
c©2014 IEEE

Visual SLAM for Autonomous MAVs with Dual Cameras

Shaowu Yang, Sebastian A. Scherer and Andreas Zell

Abstract— This paper extends a monocular visual simultane-
ous localization and mapping (SLAM) system to utilize two
cameras with non-overlap in their respective field of views
(FOVs). We achieve using it to enable autonomous navigation
of a micro aerial vehicle (MAV) in unknown environments.
The methodology behind this system can easily be extended
to multi-camera rigs, if the onboard computation capability
allows this. We analyze the iterative optimizations for pose
tracking and map refinement of the SLAM system in multi-
camera cases. This ensures the soundness and accuracy of each
optimization update. Our method is more resistant to tracking
failure than conventional monocular visual SLAM systems,
especially when MAVs fly in complex environments. It also
brings more flexibility to configurations of multiple cameras
used onboard of MAVs. We demonstrate its efficiency with both
autonomous flight and manual flight of a MAV. The results are
evaluated by comparisons with ground truth data provided by
an external tracking system.

I. Introduction

Monocular vision systems with conventional lenses nor-
mally have rather limited FOVs. This is one of their dis-
advantages when being used for MAV navigation applica-
tions, since a larger FOV can provide better environmental
awareness. In the context of visual SLAM on MAVs, a larger
FOV of the vision system can be more resistant to tracking
failure. The FOV can be enlarged by using a wider angle lens
(even fish-eye lens), at the cost of suffering from larger lens
distortion and loss of environmental details, due to a smaller
angular camera resolution. This also applies to catadioptric
omnidirectional vision systems [8]. Another type of omni-
directional vision systems combine multiple cameras into
one vision system, maintaining a single-viewpoint projection
model. However, these cameras need to be very precisely
configured in relatively heavy mechanical systems, in order
to preserve this model, and thus are not flexible enough for
MAV applications.

In this paper, we focus on achieving autonomous nav-
igation of MAVs by extending the Parallel Tracking and
Mapping (PTAM) described in [6] to utilize image features
from multiple cameras. We expand the FOV of our MAV
vision system by using two cameras mounted looking in
two different directions (forwards and downwards) to capture
more critical views, as shown in Fig. 1. The choice in the
number of cameras is resulted from a compromise between
tracking robustness and onboard computation capability. Our
method allows a SLAM system to integrate images captured

S. Yang and S. A. Scherer are PhD candidates, and A. Zell is full
professor, with the Department of Computer Science, University of Tübin-
gen, Tübingen, Germany {shaowu.yang, sebastian.scherer,
andreas.zell} @uni-tuebingen.de

Fig. 1: Our MAV platform, with two cameras mounted look-
ing in two different directions: downwards (green ellipse) and
forwards (red ellipse).

from various useful perspectives, without requiring the cam-
eras to be mounted in a specific way in order to keep a
single-viewpoint model. This makes the configurations of
cameras more flexible. On the other hand, since multiple
cameras no longer preserve this model, using features from
multiple cameras in PTAM is not trivial: How the features are
involved in the iterative optimizations needs to be carefully
analyzed. Based on such an analysis, we are able to integrate
those image features into a single visual SLAM system. This
enables our MAV to achieve more robust pose tracking and
to build a map that consists of more interesting regions of
the environment.

II. RelatedWork

Vision-based onboard solutions are becoming a popular
research focus for autonomous navigation of MAVs. Au-
tonomous mapping and exploration of MAVs based on stereo
cameras is demonstrated in [4]. The work in [12] features
a vision system for autonomous navigation of MAVs using
two pairs of stereo cameras, and stereo triangulations serve
as constraints in bundle adjustment of PTAM. A stereo
setup yields metric scale information of the environment.
However, stereo visual odometry and SLAM systems still
may degenerate to the monocular case when the distance
to the scene is much larger than the stereo baseline. In
[1], PTAM is used to provide position estimates for an
MAV, while fusing data from an air pressure sensor and
accelerometers to estimate the unknown metric scale factor
of the monocular vision system. The work in [15] presents
a visual-inertial data fusion method onboard of MAVs for
navigation in unknown environments. A vision-based system
combining the advantages of monocular vision and stereo
vision is developed in [14], which uses a low frame-rate
secondary camera to extend the high frame-rate forward
facing camera equipped with a fish-eye lens. The resulting

vision system relies mainly on monocular vision algorithms,
while being able to track metric scale by stereo triangulation.

Pose estimation using multi-camera systems can already
be found in literature, e.g. the work in [7] adopts a general-
ized camera model for a multi-camera system to estimate the
ego-motion of a self-driving car. Another work most similar
to our current work, is that in [5], which uses PTAM with
multiple cameras mounted on a buoyant spherical airship.
It employed a ground-facing stereo camera pair, which can
provide metric scale, together with another camera mounted
pointing to the opposite direction using a wide-angle lens.
Our improvements comparing to it are in three aspects.
First, we provide a solid mathematical analysis on how
measurements from different cameras can be integrated in
each optimization process of PTAM. The analysis guarantees
soundness and accuracy of the optimizations for pose update
and bundle adjustment using measurements from multiple
cameras. Second, we make use of the fact that multiple
cameras are typically mounted rigidly, and force camera
poses to obey their rigid extrinsic calibration in bundle
adjustment as will be shown in Sect. III. This ensures
a consistent map in multi-camera cases. Furthermore, the
resulting pose tracking accuracy in [5] was evaluated only
in a manual flight experiment, and the position errors are
reported to be higher than our results although stereo cameras
were used there. We also demonstrate that our SLAM system
can enable autonomous navigation of a MAV.

III. Extending theMonocular Visual SLAM

We implemented our SLAM system based on the open
source PTAM system. The reason for this choice is that
PTAM provides an efficient tracking module and it is able to
generate an accurate map with a large number of map points
from the environment. Furthermore, PTAM uses iterative
optimizations for both pose tracking and map refinement,
which we could extend to incorporating multi-camera image
features. In this section, we analyze how image features from
different cameras can be integrated in one SLAM system.

A. The Basics of PTAM

In order to achieve real-time operation, the main idea
proposed in PTAM is to split tracking and mapping into
two separate threads, which can be processed in parallel on
a dual-core computer. The first tracking thread is responsible
for real-time tracking of the camera motion relative to the
current map. The second mapping thread extends the map,
consisting of 3D point features organized in keyframes, and
refines it using bundle adjustment.

Within the tracking thread, the FAST corner detector [11]
is applied to each image at four pyramid levels, and all map
points are projected to the current image plane based on
a prior pose estimate. Successful matches between image
features and reprojected map points are then used for pose
update computation. The mapping thread integrates new
keyframes into the map when requested by the tracking
thread, and creates new map points by triangulating FAST
corner matches between the new keyframe and its closest

neighbours. Local bundle adjustment and global bundle ad-
justment are continuously performed to refine the map for
the rest of the time.

For both pose tracking and map refinement (using bundle
adjustment), iterative minimization of the reprojection errors
of those matched map points serves as a major step in PTAM.

In the context of autonomous navigation of MAVs using
PTAM, there are three issues we need to keep in mind:
First, as a monocular system, it does not provide metric
scale measurements, which will be addressed in Sect. III-
G. Second, it is originally designed for augmented reality
applications used in small areas, thus not suitable for large-
scale SLAM. Third, if MAVs fly in ways which lead to
failure in triangulating new map points or tracking the
existing points, pose tracking will consequently fail.

B. Camera Projection Model and Pose Update

Using the same calibrated camera projection model as in
[6], the image projection of the jth map point to the ith

camera is
u ji = Pi

(
Eciwp j

)
, (1)

where Pi is the ith camera projection function considering
lens distortion (see [6]), p j is world coordinates of the jth

map point, and Eciw is a member of the Lie group S E(3),
which represents the ith camera pose in the world coordinate
system, containing a rotation and a translation component.

Since our goal is to use the SLAM system to track the
pose of the MAV, without losing generality, we compute the
pose update of one specified camera, which we call the first
camera C1, based on the measurements from all cameras.
The pose of other cameras can be updated by assuming a
constant transformation relative to C1. Thus, with a calibrated
transformation between the first camera and the MAV body
coordinate system, the MAV pose can be updated. Following
this idea, pose updates of all cameras can be expressed with
one single six-element vector µ using the exponential map:

E′ciw = Ei1 · eµ ·Ec1w, (2)

where µ is an element of the se(3) algebra, and Ei1 is the pose
of C1 in the ith camera coordinate system. The pose tracking
(and a part of mapping) problem of the SLAM system now
mainly consists of how to obtain an optimized µ as the pose
update of C1. The advantage of the parameterization of the
camera pose updates using the six-element vector µ is that
it allows a closed form differentiation of Eq. 2.

C. Optimizations for Pose Update and Bundle Adjustment

The camera pose update and bundle adjustment in PTAM
are based on iteratively minimizing a robust objective func-
tion of the reprojection errors of sets of image measurements
S i, which are observed map points in each camera (or
keyframe) i. In a n-camera (or n-keyframe) system, we need
to minimize the function:

n∑
i=1

∑
j∈S i

Obj
(
| e ji |

σ ji
,σT

)
, (3)

where Obj is the Tukey biweight objective function, σ ji is
the estimated standard deviation of the image reprojection
of point j in pixels, and σT is a robust estimate of the
standard deviation of all reprojection errors. e ji is defined as
the difference between the image reprojection of map point
j and its actual image measurement:

e ji = u ji− û ji. (4)

The minimization problems can be solved by iterations
of reweighted least squares. This requires us to differentiate
e ji (i.e. to obtain the Jacobians of e ji) with respect to the
estimated camera poses at each iteration step. In bundle
adjustment, the differentiation of e ji with respect to map
point j position changes is also required. The work in [2]
provides a good tutorial to related mathematics. We will
discuss the differentiations of e ji in multi-camera systems
in the following two sub-sections.

D. Camera Pose Update with Multiple Cameras

For the pose update of a n-camera system, the optimization
problem is to find the optimal camera C1 pose update µ:

µ′ = argmin
µ

n∑
i=1

∑
j∈S i

Obj
(
| e ji |

σ ji
,σT

)
(5)

Following the discussion in Sect. III-C, we analyze the
differentiations required for solving the optimization. For a
map point j measured by the first camera C1, we can compute
the Jacobian matrix of e ji with respect to the estimated C1
pose update µ using the chain rule as

J1µ =
∂P1

(
eµEc1wp j

)
∂µ

=
∂P1 (c)
∂c

∣∣∣∣∣c=Ec1wp j

·
∂
(
eµEc1wp j

)
∂µ

.

(6)

The first term of the above matrix product is the Jacobian of
the camera projection model. The last term is:

∂
(
eµEc1wp j

)
∂µ

=
(
I3 − [Ec1wp j]×

)
. (7)

However, for map points measured by other cameras, with
Eq. 2, the differentiation becomes:

Jiµ =
∂Pi

(
Ei1eµEc1wp j

)
∂µ

(8)

=
∂Pi (c)
∂c

∣∣∣∣∣c=Eciwp j

·
∂
(
Ei1eµEc1wp j

)
∂µ

. (9)

Its difference to Eq. 6 lies in the last term of this equation:

∂
(
Ei1eµEc1wp j

)
∂µ

= Rot (Ei1) ·
(
I3 − [Ec1wp j]×

)
, (10)

where Rot (Ei1) is the rotation component of Ei1.

E. Bundle Adjustment with Multiple Rigid Camera Rigs

Bundle adjustment in PTAM means solving the following
minimization problem:

{{µ2µN}, {p1 pM}} = argmin
{{µ},{p}}

N∑
i=1

∑
j∈S i

Obj
(
| e ji |

σ ji
,σT

)
, (11)

where N is the number of keyframes and M is the number
of observed map points that need to be updated.

In a multi-camera system, we assume that relative poses
of the group of new keyframes obtained at the same time
t by different synchronized cameras, are constant since the
cameras are mounted rigidly. Thus in bundle adjustment, we
can use image measurements from all cameras to compute
the optimal pose updates of the keyframes K1 obtained by
the first camera C1. The pose of other rigidly connected
keyframes are computed based on the updated poses of
corresponding keyframes in K1. This allows a consistent map
to be built using multiple cameras.

In this case, to solve bundle adjustment, we differentiate
e ji with respect to the corresponding keyframe (in K1) pose
update µ, which can be obtained in the same way as in Eq. 6
or Eq. 8, depending on the camera identity of the the point j
(i.e. by which camera the point is measured). The Jacobian of
e ji with respect to the estimated point j pose can be expressed
in a consistent way:

Jp j =
∂Pi

(
Eciwp j

)
∂p j

=
∂Pi (c)
∂c

∣∣∣∣∣c=Eciwp j

·
∂
(
Eciwp j

)
∂p j

. (12)

The last term simply becomes:

∂
(
Eciwp j

)
∂p j

= Rot
(
Eciw

)
. (13)

F. Some Implementation Details

For autonomous navigation of our MAV, we utilize two
cameras with non-overlapping FOVs. This configuration
achieves a maximal effective FOV of the vision system.

1) Mapping: Since the two cameras have very different
perspectives, we assume they share no common feature
points. Then the global map of the SLAM system can be
treated as two sub-maps, each corresponding to one camera.
Such organization makes map operations more efficient. Note
that it is trivial in PTAM to assume multiple cameras can
share common points, since both map point triangulation and
bundle adjustment are designed to handle multiple observa-
tions of one feature point. Then we only triangulate new
map points with keyframes obtained by the same camera.
However, in bundle adjustment, map points and keyframes
from both cameras are involved. To achieve better real-time
performance of the SLAM system when operating in large
scale, we only retain the local bundle adjustment step and
abandon global bundle adjustment in mapping.

2) Pose tracking: Map points in the two sub-maps are
reprojected to the corresponding source camera to decide
whether they are potentially visible. Successful matches
between image features and those potentially visible points

will serve as image measurements and be used in the iterative
optimizations for camera pose update. In the optimization,
we assume the two cameras produce measurement noises
with the same four standard deviations on the four image
pyramid levels. This also applies to the optimization in
bundle adjustment. These standard deviations for systems
using significant different cameras or lenses can be estimated
according to the noises of all measurements as did in [13].

G. Automatic Initialization of the SLAM System

Metric scale ambiguity generally exists in monocular
camera systems. Our dual-camera system has the same issue
since the cameras have no overlap in their corresponding
FOVs. We solve it by initializing the metric map of our
SLAM system similarly to [16]. We use an initialization
module developed in [17] to robustly estimate the downward
looking camera (the first camera) pose during the takeoff

phase of our MAV. The main idea of the pose estimation
method in [17] is to apply a computational geometry method
to a known circular pattern which is detected by using an
artificial neural network. When the MAV height is larger than
a given threshold, the first camera pose and the associated
image are sent to the SLAM system. 3D positions of the
feature points in the image are obtained by assuming they
lie on the ground plane, which does not need to be strictly
true as demonstrated in outdoor experiment in [16]. The sub-
map corresponding to the first camera is initialized with those
feature points. The sub-map corresponding to the second
camera is initialized after two keyframes from this camera
are obtained, when 3D feature points can be triangulated with
the known keyframe poses.

IV. Experiments

A. Experimental Setup

1) Quadrotor platform: Our MAV is based on the open
source quadrotor platform developed by the PIXHAWK
project from ETH Zürich, described in [9], as shown in
Fig. 1. The onboard computer features an Intel Core 2
Duo 1.86GHz CPU, 2 GB DDR3 RAM and a 32Gb SSD.
The pxIMU inertial measurement unit and autopilot board
mainly consists of a microcontroller unit (MCU) for position
and attitude control, and sensors including a tri-axis ac-
celerometer and a tri-axis gyroscope. The two synchronised
cameras utilized on our MAV are two PointGrey Firefly MV
monochrome cameras, each of which weighs only 37 grams.
Each camera has an image resolution of 640× 480 pixels,
a maximum frame rate of 60 f ps, and both lenses we use
have viewing angles of approximately 90 degrees.

2) Extrinsic Calibration of Cameras: We calibrate the
extrinsic parameters between the first camera and other
cameras (Ei1) by utilizing a commercial external tracking
system, which we mentioned in [16], and a pattern which is
also used for camera intrinsic parameters calibration. Our
quadrotor and the pattern poses can be measured by the
tracking system. The camera poses with respect to the pattern
can be obtained by performing extrinsic calibration of each
camera. Then Ei1 can be obtained after a few coordinate

Fig. 2: A scene of our robot lab where we carry out the
experiments. The x,y,z axes of the SLAM coordinate system
are indicated inside.

TABLE I: MAV pose RMSEs of the whole trajectories in
autonomous flight (Auto.) and manual flight (Manual), with
position errors in mm and attitude errors in degrees

RMSEs x y z 3D roll pitch yaw
Auto. 23.5 37.2 15.9 46.8 0.82 0.81 1.04
Manual 23.4 43.2 12.5 50.7 1.31 1.08 1.06

transformations with a similarly pre-calibrated first-camera
to quadrotor pose. When an external system is unavailable,
an alternative way could be using SLAM-based methods like
the one presented in [3].

3) Quadrotor controllers: We use a nested PID pose
controller and PD trajectory controller described in previous
work [16] for autonomous navigation of our quadrotor. The
3D position estimates and the yaw angle estimates from our
visual SLAM system are fed to the position controller at
frame rate. The attitude controller runs at a frequency of
200 Hz, using the roll and pitch estimates from the IMU.

B. Enabling Autonomous Navigation

In this first experiment, we demonstrate the efficiency
of our SLAM system to enable autonomous navigation of
MAVs. We further evaluate its accuracy by comparing its
pose tracking results to the data provided by the external
tracking system. A picture of the experiment environment
is shown in Fig. 2, in which we also sketch the SLAM
coordinate system. There is a large white area on the desired
path of the MAV, where no visual feature can be obtained
by the downward looking camera. The MAV autonomously
navigates along a predefined rectangular path (plotted in
cyan in Fig. 3b) in a counter-clockwise direction with a
commanded forward speed of vs = 0.4m/s, taking off and
finally landing above the origin of the SLAM coordinate
system. The takeoff phase is controlled by using pose fed
from the initialization module. We set the MAV to turn 90
degrees at the first corner, which makes the forward looking
camera unable to triangulate new features and track its pose
if it is the only camera in the SLAM system.

TABLE II: MAV pose RMSEs during the part of manual
flight when the MAV pose can be tracked by the downward
looking camera along, with position errors in mm and attitude
errors in degrees.

RMSEs x y z 3D roll pitch yaw
SLAM2c 25.5 35.4 13.1 45.6 1.02 0.94 0.91
SLAMdc 38.2 29.7 19.1 52.0 1.30 1.27 1.37

The resulting MAV trajectory during an autonomous flight
can be found in Fig. 3. The MAV trajectory estimated by our
onboard SLAM system using two cameras (SLAM2c) fits
well with the ground truth data from the external tracking
system (ETS). The SLAM2c attitude estimates are actually
less noisy than that of the ETS data. The root-mean-square
errors (RMSEs) of the pose estimates of SLAM2c data with
respect to the ETS data are listed in Table I (the row of
Auto.). Three noise sources which contribute to the errors
should be noted. First, slow scale drift still exists in our
SLAM system, since we do not use additional sensor data
or stereo triangulation to provide metric scale measurements.
Second, the extrinsic camera calibration errors can also affect
the pose tracking and mapping accuracy. A last minor factor
comes from the ground truth data itself, since it is difficult to
set the tracking system coordinate frame perfectly coincide
with the SLAM coordinate frame.

In Fig. 3b, we can find fluctuations in the performed
trajectory at the designated path corners. The reasons are that
we set the MAV to hover 5sec at each corner, and we have
not implemented a sophisticated and precise pose controller,
which is out of the scope of this paper. If the desired pose of
the MAV propagates forward when the MAV is still trying to
hover back to a corner, the trajectory may form a fluctuation
like the one at the top right corner of Fig. 3b.

C. More Evaluation through Manual Flight

We process an image logfile off-board to perform more
evaluation to our SLAM system. The onboard computation
capability does not allow us to take image logfiles during
autonomous navigation. Thus, we manually control the MAV
to follow a similar path as in Sect. IV-B, and take a
logfile containing images from both cameras and other useful
onboard sensor data by utilizing ROS [10].

The MAV trajectory during this manual flight is shown
in Fig. 4. When using the proposed SLAM system with
two cameras, the MAV pose can be well tracked throughout
the flight, which also fits well with the ground truth data.
The corresponding RMSEs are listed in Table I (the row of
Manual). Fig. 5 shows a view of the final map built by our
SLAM system with the dual-camera trajectory. Two minor
parts of the ground truth data are missing due to the flight
outside the working area of the tracking system, which is
found to be two periods of straight dashed lines in Fig. 4c
around the time of 17sec and 29sec.

However, if we use PTAM with the downward looking

camera alone, pose tracking will fail when the MAV flies
above the white area (see the SLAMdc case in Fig. 4).
The MAV position where pose tracking fails in this case
is marked with black circles in Fig. 4a and Fig. 4b. We
mark the time when it fails with a red line in Fig. 4c, where
MAV positions on each axis are shown. During the part of
flight before tracking failure happens, the RMSEs of pose
tracking using the proposed SLAM system (SLAM2c) are a
bit smaller than those of using only the downward looking
camera (SLAMdc), as can be found in Table II. Similarly, if
we use PTAM with only the forward looking camera after
the initialization of its sub-map, pose tracking will fail again
when the MAV rotates during hovering. Like in the first
failure case, we mark this failure with black crosses in Fig. 4a
and Fig. 4b, and a black line in Fig. 4c.

V. Conclusions and Discussions

We present a visual SLAM system which can utilize
feature measurements from multiple cameras. We demon-
strate the efficiency of the method by enabling a MAV with
two cameras to navigate autonomously along a predefined
path. The experiment with a logfile taken from a manual
flight proves that our proposed method is more resistant to
tracking failure than a monocular method. A demonstration
of our work can be found in the accompanying video
or online at http://www.youtube.com/channel/UCQd6_
G6qyvGHUmz7NUelDZQ/videos.

For long term pose tracking of MAVs, its metric scale
could be better tracked by fusing IMU data. An alternative
way is to use more cameras running in an asynchronous
way with reasonable areas of overlap in FOVs to get depth
constraints of some features. A loop closing method will also
be integrated to form a full SLAM system for navigating the
MAV in large scale environments.

References

[1] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart. Onboard IMU
and Monocular Vision Based Control for MAVs in Unknown in-and
Outdoor Environments. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 3056–3063, 2011.

[2] José-Luis Blanco. A tutorial on SE(3) transformation parameteriza-
tions and on-manifold optimization. Technical report, University of
Malaga, September 2010.

[3] G. Carrera, A. Angeli, and A.J. Davison. SLAM-based automatic
extrinsic calibration of a multi-camera rig. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 2652–2659,
2011.

[4] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-
skanen, and M. Pollefeys. Vision-Based Autonomous Mapping and
Exploration Using a Quadrotor MAV. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4557–
4564, 2012.

[5] A. Harmat, I. Sharf, and M. Trentini. Parallel Tracking and Mapping
with Multiple Cameras on an Unmanned Aerial Vehicle. In Interna-
tional Conference on Intelligent Robotics and Applications (ICIRA),
volume 1, pages 421–432. Springer, 2012.

[6] Georg Klein and David Murray. Parallel Tracking and Mapping for
Small AR Workspaces. In Proc. Sixth IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR’07), Nara,
Japan, November 2007.

[7] Gim Hee Lee, Friedrich Faundorfer, and Marc Pollefeys. Motion es-
timation for self-driving cars with a generalized camera. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 2746–2753. IEEE, 2013.

http://www.youtube.com/channel/UCQd6_G6qyvGHUmz7NUelDZQ/videos
http://www.youtube.com/channel/UCQd6_G6qyvGHUmz7NUelDZQ/videos

0

1000

2000

−1000
0

1000
2000

3000
200

400

600

800

1000

1200

1400

x (mm)y (mm)

z
 (

m
m

)

SLAM2c

ETS

(a)

−500 0 500 1000 1500 2000
−500

0

500

1000

1500

2000

2500

x (mm)

y
 (

m
m

)

SLAM2c

ETS

path

(b)

0 20 40 60
−20

0

20

40

60

80

100

time (sec)

y
a
w

 (
d
e
g
)

SLAM2c

ETS

(c)

Fig. 3: MAV poses estimated by our SLAM system (SLAM2c) and the external tracking system (ETS) during autonomous
navigation. (a) The trajectory on x,y,z axis in 3D and (b) projected to the x− y plane. (c) The yaw angle of the MAV.

0
1000

2000

−1000
0

1000
2000

3000
0

200

400

600

800

1000

1200

1400

x (mm)y (mm)

z
 (

m
m

)

SLAM2c
SLAMdc
ETS

(a)

−500 0 500 1000 1500 2000 2500
−500

0

500

1000

1500

2000

2500

x (mm)

y
 (

m
m

)

SLAM2c
SLAMdc
ETS

(b)

0 10 20 30 40 50
−500

0

500

1000

1500

2000

2500

3000

time (sec)

x
/y

/z
 (

m
m

)

SLAM2c x
SLAM2c y
SLAM2c z

SLAMdc x
SLAMdc y
SLAMdc z

ETS x
ETS y
ETS z

(c)

Fig. 4: MAV poses estimated by the proposed SLAM system (SLAM2c), PTAM with only the downward looking camera
(SLAMdc), and the external tracking system (ETS) for the manual flight logfile. (a) The trajectory on x,y,z axis in 3D, (b)
projected to the x− y plane, and (c) with respect to the flight time.

Fig. 5: Built map with the dual-camera trajectory of the
manual flight logfile (with better view in color). Map points
from the downward looking camera are marked in blue, those
from the forward looking camera in red. More details of the
results can be found in the accompanying video.

[8] Huimin Lu, Shaowu Yang, Hui Zhang, and Zhiqiang Zheng. A Robust
Omnidirectional Vvision Sensor for Soccer Robots . Mechatronics,
21(2):373 – 389, 2011.

[9] L. Meier, P. Tanskanen, L. Heng, G. Lee, F. Fraundorfer, and M. Polle-
feys. PIXHAWK: A Micro Aerial Vehicle Design for Autonomous
Flight Using Onboard Computer Vision. Autonomous Robots, pages

1–19, 2012.
[10] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,

Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an
open-source Robot Operating System. In ICRA workshop on open
source software, volume 3, 2009.

[11] E. Rosten and T. Drummond. Machine Learning for High-Speed
Corner Detection. In European Conference on Computer Vision
(ECCV), pages 430–443. Springer, 2006.

[12] Konstantin Schauwecker and Andreas Zell. On-board dual-stereo-
vision for autonomous quadrotor navigation. In Unmanned Aircraft
Systems (ICUAS), 2013 International Conference on, pages 333–342,
2013.

[13] Sebastian A. Scherer, Daniel Dube, and Andreas Zell. Using depth
in visual simultaneous localisation and mapping. In Robotics and
Automation (ICRA), 2012 IEEE International Conference on, pages
5216–5221. IEEE, 2012.

[14] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. Vision-
based State Estimation for Autonomous Rotorcraft MAVs in Complex
Environments . In Proc. of the IEEE Intl. Conf. on Robot. and Autom.,
Karlsruhe, Germany, may 2013.

[15] Stephan Weiss and Roland Siegwart. Real-time metric state estimation
for modular vision-inertial systems. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 4531–4537.
IEEE, 2011.

[16] Shaowu Yang, Sebastian A. Scherer, Konstantin Schauwecker, and
Andreas Zell. Autonomous Landing of MAVs on an Arbitrarily
Textured Landing Site Using Onboard Monocular Vision. Journal
of Intelligent & Robotic Systems, 74(1-2):27–43, 2014.

[17] Shaowu Yang, Sebastian A. Scherer, and Andreas Zell. An Onboard
Monocular Vision System for Autonomous Takeoff, Hovering and
Landing of a Micro Aerial Vehicle. Journal of Intelligent & Robotic
Systems, 69:499–515, 2013.

	Introduction
	Related Work
	Extending the Monocular Visual SLAM
	The Basics of PTAM
	Camera Projection Model and Pose Update
	Optimizations for Pose Update and Bundle Adjustment
	Camera Pose Update with Multiple Cameras
	Bundle Adjustment with Multiple Rigid Camera Rigs
	Some Implementation Details
	Mapping
	Pose tracking

	Automatic Initialization of the SLAM System

	Experiments
	Experimental Setup
	Quadrotor platform
	Extrinsic Calibration of Cameras
	Quadrotor controllers

	Enabling Autonomous Navigation
	More Evaluation through Manual Flight

	Conclusions and Discussions
	References

