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Abstract—1In this paper, we present a real time algorithm
for mobile robots to track human faces and estimate face poses
accurately, even when humans move freely and far away from
the camera or go through different illumination conditions in
uncontrolled environments. We combine the algorithm of an
adaptive correlation filter with a Viola-Jones object detection
to track the face as well as the facial features including the
two external eye corners and the nose. These facial features
provide geometric cues to estimate the face pose robustly. In our
method, the depth information from a Microsoft Kinect camera
is used to estimate the face size and improve the performance
of tracking facial features. Our method is shown to be robust
and fast in uncontrolled environments.

I. INTRODUCTION

Both face tracking and face pose estimation play key roles
for human-robot interaction which can be used as essential
preprocessing steps for robust face recognition or facial
expression recognition.

Tracking faces in uncontrolled environments still remains
a challenging task because the face as well as the background
changes quickly over time and the face often moves through
different illumination conditions. Moreover, previous track-
ing methods have significant drift due to sudden changes
of the face and background. In this paper, we propose an
algorithm of tracking faces based on the combination of an
adaptive correlation filter [1] and a Viola-Jones face detection
[2]. This combination utilizes the advantages of adaptive
correlation filters to adapt to face changes of rotation,
occlusion and scales as well as adapt to complex changes
of background and illumination. Its computational cost is
only 7 ms per frame. Furthermore, it can also remove drift
effectively by detecting the face and correcting its position
after a period of time. In addition, we utilize the depth
information from the Microsoft Kinect camera to estimate
the corresponding size of the face. Our tracker successfully
runs on a mobile robot when both the humans and the robot
move and rotate quickly with different angles and directions.

The problem of face pose estimation for human-robot
interaction also has some significant challenges. First, the
resolution of faces is very low when the humans move far
away from the robot. Most existing methods are accurate for
estimating poses in high-resolution face images, but their
performance is much worse or they completely fail to esti-
mate poses in low-resolution face images. Second, while both
the humans and the robot move in complicated backgrounds
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Fig. 1. Examples of our face tracking and pose estimation on a moving
mobile robot. The white circles indicate the locations of facial features

and under different illumination conditions, facial features
change very quickly and the face also changes in a variety
of poses. Additionally, when the face changes by large angles
of rotation, some parts of the face are visible while the
rest is occluded. In order to find a robust method of face
pose estimation for human-robot interaction, we track some
key facial features, including the two external eye corners
and the nose. These features provide geometric cues to
estimate precisely the yaw angle and the roll angle of the face
which are important for the improvement of uncontrolled
face recognition. Similar to our method of face tracking,
we combine an adaptive correlation filter and a Viola-Jones
object detection to track these features which are robust to
face rotation, face deformation, occlusion and complicated
illumination. As a result, the face pose is also estimated
efficiently based on some geometric computation among
the face features, such as shown in Figure 1. Our feature
based method of face pose estimation is shown to be robust
running on a mobile robot in uncontrolled illuminations and
environments while our whole system is operating at a speed
of 21 ms per frame.

The remaining part of this paper is organized as follows.
In Section II we present the most relevant algorithms of
face tracking and face pose estimation which motivated our
research. In Section III, our method is presented in detail. In
Section IV the experimental results obtained from databases
are presented and in Section V we conclude this paper and



mention our future work.

II. RELATED WORK

A. Face tracking

Although there are many publications of face tracking,
it still remains a huge challenge, because of changes of
face appearance, occlusions, rotation, complex changes of the
surrounding background, partial or full changing illumination
conditions. Most existing methods build a face model for
tracking which does not adapt to the large variation of face
pose as well as illumination. These algorithms include some
typical methods of correlation-based visual tracking [3],
condensation algorithm [4] or the method using intensity gra-
dients and color histograms [5]. Additionally, recent research
focuses on online learning methods to handle the complex
appearance variation of human faces. Some examples of
these algorithms include incremental learning [6], online
random forests [7], online multiple instance learning [8] and
visual tracking using L1 minimization [9]. Despite their high
efficiencies, most of the online learning methods fail due to
the drift problem. Moreover, computational requirements of
these methods are usually huge which is not suitable for real
time tasks of the robot. Although not successfully eliminating
drifts, the Minimum Output Sum of Squared Error (MOSSE)
filter attracts the attention of researchers. It adapts to wide
variations of object poses, illumination, and is able to run
at high frame rates. In order to eliminate the drift problem
we combine the algorithm of a MOSSE filter with a Viola-
Jones object detection. While the MOSSE filter is able to
track the face during a long period of time, the face detector
is responsible for correcting the face position in a constant
period of time if it detects exactly the face location.

B. Face pose estimation

During the past 20 years, there has been a huge number
of papers in the field of face pose estimation [10]. Among
them, geometric methods have proven to be fast, simple and
suitable for real time applications. Gee et al. [11] presented
two simple methods based on detecting and tracking some
facial features such as the far corners of the mouth and eyes,
and the tip of the nose. Face model ratios were built to
compare with the real face ratios seen in images to calculate
the face normal. This method is very fast and accurate when
the human face is near the camera. Horprasert et al. [12]
estimated the face pose using five points, the inner and outer
corners of each eye, and the tip of the nose. The angle
yaw is estimated based on the difference of the distance
between the left and right eye. The roll angle is calculated
by the arctangent of the slope between two eyes. The pitch
angle can be found easily based on the distance between
the nose tip and the eye lines. All these geometric methods
have some common drawbacks. First, face features in their
methods must be detected and tracked very precisely, which
is not easy when the humans move far away from the
camera and the face resolution is very low. Furthermore,
some facial features can be missing when the face changes
by large angles of rotation. Therefore these methods can

Fig. 2. Examples of face tracking through poses. Our face tracker is marked
by the red rectangle and the original MOSSE filter is marked by the black
rectangle.

be much worse or can completely fail. In addition, the
depth information is used to improve the accuracy of head
pose estimation. Newman et al. [13] combined techniques
of stereo matching and feature matching to track the three
dimensional positions of six face features and maps positions
of these features to a head model for estimating the face
pose. This method is able to estimate the face pose when
the humans stand near the camera. Fanelli et al. [14] applied
the method of discriminative random regression forests in
the depth image of a Microsoft Kinect camera to estimate
location and orientation of the head. Their system is able
to run in real time and is relatively accurate while the head
changes with a large variation of poses or is occluded partly.
But this method fails when the humans move farther than
1 meter from the Microsoft Kinect camera. Cascia et al.
[15] used a manually initialized cylindrical head model and
applied recursive least squares optimization to track the head.
Xiao et al. [16] used dynamic templates to recreate the face
model. The drawback of these methods is the requirement of
an accurate initialization of the face location. Additionally,
these methods are only applicable for near-field images and
are very time-consuming.

III. APPROACH

A. Face detection

Face detection is an important component in our algorithm
which allows mobile robots to quickly locate the position
of the face in the initial step and relocate it if our system
loses tracking. For this paper, we use the face detection
method mentioned in our previous work [17], which is very
fast and accurate and runs in real time. By using geometric
constraints, navigation and depth-based skin segmentation,
the average processing time of this method is only around
8 ms. It is also more reliable than the unmodified OpenCV
face detector. Our face detection involves five basic steps:
First, we collect data from a small set of sampling points
which span both the color image and depth image. This
step is to reduce computational costs. Second, we evaluate
these sampling points under constraints of geometry and
navigation information to remove the background. Third, we
apply a robust technique of skin detection around filtered
sampling points. In the fourth step, a method of depth-
based skin segmentation is used to find the potential face
regions and estimate the face size. In the last step, we apply
the Viola-Jones method to detect the face. We also use the
technique mentioned in [17] to limit the range of scales to



(a) Frame 885 (b) Frame 1295

Fig. 3.

(c) Frame 1313

(d) Frame 1381 (e) Frame 1410

Examples of face tracking through occlusion and drift. We compare our face tracker, which is marked by the red rectangle, and the original

MOSSE filter, which is marked by the black rectangle. 3(a): The face is occluded. 3(b), 3(c), 3(d): The drift problem occurs when the human turns around.
3(e): Our face tracker is recovered while the original MOSSE filter mostly fails when the face reappears.

detect the face for the next steps. The average width of the
human face is about 0.15 meters. We denote sy as the average
width of faces; d is the distance from those to the camera
and f is the focal length of depth camera. Then we use the
following formula to estimate the size of faces in images

0.15f
Sf="4 (1)

B. Face tracking

The tracking algorithm we propose is based on the com-
bination of a tracking method using the MOSSE filter and
a Viola-Jones face detection. By using the Microsoft Kinect
camera, our algorithm is able not only to track the position
of a face but also to estimate its corresponding size based
on the formula (1). The face position, which is located by
the face detector, is the initial position of the face tracker.

The filter is initialized by training eight randomly affine
transformed versions (f;) of a search window with a fixed
size of 64x64 in the initial position. Training outputs (g;)
are generated from 2D Gaussian images, of which peaks are
in their centers. We denote the 2D Fourier transform of a
training image f; as Fj, of the filter h as H, and of a training
output g; as G;. In the initial position, the filter H can be
found based on the following formula

X
N - F, 0 F}

where * indicates the complex conjugate, ® is the operation
of element-wise multiplication and N is the number of the
training images.

In the next frames, the face is tracked by the search
window in the center. By correlating the filter over the
search window, we can find the new position of the face
in the current frame, which is the area corresponding to
the maximum value in the correlation output. In addition,
every search image is multiplied by a log function to reduce
the effect of illumination. Then it is multiplied by a cosine
window to increase the effect of pixels near the center of the
search window. In order to compute the correlation operation,
all the search images and filter are transformed to Fourier
space by using a Fast Fourier Transform. We denote the
2D Fourier transform of a search image f as F = F(f). The
correlation output G takes the form

G=FoH* 3)

In every 30 frames, the Viola-Jones face detector is applied
for correcting the positions of faces. The search window is

scanned with the scale estimated based on the formula (1)
while the depth information in the face center is known. It
significantly reduces the processing time of face detection to
an average of 3 ms. In the case that the face detector finds a
face, its position is considered as the new tracking position
instead of that predicted by the MOSSE filter. Therefore the
drift problem can be solved efficiently, such as shown in
Figure 3.

In the tracking position, the MOSSE tracker must be
updated online in order to quickly adapt to the appearance
changes of the face. To update online in frame ¢ the MOSSE
filter is computed as follows

H; = B @
Ai=nG,OF +(1—n)4;,_4 &)
Bi=nF,® F+ (1 —n)B;_1 (6)

where 7 is the learning rate, H consists of the numerator
A; and the denominator B;, F; and G; are the 2D Fourier
transforms of the training image f; and of the training output
gi, respectively. The MOSSE filter combines the computation
of previous frames and the current frame to adapt quickly and
robustly to the changes of face pose, rotation, deformation
and illumination. Furthermore, it is possible to detect the
failure of tracking and to stop updating the face appearance
by measuring peak strength called the peak to sidelobe ratio
(PSR) [1]. As a result, the face tracking is possibly recovered
when the face reappears.

C. Facial feature tracking

After successfully tracking the face and estimating the face
size using the formula (1), we can resize and copy the face to
a second image called facial feature image. In the new image,
the size of the face is fixed at 120x 120 pixels; therefore, the
sizes of facial features including eyes and nose are easily
estimated. As a result, we can detect and track the facial
features in the same way as detecting and tracking the face.
There are three crucial features which are necessary to be
tracked: the two external eye corners and the nose. These
features provide geometric cues to estimate the facial pose
across a wide variety of face rotations and scales. Figure
4 shows the result of facial feature tracking in which white
circles indicate their locations. In this figure the yaw and roll
angles of the human face can be found simply and quickly
based on these features. Basically, the new facial feature
positions are efficiently tracked based on the combination
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Fig. 4. Example of facial feature tracking. White circles indicate locations
of facial features.

of the MOSSE filter and a Viola-Jones object detection. The
two basic steps of prediction and online update for tracking
facial features are the same as those used above for tracking
faces.

D. Face pose estimation

Based on the tracked facial features we can estimate the
yaw angle of the face pose denoted as 7y and the roll angle of
the face pose denoted as «. In our paper, we did not estimate
the pitch angle of the face because it is not an easy task
when the humans move far away from the camera and the
face resolution is low. The pitch angle is usually estimated
with large errors. Estimating the pitch angle of a face in
uncontrolled environments is our future work.

In order to estimate the roll angle of the face pose, a,
we calculate the angle of the line joining the two external
eye corners, which is the arctangent of the slope between
these corners. We denote the coordinates of the left external
eye corner and the right external eye corner as (x1,y;1) and
(z2,y2), respectively. The roll angle of the face pose can be
calculated as follows

a=tan"! [%] (N

In addition, we apply a simple technique to estimate the
yaw angle of the face based on the relative positions of
three tracked points. We denote the distance between the left
external eye corner and the nose as L, the distance between
the right external eye corner and the nose as R. Because the
size of the face is fixed in the feature image, we can estimate
the yaw angle by a function of R and L as follows

GRUL fR S
V= (3)
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where a = 33.3, b = 33.3.

IV. EXPERIMENTAL SETUP

For evaluating the accuracy of our face tracking we used a
collection of four log files recorded from a Microsoft Kinect
camera mounted on our mobile robot SCITOS GS5. Every log
file includes color and depth images and is recorded from two
to three minutes at 30 frames per second. We compared our
method with the original MOSSE filter in these challenging
log files in which the humans move freely in front of the
Microsoft Kinect camera and rotate the face quickly in a wide
variety of the poses in an uncontrolled environment. Figure

Fig. 5. [Ilustration of geometric constraints based on three facial features
which are the two the external eye corners and the nose.

2 and Figure 3 are examples extracted from our experiments
in which our method outperforms the original MOSSE filter.

To evaluate the accuracy and the speed of our face pose
estimation technique, we use two data collections. The first
one is the Tuebingen dataset which consists of 15 log files
of 15 people spanning around two minutes. Each of these
log files recorded color and depth images at 30 frames per
second at a resolution of 640x480 pixels. Since our goal
is to evaluate the performance of face pose estimation in
uncontrolled environments, selected log files must contain
faces in a wide variety of poses: looking left or right, up or
down, or tilting left or right while the humans are moving
freely in front of the camera under different illumination
conditions. To measure the ground truth data, we used
an external tracking system, “Optitrack” by Natural Points
including 12 infrared cameras. This tracking system is able
to measure six degrees of freedom of the face. Because the
working space of the tracking system is limited, the human
has to sit on a chair and move freely in a range from 1 to
3 meters away from the camera while the face is allowed to
change the pose in different angles. For evaluation, we only
focused on the yaw and roll angles which are very important
for the application of uncontrolled face recognition. Figure
6 shows some sample images extracted from our dataset.

In order to compare our method with other state-of-
the-art methods, we used the Boston University dataset
(www.cs.bu.edu/groups/ive/HeadTracking) with the associ-
ated ground truth which was measured by a Flock of
Birds 3D tracker. Each video contains 200 frames and has a
resolution of 320x240. In this dataset, we can not use depth
information to estimate the scale of the face. But human faces
do not change the scale too much; therefore, facial features
are still tracked well. We compared our results of accuracy
and processing time with results of the methods proposed in
[15] and [16].

We used a PC with a 2.4 GHz Intel Core 2 Duo CPU to
test our algorithms in these experiments.

A. Evaluation of Face Tracking

We evaluated the tracking quality of our method and the
MOSSE filter in four challenging videos. The tracking output
was manually labeled as good tracking, bad tracking in
which the tracking bounding box overlaps below 50 % of
the ground truth bounding box, and a lost track. Generally,



Fig. 6. Sample images from the Tuebingen dataset. The human face can rotate in a wide variety of poses and the humans can move to the left, right side

or move backward and forward.

TABLE 1
COMPARISON OF TRACKING QUALITY BETWEEN OUR
METHOD AND THE MOSSE FILTER METHOD

video MOSSE filter Our method
good | bad | Tost good [ bad [ lost
1 269% | 73.1 % 0% 90.6% | 9.4% | 0%
2 56.8% | 43.2% 0% 909% | 9.1% | 0%
3 100 % 0% 0% 100% | 0% | 0%
4 324% | 04% | 672% || 100% | 0% | 0%
TABLE II

MEAN ABSOLUTE ERROR (MAE) AND STANDARD DEVIATION (STD) OF
THE ERRORS OF OUR SYSTEM ON THE TUEBINGEN DATASET.

[ [ MAE [ Std ]
Yaw (deg) 7.97 6.89
Roll (deg) 4.85 449

the MOSSE filter is able to track the face well unless the
face pose changes by very large angles of rotation due to
the drift problem. And because the MOSSE filter is not able
to recover automatically after drifts, it completely fails to
track the face in some of our testing videos.

Table I shows a distinguished difference between our
tracker and the MOSSE tracker. It shows that our tracker
is able to track faces longer and more accurately than the
MOSSE tracker because it can correct the tracking position
when the tracker drifts. The processing time of our tracker
is about 7 ms. Our tracker adapts to drastic changes of
illumination, background as well as face pose.

B. Evaluation of Face Pose Estimation

We evaluated the system in two experiments. First of all,
we used our dataset for evaluating the quality of face pose
estimation in uncontrolled environments. Table II shows the
mean absolute error and standard deviation of the errors
which are measured for our system of face pose estimation
in the Tuebingen dataset. As can be seen in this table, our
system estimates the face pose robustly while the humans
are moving freely in 3D translation and 3D rotation at near
or far distances. When the face moves far away from the

camera, the face image is much more noisy and blurred.
Moreover, changing illumination conditions also produce a
lot of noise on the face. But our system can track facial
features quite well in such blurred images; therefore the face
pose is still estimated relatively reliably in such conditions.
With the mean absolute error and standard deviation values
of the yaw angle and the roll angle as shown in Table II,
our system can meet the requirements of many applications,
such as a reliable preprocessing step of uncontrolled face
recognition in surveillance systems or on mobile robots.

Some results of our system are plotted in Figure 8, which
show the estimated yaw and roll angles compared to ground
truth. The curve of the estimated yaw angle is quite consistent
with the curve of ground truth. In this figure, the errors which
are in the estimation of the roll angle mostly result from the
deformation of the face when it rotates in 3D space at a far
distance. In general, the result of this estimation is robust for
real time application of mobile robots.

In addition, our system of face tracking and pose estima-
tion can run at 21 milliseconds per frame on average which
meets the real time requirement of a mobile robot.

In controlled environments with uniform illumination con-
ditions, our method is able to track the face more accurately.
Figure 7 shows the roll and yaw angles which are estimated
by our method and are compared with the ground truth. The
curve of our estimation is quite consistent with the curve of
ground truth. Additionally, Table III shows the comparison
of the accuracy and processing time between our method
and state-of-the-art methods [15] and [16]. As can be seen
in Table III the accuracy of our proposed approach is slightly
worse than two others but it is much faster and can run in
real time. While the methods proposed in [15] and [16] run
at a speed of 15 frames per second in images which have the
resolution of 320x240, our system is able to run at a speed of
50 frames per second even when the resolution of the image
is 640x480. In addition, the methods proposed by Xiao et
al. and La Cascia et al. develop a robust cylindrical model
which must be initialized and recovered in near distance. This
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Fig. 7. Comparison of the estimated poses and the ground truth on the
Boston University dataset.
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Fig. 8. Comparison of the estimated poses and the ground truth on the
Tuebingen dataset.

means that our approach is more robust as it can be initialized
and recovered at larger distances. Therefore, under aspects
of performance and real time capabilities on mobile robots,
our method is a better choice than the methods proposed by
Xiao et al. and La Cascia et al.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a robust real time method
for face tracking and estimating its roll and yaw angles in
uncontrolled environments. Our experimental results show
that this method is robust to track faces and estimate the
face orientation, and suitable for real time applications such
as uncontrolled face recognition on mobile robots. For future
development, we first try to find techniques to speed up our
algorithm to be able to estimate poses of many faces in a
group. Second, it is possible to estimate the pitch angle of
the face pose, which is necessary for many real applications.
Finally, the main goal of our future research is to apply the
technique of face tracking and pose estimation for real time
and uncontrolled face recognition on mobile robots. Handling

TABLE III
COMPARISON OF ACCURACY AND PROCESSING TIME BETWEEN OUR
METHOD AND STATE-OF-THE-ART METHODS ON UNIFORM-LIGHT SET
OF THE BOSTON UNIVERSITY DATASET.

the changing poses of the face is one of the major challenges
of face recognition because the face image differences caused
by rotations are often larger than the inter-person differences
used in distinguishing identities. Moreover, recognizing the
face in arbitrary poses will be more difficult in uncontrolled
environments under varying illumination. In the near future
the technique of face pose estimation in this paper will be
able to improve the performance of face recognition in our
mobile robot systems.
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