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Abstract. In this paper we extend and generalize our previously pub-
lished approach on RGB-D based fruit recognition to be able to recog-
nize different kinds of objects in front of our mobile system. We therefore
firstly extend our segmentation to use depth filtering and clustering with
a watershed algorithm on the depth data to detect the target to be rec-
ognized. We forward the processed data to extract RGB-D descriptors
that are used to recoup complementary object information for the classi-
fication and recognition task. After having detected the object once, we
apply a simple tracking method to reduce the object search space and
the computational load through frequent detection queries. The proposed
method is evaluated using the random forest (RF) classifier. Experimen-
tal results highlight the effectiveness as well as real time suitability of the
proposed extensions for our mobile system based on real RGB-D data.
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1 Introduction

Object recognition deals with the task of identifying visible objects in an im-
age from a previously defined set of known object candidates. Typical object
recognition systems usually consist of two basic stages, the offline training and
the (online) evaluation. In the training stage, various object data samples are
collected and processed to build an object representation using descriptors that
characterize the objects. Using the processed object features, a classifier can be
trained to capture the differences of the features for single objects and thus to
be able to distinguish between the different classes or instances of objects. The
final recognition, which may be generative or discriminative, then is carried out
by matching the data samples of the objects to be recognized with the stored
object classifier models in the previously generated database.

The major focus of this work is a robust real time recognition system for
fruits and small textured objects tailored to meet the requirements of our mo-
bile robot equipped with a tray and the Microsoft Kinect RGB-D sensor. Based
on our previously published system for fruit recognition [1], we introduce our
recent extensions and the resulting pipeline depicted in Fig. 1. The contribu-
tion of this work is threefold. First, the segmentation process is adapted to be
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Fig. 1. Block diagram of recognition framework.

able to deal with small fruits or textured objects by using depth filtering and
clustering. This is due to the more general demand for recognition of textured
or inhomogeneously colored objects, as opposed to our previous work, where we
were assuming mostly uniformly colored fruits and thus were successfully able
to use the homogeneity in the segmentation as well as recognition process. Since
a suitable choice of the object representation has a major impact on the recog-
nition accuracy, we secondly propose an adapted and compact representation of
essential RGB-D characteristics based on the color layout descriptor (CLD) [2,3].
We evaluate the proposed descriptor combination with different machine learning
methods and compare the extensive results to our previously published approach.
Finally, we integrate Continuously Adaptive Mean Shift (CamShift) [4] into our
system to be able to continuously track the position of the target, circumventing
the need for frequent detection and recognition queries that would introduce a
much higher computational load to the system. The tracking may be used on
our mobile system to follow a previously recognized and moving object.

The remainder of the paper is structured as follows. Section 2 briefly reviews
the related work on object recognition. Afterwards, we present the different
stages of our pipeline in Sect. 3. In Section 4 we investigate the performance of
different machine learning algorithms based on the proposed extensions. Finally,
we draw conclusions in Sect. 5.

2 Related work

Region-based object recognition usually includes several steps: (1) segmentation,
(2) feature extraction, (3) training and (4) testing. Segmentation is the initial
step in most vision based applications. Existing segmentation approaches can
be generally categorized into grid-, clustering-, contour-based and statistical al-
gorithms. Khan et al. [5] utilized a grid-based segmentation approach for visual
terrain classification with quadrotors. Although suited for real-time application,
grid-based approaches usually brake up the object’s semantic representation re-
garding shape and size. Lai et al. propose a combination of Random Sample
Consensus (RANSAC) plane fitting with the adaptive Gaussian mixture model
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Fig. 2. Target object detection and tracking.

for segmentation in [6]. This statistical algorithm is calculated by expectation
maximization (EM) but features high runtime complexity. Gu et al. [7] use a hi-
erarchical segmentation to construct a region tree for recognition, which is based
on an oriented watershed transform and achieves good segmentation results.

To get an appropriate object representation, local feature extraction based
on histograms of gradient directions such as SIFT and SURF [8, 9] are widely
used for object recognition. For advanced 3D data understanding, 3D shape
contexts [10] and spin images [11] are often utilized for 3D feature extraction.
Karpathy et al. [12] recently introduced 3D shape measures for discovering object
models from 3D meshes of scenes in indoor environments. They are able to
analyze a whole RGB-D scene in less as one minute and achieve remarkable
results in object discovery.

Vision-based region descriptions have proven to be able to efficiently capture
and represent characteristics of real world objects and therefore are compre-
hensively utilized in recognition and classification. More advanced hybrid ap-
proaches using 2D/3D descriptors have for example been presented in [13–15].
Bo et al. [13] have proposed a kernel descriptor, which combines a group of sig-
nificant RGB-D features capturing the objects’ 3D model information such as
depth edges, 3D size and shape. Fischer et al. [14] present a novel layout of the
point feature descriptor from RGB-D data. Socher et al. [15] propose a combina-
tion of convolutional and recursive neural networks for deep learning. We follow
the paradigm of hybrid descriptors and utilize RGB based descriptors from the
MPEG-7 standard [2, 3] as well as the depth-based shape measures introduced
by Karpathy et al. [12].

3 Overview of proposed method

The pipeline of our recognition framework consists of two consecutive stages
as illustrated in Fig. 1. In the detection and segmentation stage, each image
is divided into foreground, unknown and background regions using depth data.
These regions are forwarded to a marker-controlled watershed algorithm using
depth data for object segmentation.
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Fig. 3. Depth mapping to foreground, background and unknown regions: closest point
(CP) and its local neighborhood (ε) mark the foreground (green), T marks the distance
to the tray.

In the second stage, the previously trained classifier is used to recognize the
target object based on a set of feature descriptors (color, texture and shape)
extracted from the segmented object region. After a successful initial object
detection and recognition, the object may optionally be tracked using CamShift
in the RGB-D domain, as shown in Fig. 2. In the following we describe the
proposed methods to solve the single tasks of the system at hand.

3.1 Target region detection and segmentation

The goal of the detection and segmentation process is to select possible object
region candidates from an intricate environment represented by the RGB-D data
stream. It first significantly reduces the underlying search space, and second,
filters out unrelated information.

We use the Kinect for Windows mounted above a tray on the robot to capture
raw RGB and depth data streams containing the objects to be classified. In our
previous approach, the application scenario was limited to fruits placed on top
of the tray. We therefore derived and applied simple constraints based on depth
data to remove the tray as well as the area behind the tray from the image
samples. Afterwards we used a marker-controlled watershed algorithm on the
masked RGB data to identify the regions of interest. For the work at hand we
loosen the previously made assumptions and constraints to be able to identify
small textured objects instead of fruits only, which may be lying on top of the
tray or moving in front of the robot. In the following we describe the changes
made to the single stages of the segmentation to account for the new application
scenario.

Depth clustering and filtering: For every frame, we first detect the closest
point inside the depth image. To obtain an initial region of the object to be
identified, we apply simple depth thresholding around this point. The obtained
mask represents the foreground marker and is retained for further processing.
We consider all objects being further away than the tray as invalid candidates,
and therefore mark those pixels as the background region. All not yet marked
pixels are labeled unknown (see Fig. 3) and represent the major area of interest
that should be processed in the next segmentation step.

Depth-marker-controlled watershed transform: To generate satisfying seg-
mentation results, we pass the depth-masks obtained from depth clustering and
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filtering to the watershed algorithm. Opposed to our previous approach applying
watershed transform to RGB data, we now utilize depth data during segmen-
tation. This is due to the fact that the assumption of homogeneously colored
objects does not hold for common objects, and thus delivers inadequate seg-
mentation results. Using the supplied depth markers, the watershed transform
produces closed object contours through sequential flooding of the marked fore-
ground region. Additionally, it requires low computational times as compared
to other more sophisticated vision-based segmentation methods. After success-
ful detection and segmentation, we can build the model for tracking as well as
extract the feature descriptors for the classification task.

3.2 Feature extraction and region description

Feature extraction should be able to efficiently extract and thus characterize the
important parts from sample images such that the images may be successfully
recognized based on the chosen feature set. We reevaluate the performance of
the scalable color descriptor (SCD) [3] on the new set of objects and extend our
descriptor set with the color layout descriptor [3] to fit the demands of the new
application scenario.

The color layout descriptor is designed to capture the spatial distribution of
the dominant color inside an object region. Featuring resolution-invariance and
compactness, it is particularly useful for video segment identification and image
retrieval. In the luminance, blue and red chrominance (YCbCr) color space, this
descriptor is obtained by applying the discrete cosine transform (DCT) on a 2D
array of locally representative colors. The input picture (on RGB color space)
is divided into 64 (8x8) blocks to maintain invariance to resolution or scale.
By averaging RGB pixel values inside each block, a new set of corresponding
RGB values is obtained. The mean color values are transformed from RGB to
YCbCr and each channel is filtered by applying the DCT. Using the analogy of
the YCbCr color space to the human visual system, chroma subsampling can
be applied to the less relevant Cb and Cr channels to reduce the representa-
tion size. Additionally, the DC as well as the low-frequency AC coefficients are
prioritized since high frequency components are considered to carry less infor-
mation. The three sets of 64 DCT coefficients are therefore zigzag scanned and
non-linearly quantized to group and order low-to-high frequency components.
Two cut-off parameters influencing the final representation size may be chosen
for the luminance as well as chrominance channels, respectively. The dimension
of the descriptor thus may be tuned to the user’s preference, whereas a total of
12 coefficients (Y,Cb, Cr) = (6, 3, 3) is recommended in [3].

Additional descriptors capturing relevant characteristics of the images are
chosen as follows (cf. [1]). First, texture is additionally captured by the edge
histogram descriptor [3], which is a useful texture representation if the texture
is not homogeneous. And second, contour and 3D shape features are extracted
by image moments and four intrinsic 3D shape measures [12]: compactness, sym-
metry, smoothness and local convexity. We refer the interested reader to [1], [12]
and [3] for further details on the chosen descriptors.
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Fig. 4. Same objects under varying poses and lighting conditions: daylight (top row),
evening light (middle row) and artificial light in the night (bottom row).

3.3 Dataset

We extended our fruit RGB-D dataset [1] consisting of 14 fruit instances with
6 objects: bear, cucumber, minion Dave, garlic, pink and black wallet. The new
dataset builds a set of approximately 300 RGB-D sample images for each of a
total of 11 categories under three different lighting conditions that include day-
light, dim light and artificial light in the night. Fig. 4 shows some image samples
for the three different lighting conditions. It can be seen that color, brightness
or background vary greatly for the same object. We furthermore collected ob-
ject samples featuring random poses to be able to evaluate the robustness of
our approach in regard to pose changes. Due to diverse RGB and depth camera
specifications, it is essential to synchronize and align the respective data streams.
We therefore use the transformation implemented in hardware within the Kinect
for alignment and group consecutive frames in a prefiltering step. Ultimately, we
generate a training data set consisting of overall 3,340 aligned RGB-D samples
with a resolution of 640× 480 pixels.

4 Experimental results

The experimental platform used for our work is a Scitos G5 service robot,
equipped with a laser-scanner for Monte-Carlo-based self-localization and an
integrated PC for on-board processing. An additional touchscreen is used for IO-
tasks and human-machine interaction. For our experiments, we use a gray plastic
tray on the robot as the major experimental area for sample object placement.
It is mounted at a height of approximately 0.6m and is continuously monitored
by a Microsoft Kinect at a vertical distance of approximately 0.5m above the
tray pointing downwards. The RGB-D sensor concurrently reports both color
and depth images at a resolution of 640× 480 pixels with 30 frames per second.
The specific setup makes it necessary to utilize the Kinect for Windows1, which,

1 http://www.microsoft.com/en-us/kinectforwindows/
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Fig. 5. Segmentation results for different object samples, from left to right: small bear,
cucumber, Minions Dave and pink wallet. Rows from top to bottom represent raw RGB
data (1), raw depth data (2), marker-controlled watershed results with RGB (3) and
depth (4). Bottom row (5) represents the point cloud obtained from segmentation.

in contrast to the off-the-shelf Kinect XBox 360 sensor featuring a minimum
distance of 0.8m, supports the so-called near mode. With near mode enabled,
the Kinect for Windows provides depth data for objects at a minimum distance
of 0.4m without loss in precision. Our mobile system thus serves as an intuitive
platform for object placement and furthermore is able to provide us with the
desired image samples (see Fig. 4) for our experiments.

In the following, we evaluate the two major pipeline stages inside our object
recognition. Additionally, we present extensive experimental results of the pro-
posed single as well as compound descriptors combined with various machine
learning algorithms.

4.1 Segmentation

We first wish to investigate the influence of the new object samples in regard
to the previous watershed algorithm based on color. Fig. 5 shows some results
of the proposed depth-based watershed algorithm with depth filtering (4th row
from top) in comparison to our previous segmentation used for fruit recognition
(3rd row). As expected, the color-based watershed segmentation is not able to
deliver adequate segmentation results for the newly added textured objects while
still performing well for new homogeneously colored samples. The depth-based
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Fig. 6. Random forest classification accuracy vs. model building time with CLD on
different scales.

watershed transform on the other hand delivers robust and satisfying results
for all samples. A further advantage is, that the computational complexity de-
creases slightly while preserving segmentation performance. This is due to the
fact, that we replaced the previously necessary RANSAC plane fitting by the
proposed simple depth filtering based on thresholding only. Throughout our ex-
periments, object data samples were segmented in 8 ms on average, thus making
the proposed detection and segmentation approach highly suitable for our real
time scenario.

4.2 Descriptors and Classifiers

We analyse the performance of several classifiers based on the introduced de-
scriptors and compare the results with our previously proposed descriptor SESH
(cf. [1]). We therefore automatically precompute segmented RGB-D object sam-
ples using the proposed detection and segmentation approach. The segmented
samples are used for feature extraction and then supplied to the machine learning
platform Waikato Environment for Knowledge Analysis (Weka) [16] to train and
evaluate various classifiers with different descriptors. We evaluate six machine
learning algorithms, namely Native Bayes (NB), Sequential Minimum Optimiza-
tion (SMO), k-Nearest Neighbor (KNN), Bagging based on REPTree, Decision
Tree (DT) and Random Forest (RF).

Based on the discrete cosine transform, the CLD descriptor features various
lengths of the YCbCr DCT-coefficients. Due to the zigzag scanning pattern,
the different scales may be set to 3, 6, 10, 15, 21, 28 to 64, respectively. We
investigate the influence on the classification performance using differently scaled
CLD descriptors. Fig. 6 shows the results obtained from RF classification on our
dataset. As can be seen, on the one hand, the recognition accuracy rises with
higher dimension of the CLD descriptor to up to 83.69% at a scale of 58, i.e.
(Y,Cb, Cr) = (28, 15, 15). On the other hand, higher values than 58 do not
introduce a significant accuracy increase, despite the cost of higher computation
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Table 1. Random forest classification accuracy of color descriptors

CLD scale

Descriptor 12 21 58 120 192

SCD 96.1

CLD 53.32 68.82 83.69 86.33 86.78

SCD CLD 97.93 98.17 98.56 98.47 98.1

times (due to proportionality to the descriptor size). If computation times are
of high importance to the application, a value of 58 seems a good choice.

In the next experiment we wish to compare the performance of the two
color descriptors CLD and SCD and the combination of both. We choose the
SCD with 256 elements, since it delivered significantly higher accuracies with
negligible runtime penalty compared to the lower scales. The results in Table 1
show that the SCD solely already achieves a very high accuracy (96.1%) using
the RF classifier on our dataset. As also shown in Fig. 6, using higher scales
of the CLD descriptor produces better results, which surprisingly is not strictly
the case if both descriptors are combined in our experiments. This result might
be due to an overlap of single features from SCD and CLD, whereas the CLD
high-frequency components seem to introduce redundant or even contradicting
object characteristics in regard to the SCD descriptor. The compound color
descriptor (SCD CLD) achieves its peak performance of 98.56% with CLD using
58 elements, and features a slightly improved accuracy (2.46%) when compared
to the SCD solely.

To further analyze the performance of the texture descriptor as well as the
shape descriptors, we run experiments with various classifiers and different de-
scriptor combinations. We refer to the 3D shape measures (3DSM) [12] and
compound descriptors as follows:

3DSM = {Compactness, Symmetry, Local Convexity, Smoothness}
= {Co, Sy, LC, Sm}

SH = {Hu7} ∪ 3DSM = {Hu7, Co, Sy, LC, Sm}
SESH = {SCD,EHD,Hu7, Co, Sy, LC, Sm}

SCESH = {SCD,CLD58, EHD,Hu7, Co, Sy, LC, Sm}

Fig. 7 and Table 2 depict the results obtained from 10-fold cross validation on
our dataset. First, the random forest classifier always delivers best results when
compared to other machine learning methods, except for the EHD descriptor,
where kNN slightly outperforms RF. This finding is similar to our last results
obtained on the fruits only dataset. Nevertheless RF shows to be a solid and
accurate choice throughout our experiments.

Furthermore, it can be seen, that texture (EHD) and shape information (SH)
solely do not deliver good results, which may be due to the low resolution of the
Kinect especially for distant objects and the varying lighting and pose conditions
inside our dataset, which also seems to be valid for the shape features. Although
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Fig. 7. Classification accuracy of several single and compound descriptors.

Table 2. Classification accuracy of compound descriptors on our dataset.

Accuracy(%) NB SMO KNN Bagging DT RF

SH 74.58 48.84 82.19 89.98 82.42 93.24

EHD 49.44 73.48 84.80 65.21 51.97 82.58

SCD 79.09 91.08 94.71 92.43 91.38 96.10

SESH 87.92 97.66 98.00 96.49 94.35 98.01

CLD58 61.07 69.03 80.17 78.04 77.68 83.69

SCESH 89.52 99.01 98.65 96.64 95.35 99.58

our previously proposed descriptor (SESH) [1] suffers a minor loss in precision
(98.01%) when compared to previous results obtained (99.36%) on the fruit
dataset, it still performs better as most other candidates. By combining the prior
with the CLD descriptor with 58 elements, SCESH achieves the best performance
with a 99.58% recognition rate inside our dataset. Again, the best performance
is achieved using a Random Forest classifier.

Finally, we want to examine the runtime performance of the discussed de-
scriptors. We therefore evaluate the times taken for feature extraction of each
single descriptor on our dataset. Table 3 shows, that the RGB based descriptors
are highly suitable for real time applications regarding runtime performance.
Shape measures, on the other hand, introduce a high computational load to
the recognition system, especially if symmetry and smoothness are taken into
account. This is primarily due to the more costly operations on RGB-D point
cloud data, which are necessary for feature extraction.

To make our application suitable for real time, we examine the effects of using
compound descriptors without the costly 3D shape measures on the classification
accuracy in our last series of experiments. We therefore define two new candidate
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Table 3. Descriptor extraction runtime

Descriptor SCD128 SCD256 CLD EHD Hu7

Time (ms) 52.5 52.8 14.9 9.8 1.4

Shape Measures Compactness Symmetry Loc. Convexity Smoothness

Time (ms) 0.03 401.5 13.3 400.8

Table 4. Classification accuracy with random forest

Descriptor SESH SCESH SCEHu SCEHuCL

Accuracy (%) 98.01 99.58 99.31 99.49

descriptors as follows:

SCEHu = {SCD,CLD58, EHD,Hu7}
SCEHuCL = {SCD,CLD58, EHD,Hu7, Co, LC}

The results in Table 4 show, that on our dataset very good recognition results
of 99.31% can already be achieved using feature descriptors based on RGB only.
The additional 3D shape measures only feature a minor improvement, whereas
introducing considerably higher computational load on the mobile system. Nev-
ertheless, best results may be obtained by using the combined RGB as well as
depth data descriptors if the runtime performance is of minor importance to the
application.

5 Conclusion

In this paper we proposed an object recognition system being able to detect, rec-
ognize and track common objects on our mobile robot. We therefore extended
our own object dataset from 2333 to 3340 image samples including overall 11 ob-
ject categories and 20 object instances. To solve the more generally defined task
of detecting common objects, we improved our previous segmentation method to
be able to automatically detect and successfully identify major regions of inter-
est for the objects to be recognized. We evaluated various compound descriptors
with different machine learning methods. We furthermore tested the descriptors
for real-time suitability and showed that the recognition task based on our object
samples can be carried out in real time using only RGB data for the compound
SCEHu descriptor. Final extensive results prove that the classification accuracy
of our proposed system using the random forest classifier does not significantly
suffer from the reduced dimension and is able to detect 99.31% of the evalu-
ated samples. Optionally, we are now able to continuously track objects once
they have been identified. By this, the run time overhead of frequent detection
queries is reduced. Additionally, the detected object’s pose may be forwarded
continuously to other modules for further processing.
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