
Building Local Terrain Maps Using Spatio–Temporal Classification
for Semantic Robot Localization

Stefan Laible1 and Andreas Zell1

Abstract— The correct classification of the surrounding ter-
rain is an important ability of a mobile robot that drives in
outdoor environments. Our robot uses a 3D LIDAR and a
camera to classify terrain as either asphalt, cobblestones, grass,
or gravel. We build on previous work where we modeled the
terrain as a Conditional random field to account for spatial
dependencies, which improved results substantially. We now
show how to speed up the spatial classification by defining a
new energy term for neighborhood relations. Moreover, we now
also consider temporal dependencies as the robot moves. This
not only further improves the results, but makes it possible to
build local terrain maps of the environment. We describe how
to efficiently integrate the classification results of each time
step into the map in a probabilistic manner. By also detecting
obstacles with the LIDAR, the robot can build combined terrain
and elevation maps. We show that these maps can be used for
semantic robot localization.

I. INTRODUCTION

Autonomous navigation in outdoor environments calls for
different requirements than navigation in indoor scenarios
such as office buildings and factories. Characteristic of man–
made environments is the geometric structure, which can be
used for a very precise localization of the robot. Outdoors
there is often a lack of structure. So to enable a safe and
efficient navigation in such environments a comprehensive
semantic perception of the environment is essential. Of
particular interest is the surrounding terrain. The knowledge
about it is crucial for a safe and efficient path planning on
the one hand, but it is also valuable for robot localization,
as an addition or alternative when GPS is too unreliable or
not available at all, e.g. near buildings, under trees, or in
general when there is no clear line of sight to the satellites.
The accuracy requirements of such a localization depend on
whether the robot is to follow, for example, a field boundary
or a road, or whether it should travel long distances over
open field.

In previous work [LKZ13] we presented a method for
classifying the terrain in front of the robot using a 3D
LIDAR and a camera. Therefore, the terrain is divided into
a grid, and at first, every grid cell is classified individually
using the sensor measurements. By modeling the terrain
grid as a Conditional random field (CRF) we additionally
consider spatial dependencies between the cells, which im-
proves results substantially. In this work, we also take into
account temporal dependencies in order to get a spatio–
temporal terrain classification. This improves the quality of

1S. Laible and A. Zell are with the Chair of Cognitive
Systems, Computer Science Departement, University of Tübingen,
Sand 1, 72076 Tübingen, Germany {stefan.laible,
andreas.zell}@uni-tuebingen.de

the classification further, and enables the robot to map its
traveled path; we call this building local terrain maps. We
show that these maps can then be used to localize the robot
by applying Monte Carlo localization, where we are not
interested in a precise but a semantic localization.

II. RELATED WORK

There are several related works about terrain classification
that consider spatial or temporal dependencies. In [WSFB05]
a 2D LIDAR is used for terrain mapping. The terrain is clas-
sified in navigable and non–navigable regions using Hidden
Markov models. Small classification errors in the map are
removed with a Markov random field. In [KZ10] vibration
data acquired by an inertial measurement unit is used to
segment different types of terrain with an unsupervised learn-
ing approach. The clustering is based on a Markov random
field to consider temporal dependencies between consecutive
measurements. [HAW+13] also use Markov random fields,
for considering spatial dependencies between cells of a
terrain grid. They use a high–resolution 3D LIDAR and
several color cameras to classify the terrain into the classes
road, rough and obstacle. We showed, however, in previous
work [LKZ13] that CRFs are better suited for our task than
Markov random fields. A 2D LIDAR is used in [WKK+13]
to distinguish between vegetation and asphalt by looking
at the intensity values of laser measurement points. They
show that it is also possible to distinguish between a dark
street and light tiles. Results from consecutive measurements
are combined probabilistically. In our work, we distinguish
not only between navigable and non–navigable terrain, or
between vegetation and non–vegetation, but use multiple
terrain classes.

Semantic perception and classification of the environment
for mapping and localization is used, for example, in [WB10]
in the domain of agricultural robotics. They present an alter-
native to GPS–based navigation for a robot driving through a
maize field. The robot can localize itself by detecting states
like being in the middle of a row, at a row gap, or at the
end of the row. In [NH08] semantic maps are generated by
labeling coarse scene features like walls and floors, and more
complex objects detected by a classifier. Such maps that
contain annotations of known objects in addition to spatial
information can be very beneficial for localization tasks.

III. SPATIAL CLASSIFICATION

At the core of our approach is the robot’s ability to classify
its surrounding terrain. In each time step the terrain in front
of the robot is divided into a grid and each cell of this grid

is classified as either asphalt, cobblestones, grass, or gravel.
For this task our robot is equipped with an AVT Marlin F-
046 C Color Camera and a Nippon Signal FX6 3D LIDAR.
The camera has a VGA resolution and takes color images,
however, we only use gray–scale images. The 3D LIDAR
has a very low resolution with only 59×29 data points
and provides for each measurement point in addition to the
distance an intensity value, which indicates the proportion
of the emitted light that arrives back at the sensor. This
sensor is largely illumination–independent and works with
ambient light of up to 100,000 Lux. The camera is only
used for terrain classification, while the LIDAR is also used
for detecting the ground plane and obstacles.

Once the transformation between the LIDAR and the
camera coordinate system is computed using a calibration
method, for each cell of the above mentioned terrain grid
the corresponding features for the laser measurement points
and image pixels can be extracted. We use roughness and
intensity histograms for the laser scans as described in
[LKBZ12]. Especially the distribution of the intensity values
of the scan points provides characteristic features, since it
results from the reflection properties of the different terrain
types. To extract features from the image patches we use
Local ternary patterns (LTP) [TT10]. LTPs are basically
histograms based on intensity differences in neighboring
pixels. Since only differences are considered, a certain
independence from changes in illumination is achieved.
Using labeled training data, a terrain model can then be
learned for each of the two sensors. For this purpose
we use Random forests [Bre01]. Random forests are an
ensemble learning method that use multiple decision trees
for classification. Each tree gives a vote for one class and
the majority of votes determines the most probable class.
In this way we get a probability for each class as the
proportion of trees that voted for this class, which is very
important for our approach, as we shall see. For example,
in grid cells where data from both sensors are available, the
two classification results can be fused by simply combining
the corresponding probability values through a weighted
sum.

To increase the classification rate we also considered
spatial dependencies between the individual grid cells using
CRFs. We will briefly describe this in Sec. III-A. For a
more detailed description we refer the reader to [LKZ13]. In
Sec. III-B we show our modification to this approach, which
yields similar results with a much lower computational cost.

A. Classification Considering Spatial Dependencies

Terrain appears in contiguous areas. This is an important
information that is ignored when classifying each grid cell
individually. There, we get the most likely label y∗ =
argmaxy p(y|x) for a cell directly from the Random forest
given the extracted features x. It may then happen that
the terrain labels assigned to the grid cells change often
even in small areas, which rarely occurs in those outdoor
environments in which our robot normally drives. There,

rather large coherent areas of the same terrain type occur,
with clear boundaries between areas of different terrain. We
now want to keep the feature–dependent classification, but
also consider the spatial context in which a grid cell appears.
To take these spatial dependencies into account, we model
the terrain grid as a CRF. CRFs are in essence a family
of conditional probability distributions p(y|x) represented
by means of an undirected graph. In order to limit the
complexity of that model we define a neighborhood N that
determines for each grid cell which other cells do have a
direct influence on that cell. This neighborhood can consist,
for example, of the four direct neighbors as in Fig. 1, or
as we define it, of the 8–neighborhood, that is, the eight
surrounding cells.

x
x

x

x

x
x

x

x
x

y
y

y

y

y

y

y
y

y

Fig. 1. The terrain label y of a grid cell depends on the measured features
x, but also on the labels of its neighboring grid cells.

We now have a two–stage classification process. In the
first stage, for each cell, the features xi are extracted and the
probabilities p(yi|xi) are obtained by the Random forests. In
the second stage, the optimal label configuration y∗, which
maximizes the conditional probability p(y|x), is to be found.
Here, also spatial dependencies between grid cells are taken
into account by modelling the terrain grid as a CRF. Since
it is not feasible to consider all the exponentially many
possible configurations of terrain labels in finding the optimal
solution y∗ for a grid, we use an approximate inference
method, namely a Gibbs sampler in a Simulated–annealing
scheme [GG84]. In this scheme, the label configuration is
changed iteratively until a convergence criterion is reached.
These changes can be very large at the beginning, but with
the decreasing of a temperature factor will be less. So it
is possible to find the global maximum in the presence of
many local maxima. In general, this maximum, which is
the maximum probability p(y|x) in our case, is found by
bringing a system in a state of minimum energy. We must
therefore formulate our problem as an energy–minimization
problem [NL11]:

y∗ = argmax
y

p(y|x) (1)

= argmin
y

E(y,x) (2)

The energy E consists of two components corresponding
to the two components of the CRF: a feature–dependent
component Ef , and a component EN that describes neigh-
borhood relations between cells.

E(y,x) =
∑
i

Efi(yi, xi)

+ENi
(yi, xi, {yj , xj : j ∈ Ni}) (3)

The feature energy Efi only depends on the label yi and
the features xi of the cell, whereas the neighborhood energy
additionally depends on the labels yj and features xj of the
neighboring cells. In [LKZ13] we used the following energy
terms:

Efi = −λ log (p(yi|xi)) (4)

ENi
=

∑
j∈Ni

1{yi 6=yj} exp
(
−β(xi − xj)2

)
(5)

The influence of the two components can be adjusted by
the weighting factors λ and β. Efi is simply the energy
equivalent of the conditional probability computed in the
first stage. The key idea behind the above formulation of
ENi is that it is very likely that two adjacent cells belong
to the same type of terrain, but if they do not, i.e. yi 6= yj ,
their appearance must also differ greatly, with this difference
expressed by the squared difference (xi−xj)2 of the feature
vectors. The time required for calculating this difference
depends on the length of the feature vectors. Since the
energy terms have to be computed many times for different
label configurations during the simulated annealing, this
computational cost is a crucial factor. On the other hand, it
is also questionable whether this vector difference reflects
the differences in appearance adequately. We present an
alternative definition of the neighborhood–dependent energy
term ENi in the following section.

B. Neighborhood Energy
We set two requirements for the new energy term ÊNi

.
First, the differences in appearance are not to be described
by the difference of two feature vectors, but also by prob-
abilities. And second, the distinction should not simply be
made between neighbors of the same terrain type and those
of different terrain types. Instead, the actual types should be
considered, since different types are adjacent to each other
with a different probability.

y i

y j

x j

p (y j∣x j)

p (y j∣y i)
p (y j)

Fig. 2. Both the feature vector xj and the label yi of the adjacent grid
cell have an influence on the probability of the label yj .

We meet these requirements by defining the neighborhood
energy ÊNi

as the energy equivalent of the average proba-
bility that a neighboring cell is of its assigned type yj , given
the observed features xj of that cell and the label yi of the
centered cell (see Fig. 2), with a weighting factor β:

ÊNi
= −β|Ni|−1

∑
j∈Ni

log(p(yj |xj , yi)) (6)

Using Bayes’ theorem and the observation that xj and yi
are conditionally independent, it follows that:

p(yj |xj , yi) =
p(xj |yj)p(yj |yi)

p(xj)

=
p(yj |xj)p(yj |yi)

p(yj)
(7)

The probabilities p(yj |yi) and p(yj) can be set as required
or be learned from training data, by simply counting occur-
rences. On our campus, for example, asphalt and grass are
often adjacent to each other, while asphalt and gravel are not.
As Fig. 3 illustrates, having a bad inital classification based
on Random forests, using the energy term ENi of Eq. 5 can
make things even worse, whereas the energy term ÊNi

of
Eq. 6 improves the result significantly.

(a) Camera image of two adjacent
areas of different terrain

(b) Result after classifying each
grid cell individually

(c) Context–sensitive classifica-
tion went wrong

(d) Good classification result us-
ing ÊNi

(see Eq. 6)

Fig. 3. The classification of the terrain in the camera image (a) can
give poor results when the grid cells are classified only individually (b).
Since most cells were incorrectly classified as gravel, the results get even
worse when considering spatial context (c). However, when integrating the
observation that asphalt and gravel areas are rarely adjacent in the specific
environment in which the robot operates, the classification result gets very
satisfactory (d). (Gray: asphalt, blue: cobblestones, green: grass, yellow:
gravel, red: obstacles)

The histogram in Fig. 3(d) shows the probability distri-
bution of the four terrain classes for the red–bordered cell.
This is an example that illustrates that a cell that would
be wrongly labeled as gravel when only considering the
measured features, is now correctly assigned to the class
grass by also considering the spatial context of that cell,
and the characteristics of the specific environment.

The energy term defined in Eq. 6 thus has some advan-
tages. It is independent of the actual feature descriptor used,
and is instead probabilistically motivated. As we will see in
Sec. VI, it is also much faster to compute without a loss of
quality.

IV. TEMPORAL CLASSIFICATION
Now that we have classified the terrain in front of the robot

at each time step, taking into account spatial dependencies,
we want to update a local terrain map with these classifica-
tion results as the robot moves. We call these maps local,
as we use only odometry to estimate the robot’s position
and we do not use techniques like scan matching and loop
closure detection to reduce or eliminate the inevitable drift
in odometry. So our maps are only locally consistent, but
this is quite sufficient for many applications.

A. Projection of Grid Cells Onto the Terrain Map

Each cell of the terrain map contains, like the grid cells, the
probabilities of the terrain classes. Thus, updating the terrain
map with the current classification result means updating the
terrain probabilities of the relevant map cells. Therefore, the
grid G is projected onto the map M (see Fig. 4). Note the
differentiation between the terrain grid G in front of the robot
and the terrain map M relative to which the robot moves.

Fig. 4. Projection of grid G (red lines) onto map M (black lines). Ai
j

outlines the sectional area between grid cell Gj and map cell Mi.

To compute the probabilities for map cell Mi that cor-
respond to the current measurement, the probabilities of all
grid cells Gj that overlap with Mi need to be considered.
The influence of each grid cell Gj is proportional to the
sectional area Ai

j of Mi and Gj . So for all terrain classes
y the probability p(YM

i = y) that map cell i has label y is
calculated as:

p(YM
i = y) = η

∑
j

Ai
j

Ai
p(Y G

j = y) (8)

η =

∑
y

∑
j

Ai
j

Ai
p(Y G

j = y)

−1 (9)

Here Ai is the area of the map cell Mi, which is usually
constant throughout the map. To compute the sectional area
Ai

j efficiently we use the Sutherland–Hodgman algorithm
[SH74], originally invented for fast polygon clipping in the
field of Computer graphics, which computes the intersection
points (a1, b1), (a2, b2), . . . , (an, bn). The actual surface area
Ai

j can then be calculated as follows [Bey84]:

Ai
j =

1

2

n∑
k=1

(akbk+1 − ak+1bk) (10)

B. Temporal Updating of Terrain Probabilities

We just showed how to associate the probabilities of the
grid cells with the cells of the map. The values in a map
cell represent the terrain probabilities given all previous
measurements x1:t−1. To update the map with the current
measurement xt as the robot moves, we use the same
formula as in [WKK+13] where they map two terrain classes,
vegetation and non–vegetation, and which was originally
used for Occupancy grid maps [Mor89]:

p(yi|x1:t) ∝(
1 +

1− p(yi|xt)

p(yi|xt)

1− p(yi|x1:t−1)

p(yi|x1:t−1)

p(yi)

1− p(yi)

)−1 (11)

Since we not only have two classes, such as occupied and
unoccupied, or vegetation and non–vegetation, we have to
normalize the probabilities by dividing by

∑
i p(yi|x1:t).

C. Recomputation of Terrain Probabilities

The temporal updating of the map is therefore solely based
on probabilities, which means in particular that the actual
label configuration y is not considered. On the other hand,
only labels and no probabilities are changed in the second
stage of the spatial classification described in Sec. III. In
order to take into account the result of the inference method,
namely the optimal configuration y∗ (see Eq. 1), we need
to incorporate this configuration in the terrain probabilities
of the grid cells. The idea now is similar to that for the
definition of the neighborhood energy in Eq. 6, namely to
involve the neighborhood of a cell for computing the terrain
probability (see Fig. 5).

y i

y j

x i

p (y i∣x i)

p (y i∣y j)
p (y i)

Fig. 5. The updated terrain probabilities p(yi|xi, {yj : j ∈ Ni}) stored
in the map not only depend on the features xi, but also on the labels
{yj : j ∈ Ni} of the neighboring cells.

Using analogous considerations as in the derivation of Eq.
7, and considering the whole neighborhood Ni, it follows
that:

p(yi|xi, {yj : j ∈ Ni}) = p(yi|xi)
∏
j∈Ni

p(yi|yj)
p(yi)

(12)

The recomputation of the terrain probabilities makes in
fact a big difference in the final classification results as can be
seen in Fig. 6(d). Another possibility would be to model the
whole map as a CRF, but this would no longer be computable
in real time.

D. Elevation Mapping

In addition to the probabilities of the terrain classes
each cell of our map also stores a height value h and the
corresponding variance σ2

h. We use a Kalman–filter based
approach for elevation mapping as described in [KD07]
where the height of a cell is estimated given all previous
height observations.

After detecting the ground–plane in the point cloud of
the 3D LIDAR and transforming the cloud so that the
ground plane equals the xy plane with the z-axis pointing
upwards, the current height observation of a cell is simply
the maximal z-value zmax of the scan points belonging
to that cell. The estimated variance σ2

z of this observed
height is computed by the plane–detection module and is
updated at each time step. With zmax and σ2

z we can now
update h and σ2

h by applying a Kalman filter. Since the laser
scanner is tilted it can measure very different heights for the
same cell when driving towards vertical obstacles like walls.
To account for this, no Kalman update is performed when
|h − zmax| > σh, but h is set to max{h, zmax} instead.
With this exception rule the estimated height h can grow by
leaps and bounds, but not shrink in the same manner. The
latter is, however, desirable in case of dynamic obstacles or
incorrectly measured observations. We change the rule in
[KD07] thus slightly and update yet again if the observed
height z is below a given threshold, that is, almost zero.

V. LOCALIZATION

With the spatio–temporal classification method described
in Sec. III and IV the robot is now able to build locally
consistent maps of the environment, containing terrain and
obstacles. Detecting and classifying obstacles and terrain by
itself is an important ability of a mobile outdoor robot for
planning safe and efficient driving maneuvers. Moreover, as
we will show now, such maps can also be used for robot
localization. Our goal here is not a precise localization of a
robot working in a small area, but a semantic localization
when traversing long distances. We use a particle filter for
localization, since this method has proven to be very effective
for our purposes.

A. Particle Filter

The particle filter, also known as Monte Carlo localizer
[DFBT99], estimates the pose of the robot, that is, both the
position and the orientation. Here, each particle is a candidate
for the actual pose. In our case the motion prediction for
the particles is based solely on the odometry. Measurements
are used to set importance weights for the particles, with
these weights being proportional to the resampling prob-
ability. These two steps, movement and measurement, let
the particles converge to the true pose of the robot. In
our case the measurements are, on the one hand, the grid
cells with assigned terrain labels, and on the other side, the
height values of the obstacles. We will now show how to
compute importance weights wt, wh ∈ [0, 1] from terrain
and height measurements, respectively. Since often several

thousand particles are used, the calculation of these weights
must be very fast.

Let It be the set of indices of those grid cells to which
a terrain label was assigned, with that label being denoted
as yj for j ∈ It. Let further be i(j) the corresponding map
cell index obtained by projecting the grid cell center onto
the map. Then, the measurement weight wt ∈ [0, 1] for the
terrain labels is defined as:

wt = |It|−1
∑
j∈It

pi(j)(yj) (13)

We call a cell occupied if its height value h exceeds a
threshold t. As a measure of whether the observation is
consistent with the map, we define for every grid cell with
index j ∈ Ih, where Ih is the set of indices of those grid
cells that are occupied:

Hj =

{
1 if hi(j) > t

0 else
(14)

We then set the weight wh ∈ [0, 1] as follows:

wh = |Ih|−1
∑
j∈Ih

Hj (15)

The final importance weight w = κwt + (1 − κ)wh of a
particle is a combination of wt and wh, with κ ∈ [0, 1]. The
pose of the robot is then estimated using the weighted mean
of all particles within a certain radius of the particle with the
maximum weight.

VI. EXPERIMENTS AND RESULTS

In our experiments the terrain types asphalt, cobblestones,
grass, and gravel were considered. The LIDAR is mounted
on the robot at a height of approximately 50 cm and at
an angle of about 25◦ to the horizontal, with the camera
mounted on top of it. The grid and the map resolution
are both set to 20 cm. We only classify grid cells with at
least ten laser measurement points in it, or with at least
200 pixels and a minimum side length of ten pixels for
the corresponding image patches. These limitations lead to
a lower detection range, the LIDAR can detect terrain in
a range of about 1.5 m in front of the robot, whereas
the camera has a detection range of about 3 m; but the
classification provides better results, which pays off in the
end in temporal classification. In order to compare the terrain
classification results a ground–truth data set was created.
This data set consists of 200 terrain grids, which were labeled
by hand. The classification rates were determined using a
10–fold cross–validation and are shown in Tab. I.

Classifying each grid cell individually using Random
forests only yields a classification rate of 82.0%. In our
experiments we use Random forests with 100 trees each.
Considering spatial dependencies in addition brings a signif-
icant better rate of 96.8%. For our dataset we get the same
results, on average, regardless of whether we are using the
old or the new energy term. However, in some environments
as we have seen in Sec. III-B, using the new energy term
ÊNi

along with the additional information about the terrain

TABLE I
RESULTS OF TERRAIN CLASSIFICATION

Classification method Classification
rate in %

Cell–wise classification 82.0
CRF with ENi

(Eq. 5) 96.8
CRF with ÊNi

(Eq. 6) 96.8
Temp. classification w/o recomp. ≈92.2
Temp. classification w/ recomp. (Eq. 12) ≈98.4

Classification rates using 10–fold cross–validation for the cell–wise classi-
fication, the spatial classification with the old and new energy terms ENi

and ÊNi
, respectively, and the temporal classification without and with the

recomputation of the terrain probabilities.

can improve results significantly. Moreover, the computation
is also much faster as shown in Tab. II.

For the evaluation of the temporal classification five terrain
maps like the one shown in Fig. 6(c) were labeled by hand for
having ground truth. Since the ground–truth data generated
for such large maps is less precise than for the individual
terrain grids, the classification rates are only approximate
values, but with a tendency towards underestimation. Only
using temporal classification, that is, without considering
spatial dependencies, a classification rate of about 92.2%
is achieved. This is a better result then classifying cells
individually, but it is worse than the spatial classification
results. And finally, using spatio–temporal classification with
recomputed probabilities as described in Sec. IV-C yields an
almost perfect classification with over 98.4%. An example of
what a difference the recomputation of terrain probabilities
makes can be seen in Fig. 6(d). Here, the information of the
left map cannot be used by the robot to drive along the grass
border.

TABLE II
AVERAGE RUNTIMES OF THE MAIN PARTS OF THE ALGORITHM

Average time Std. dev.
[ms] [ms]

LIDAR–feature extraction 0.4 0.1
Image–feature extraction 9.5 0.4
Cell–wise classification 11.2 1.5
Simulated annealing with ENi

(Eq. 5) 8.9 6.7
Simulated annealing with ÊNi

(Eq. 6) 1.7 1.0
Spatial classification 22.8 3.0
Temporal classification 1.0 0.2
Elevation mapping 0.1 0.4
Spatio–temporal classification 23.9 3.6
Particle filter w/ 2000 particles 29.9 0.4

Tab. II shows the average runtimes of the main parts
of the classification method (using a CPU with 3.20 GHz
and, in contrast to [LKZ13], compiler optimization). The
spatial classification consists of the LIDAR– and image–
feature extraction, the initial cell–wise classification, and
the simulated annealing used for finding the optimal label
configuration considering spatial dependencies. In simulated
annealing the new energy term ÊNi is used because of its

efficient computation. Together with temporal updating of the
terrain map, that is, updating terrain probabilities and height
values, we get an average runtime for the spatio–temporal
classification of 23.9 ms, which corresponds to about 41.8
Hz. This shows that our classification method is real–time
capable.

Finally, to show that these terrain and elevation maps can
also be used for robot localization, we recorded five log
files of our robot driving along the test track seen in Fig.
6(a), with an approximate length of 120 m. Since we are not
interested in a precise but a semantic localization, we define
a successful localization as one where the robot can localize
itself from the beginning (at spot 1©) to the end (at spot

3©) of the track, and where it knows at any time in which
exact terrain segment of the track it is located; otherwise,
the whole localization test is regarded as not successful.
For this purpose, from each of the log files a map was
built, while localization was tested with the other four. The
whole procedure was repeated five times for a total of 80
localization tests. Using a particle filter with 2000 particles
and κ = 0.5, of these 80 tests 66 were successful, which is
82.5%. The localization uncertainty grows as the robot drives
over open field (see Fig. 6(c)), but decreases abruptly as a
different terrain type or a wall is seen.

VII. CONCLUSIONS AND FUTURE WORK

We presented a method for building local terrain and
elevation maps with spatio–temporal terrain classification.
The surrounding terrain of a driving robot could be classified
with a classification rate of 98.4% using four terrain classes.
We exploit the fact that terrain occurs in contiguous areas
and therefore has a high spatial and temporal coherence.
Considering this dependencies in a probabilistic manner
provides very high classification rates. The presented method
is hereby not limited to only terrain classification, but can
be used for all grid–based classification problems. We also
showed how the computation time of the spatial classifica-
tion can be reduced, and how its results can be used for
temporal classification by updating the terrain probabilities
accordingly and by integrating the terrain grids into the map
efficiently. The whole classification and mapping process
runs at 41.8 Hz and is thus real–time capable. The basis
of the classification is the model of the terrain generated
by the Random forests in a supervised fashion. As also
previously shown in [LKBZ12] and [LKZ13], these models
can cope with terrain that looks very different from the
training data in terms of lighting, texture, or even leaves
on the ground. In order to make the method even more
robust for all kinds of environments, we think about a semi–
supervised learning method, which constantly updates the
model as new terrain is seen. Finally, we also showed that the
local terrain maps can be used for semantic robot localization
using a particle filter, where the robot localizes itself based
on terrain and obstacles. Ongoing work deals with object
recognition, both using 3D scans and camera images. This
also provides valuable information for localization and can
be easily integrated into our existing framework.

(a) Aerial view of the test track (only used for illustrative
purposes). On the right side, the route leads through a covered
passage.

(b) The robot building a map as it drives past spot 2©

(c) The final terrain and elevation map. At spot 4© the particles of the particle filter are seen as
red dots.

(d) Left: Mapping with-
out recomputation of ter-
rain probabilities, right:
with recomputation as de-
scribed in Sec. IV-C

Fig. 6. An aerial view of the test track with manually drawn route is shown in (a). (b) shows a 3D view of the mapping process with visible laser
measurement points. The final terrain and elevation map can be seen in (c), and (d) shows what a difference the consideration of spatial dependencies can
make. (Gray: asphalt, blue: cobblestones, green: grass, yellow: gravel, red:obstacles)

REFERENCES

[Bey84] William H. Beyer. C.R.C. Standard Mathematical Tables. CRC
Press, 1984.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[DFBT99] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian
Thrun. Monte carlo localization for mobile robots. In
IEEE International Conference on Robotics and Automation
(ICRA99), May 1999.

[GG84] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images. IEEE
Trans. Pattern Anal. Mach. Intell., 6(6):721–741, November
1984.

[HAW+13] Marcel Häselich, Marc Arends, Nicolai Wojke, Frank
Neuhaus, and Dietrich Paulus. Probabilistic terrain classifica-
tion in unstructured environments. Robotics and Autonomous
Systems, 61(10):1051 – 1059, 2013.

[KD07] Alexander Kleiner and Christian Dornhege. Real-time local-
ization and elevation mapping within urban search and rescue
scenarios. Journal of Field Robotics, 24(8-9):723–745, 2007.

[KZ10] Philippe Komma and Andreas Zell. Markov random field-
based clustering of vibration data. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2010),
pages 1902–1908, Taipei, Taiwan, October 2010.

[LKBZ12] Stefan Laible, Yasir Niaz Khan, Karsten Bohlmann, and An-
dreas Zell. 3d lidar- and camera-based terrain classification
under different lighting conditions. In Autonomous Mobile
Systems 2012, Informatik aktuell, pages 21–29. Springer Berlin
Heidelberg, 2012.

[LKZ13] Stefan Laible, Yasir Niaz Khan, and Andreas Zell. Terrain
classification with conditional random fields on fused 3d lidar
and camera data. In European Conference on Mobile Robots
(ECMR 2013), Barcelona, Catalonia, Spain, September 2013.

[Mor89] Hans Moravec. Certainty grids for sensor fusion in mobile
robots. Sensor Devices and Systems for Robotics, pages 243–
276, 1989.

[NH08] Andreas Nüchter and Joachim Hertzberg. Towards semantic
maps for mobile robots. Robotics and Autonomous Systems,
56(11):915–926, 2008.

[NL11] Sebastian Nowozin and Christoph H. Lampert. Structured
Learning and Prediction in Computer Vision. Foundations
and Trends in Computer Graphics and Vision. Now Publishers,
2011.

[SH74] Ivan E. Sutherland and Gary W. Hodgman. Reentrant polygon
clipping. Commun. ACM, 17(1):32–42, January 1974.

[TT10] Xiaoyang Tan and Bill Triggs. Enhanced local texture feature
sets for face recognition under difficult lighting conditions.
Trans. Img. Proc., 19(6):1635–1650, June 2010.

[WB10] Ulrich Weiss and Peter Biber. Semantic place classification and
mapping for autonomous agricultural robots. In Proceeding
of IROS Workshop on Semantic Mapping and Autonomous,
Knowledge Acquisition, 2010.

[WKK+13] Kai M. Wurm, Henrik Kretzschmar, Rainer Kümmerle, Cyrill
Stachniss, and Wolfram Burgard. Identifying vegetation from
laser data in structured outdoor environments. Robotics and
Autonomous Systems, 2013.

[WSFB05] Denis F. Wolf, Gaurav S. Sukhatme, Dieter Fox, and Wolfram
Burgard. Autonomous terrain mapping and classification
using hidden markov models. In International Conference on
Robotics and Automation, pages 2038–2043, Apr 2005.

