This is in parts due to how we posed our optimization prob-
lem in sect. VII-B: Since we try to find the best sensitivity
and do not care about the number of interest points, we
usually end up with low thresholds and thus high numbers
of interest points. Comparing results using a fixed number
of interest points might have been more fair, but enforcing
a fixed limit is not trivial. Also, we usually do not care so
much about the number of interest points as long as this does
not make it computationally prohibitively expensive.

2) ”Abusing” 2D methods originally intended for inten-
sity images works surprisingly well compared to proper

3D features: The performance of the computationally least
expensive combination of FAST interest points and BRIEF
descriptors is only surpassed by kernel descriptors with
different interest points, but works better than NARF. It
appears that for loop closure detection, we do not need the
additional information encoded in 3D features like NARF.
This can be explained by the fact that true loops in our dataset
consist of a pair of images that are captured by roughly
the same pose. This means there is usually no considerable
change in scale, orientation, or perspective in general. Addi-
tionally, regions with invalid depth measurements are usually
reproducible, i.e. invalid depth measurements also contain
useful information (see Fig. 7), whereas 3D features that
rely on 3D points to recover surface normals will disregard
these regions completely. Finally, 3D methods like Harris

(a) RGB image (b) Depth image

Fig. 7. Example image pair from our dataset: Borders between valid and
invalid depth values contain useful information about the scene.

and NARF might work rather badly in our dataset because
they suffer from many rather high depth values for which
there is considerable depth inaccuracy.

B. Future Work

Since even the computationally very inexpensive methods
FAST and BRIEF seem to obtain reasonable results, it might
be interesting to combine loop closure detection with a
fast registration technique to implement an computationally
inexpensive full SLAM system that relies on depth images
alone.

C. Summary

We evaluated several methods of interest point detection
and descriptor extraction for the task of loop closure de-
tection using Bag of Words on depth images. As expected,
the achieved sensitivity is lower than what can be obtained
on intensity images, but still high enough that it should be
usable for SLAM based on depth images alone. It turns out
that basic 2D features known from intensity images work
surprisingly well for loop closure detection, which might be
mainly due to a combination of important information being
contained in invalid depth readings and no big changes in
scale, orientation or perspective in general for real loops.

REFERENCES

[1] W. Lui, T. Tang, T. Drummond, and W. H. Li, “Robust egomotion
estimation using ICP in inverse depth coordinates,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on, 2012,
pp. 1671–1678.

[2] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization
and Mapping in the Space of Appearance,” The International Journal
of Robotics Research, vol. 27, no. 6, pp. 647–665, 2008.

[3] K. Konolige and M. Agrawal, “FrameSLAM: From Bundle Adjust-
ment to Real-Time Visual Mapping,” IEEE Trans. Robotics, vol. 24,
no. 5, pp. 1066–1077, 2008.

[4] H. Zhang, “BoRF: Loop-closure detection with scale invariant visual
features,” in Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, 2011, pp. 3125–3130.

[5] H. Shahbazi and H. Zhang, “Application of Locality Sensitive Hashing
to realtime loop closure detection,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, 2011, pp. 1228–
1233.

[6] D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary
Tree,” in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, vol. 2, 2006, pp. 2161–2168.

[7] B. Steder, R. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3D range scans taking into account object boundaries,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, 2011, pp. 2601–2608.

[8] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[9] C. Harris and M. J. Stephens, “A combined corner and edge detector,”
in Proc. of Fourth Alvey Vision Conference, 1988, pp. 147–151.

[10] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in In European Conference on Computer Vision, 2006, pp.
430–443.

[11] L. Bo, X. Ren, and D. Fox, “Kernel Descriptors for Visual Recog-
nition,” in Advances in Neural Information Processing Systems 23,
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, Eds., 2010, pp. 244–252.

[12] ——, “Depth kernel descriptors for object recognition,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, 2011, pp. 821–826.

[13] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and
P. Fua, “BRIEF: Computing a Local Binary Descriptor Very Fast,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 7, pp. 1281–1298, 2012.

[14] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in In Workshop on Statistical
Learning in Computer Vision, ECCV, 2004, pp. 1–22.

[15] D. Galvez-Lopez and J. D. Tardos, “Bags of Binary Words for
Fast Place Recognition in Image Sequences,” IEEE Transactions on
Robotics, vol. 28, no. 5, pp. 1188–1197, October 2012.

[16] ——, “Real-time loop detection with bags of binary words,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, sept. 2011, pp. 51 –58.

[17] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
Benchmark for the Evaluation of RGB-D SLAM Systems,” in Proc.
of the International Conference on Intelligent Robot Systems (IROS),
Oct. 2012.

