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Abstract. 3D Sensors are used for many different applications, e.g.
scene reconstruction, object detection and mobile robots, etc. Several
studies on usability and accuracy have been done for different sensors.
However, all these studies have used different settings for the different
sensors. For this reason we compare five 3D sensors, including the struc-
tured light sensors Microsoft Kinect and ASUS Xtion Pro Live and the
time of flight sensors Fotonic E70P, IFM O3D200 and Nippon Signal
FX6, using the same settings. The sensor noise, absolute error and point
detection rates are compared for different depth values, environmental
illumination and different surfaces. Also simple models of the noise de-
pending on the measured depth are proposed. It is found that the struc-
tured light sensors are very accurate for close ranges. The time of flight
sensors have more noise, but the noise does not increase as strongly with
the measured distance. Further, it is found that these sensors can be
used for outdoor applications.

1 Introduction

To enable mobile robots to move autonomously in a variety of unknown sce-
narios, 3D information about the environment is needed. In contrast to stereo
vision, 3D sensors directly provide 3D data without extra computational efforts.
The evaluated sensors use two different ways to measure the distances by emit-
ting light: structured light or time of flight (ToF). Therefore, the sensors have
different characteristics. Several studies of accuracy and usability of 3D sensors
for mobile robots have been published [1–13]. The studies show that 3D sen-
sors can be used for autonomous robot applications. However, it is difficult to
compare the results, because most studies use individual settings i.e. different
test objects and different evaluations. In this paper we compare the sensors Mi-
crosoft Kinect, ASUS Xtion Pro Live, Fotonic E70P, IFM O3D200 and Nippon
Signal FX6, (the predecessor of the FX8). We propose repeatable methods to
get empirical results about precision, accuracy and reliability of the sensor mea-
surements under different conditions, like distance, lighting conditions, object
size and surface. With these results it is easy to select an appropriate sensor
for a certain application. For probabilistic approaches in robotics it is crucial to
know the uncertainty of single measurements. Therefore we present a distance
depending model of the expected standard deviation for each sensor.
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2 Related Work

3D Sensors are used for architectural and archaeological surveys, object model-
ing, 3D scene reconstruction [12], plant phenotyping [5] and mobile robotics. The
sensor Nippon Signal FX6 has been used for autonomous person following [9]
and for terrain classification [4]. A study of a continuous wave (CW) ToF sensor
for mobile robot navigation is done by [7]. They explain the theory behind the
sensors, and propose a model for error estimation and calibration. A study of the
accuracy depending on the integration time of a CW ToF sensor is done by [14].
Chaibrando et al. [12] model the systematic error of the Swiss Ranger SR-4000
with a sinusoidal function. They also found the influence on the incidence angle
of the object to be negligible. Different methods for calibration are presented in
[1, 7, 12, 14]. An investigation of influences on environment conditions like surface
color, distances, speed and sunlight on sensors like the IFM O3D200 are done
in [5]. Einramhof et al. compare two CW ToF sensors to an 2D laser scanner
and a stereo vision system [15]. Structured light sensors and CW ToF sensors
are well explained in the book of Dal Mutto et al. [2]. Quadratic noise models
for structured light sensors have been proposed by [6, 16, 17]. There it is further
mentioned, that the Microsoft Kinect cannot cope with direct sunlight and has
serious problems with glass and black materials. But no detailed study is given.
A standard camera calibration for the infrared camera is done by [6]. The error
of fitting spheres is studied in [3, 8, 17]. It is found that the radius of the fitted
sphere decreases with the distance to the sensor, but the incidence angle has no
or little effect on the residues. The above mentioned publications mostly focus
on benchmarking one sensor or one type of sensor.

A comparison of CW ToF sensors and the Microsoft Kinect to the ground
truth of modeled data and a moving 2D laser scanner is done by Stoy et al. [10].
In their approach a 3D normal distribution transformation is used to estimate a
true positive rate of each point cloud in a complex scene. Wong et al. [11] compare
several 3D sensors, including a pan tilt laser scanner, structured light sensors,
CW ToF sensors and stereo vision sensors. They use a static lab scene with a
spatial checkerboard at the distance of 2 m to measure accuracy, precision and
point density. However, we are not aware of a comparison of different 3D sensor
types, i.e. 3D laser scanner, structured light and CW ToF, with a systematically
variation of the conditions.

3 Description of the Sensors

The Nippon Signal FX6 sensor works similar to a 2D laser scanner, but instead
of scanning a line, it scans an area. With one laser source and one photo diode,
the time of flight of a laser pulse is measured. The manufacturer declares the
maximum error as 80 mm (3σ) at 5 m [13].

In contrast to the above mentioned principle, continuous wave (CW) ToF
sensors, like the Swiss Ranger, IFM O3D200 or Fotonic E70P, use a strong
light source that illuminates the whole scene with intensity modulated light. In
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a photo chip with demodulation pixels [7] the intensity, amplitude and phase
shift of the reflected light are evaluated by a demodulation circuit in every pixel.
Through the phase shift the distance of the reflected light can be determined. The
repeatability of these sensors listed in the datasheets [18, 19] are 6σ = ±8 mm
for the IFM O3D200 and 1σ = ±20 mm for the Fotonic E70P at a distance of
5 m and a target reflectivity of 90%.

Sensors like the Microsoft Kinect and ASUS Xtion Pro Live project patterns
of structured infrared light on the scene. Using an infrared camera the displace-
ment of the pattern compared to a reference image can be determined. Through
triangulation the depth of a pattern can be calculated using displacement [2].
As described in [17], through this technique the resolution and the random error
σ(d) deteriorate quadratically with the measured depth d.

σ(d) = a+ bd+ cd2 (1)

The parameters a, b and c are found by measuring points on planes in different
distances. Khoshelham et al. [6] propose for a = b = 0 and c = 2.58 mm/m2.

To compare the sensors in the state as they are delivered from the man-
ufacturer no further calibration of the sensors is done in the following work.

4 Experiments and Results

The most important sources of errors for all sensors are the distance to the
measured object as well as measured intensity and environmental illumination.
Because the intensity is correlated with the background light, distance of the
measured object, and surface of the object we try to change each parameter
individually to evaluate its influence on the sensor.

In mobile robotics, for mapping, localization and obstacle classification, the
accuracy is important, while for obstacle avoidance the accuracy of the percep-
tion plays a minor role but availability and reliability of the measured values
are important. To evaluate the accuracy, we measure the normally distributed
noise and the absolute error of the object size. For availability of the values we
consider the rate of detected points. To have the same settings for every sensor
and to be able to calculate the mean of the object position, the measurements
are done in static scenes.

4.1 Model of the Normal Distributed Noise

Measuring physical properties is not possible without introducing uncertainty.
Therefore many algorithms use probabilistic approaches to consider this uncer-
tainty. If the uncertainty of the sensor readings is normally distributed, it is
crucial to know the variance σ2 of each measured value [20]. Since the noise of
structured light sensors grows with the distance of the measured object [16], we
experimentally estimated the standard deviation σ of the sensor readings using
objects at different distances and generated a model from these samples.
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The theoretical noise of structured light sensors can be modeled by

σd =
d2

bf
σp, (2)

where σd is the standard deviation of the sensor reading, σp is the standard devi-
ation of the measured disparity, b is the baseline and f is the focal length of the
sensor [6]. However, this model neither respects any sensor internal calibrations
nor the particular algorithms used by the sensors. Therefore, we used the more
general model (1), which is based on (2), but covers our experimental results and
was also proposed in [17]. Similar to the approach in [16] and [6], we assumed
the sensor noise to be normally distributed with zero mean. We also assumed all
errors to be independent of each other and that the sensor readings do not have
a systematic error: d′ = d+N

(
0, σ2(d)

)
, where d is the true distance and d′ is

the measured distance.
To sample the standard deviation, we placed the sensor at distances from

d0 = 0.6 m to dn = 9 m in front of a planar surface. The distances are measured
using a measuring tape with a resolution of 1 mm. We used a whiteboard with a
dimension of 3 m× 1 m and placed it in the center of the sensor’s viewing area.
Depending on the opening angle of the sensor, the planar surface did not fill the
whole viewing range. Therefore, we manually marked the planar surface in the
depth image. For each distance, we used 30 frames for the evaluation.

To estimate the plane position, we used the method of least squares to esti-
mate the model of the plane based on the point cloud of one frame. The displace-
ment of one point’s depth value to this plane is then the error e of the reading.
In the next step, we evaluated the statistics of the errors with respect to their
distance d from the sensor. Therefore, the error values were, depending on d,
sorted into bins of 20 cm width, if d is smaller than 2.5 m. For d greater than
2.5 m, the bin width was set to 100 cm. For each bin we calculated the standard
deviation σd of the error:

σd =

√√√√ 1

n

n∑
i=0

e2i . (3)

To estimate a continuous model over the whole distance space, we fitted a second
order polynomial function over the sampled standard deviations, by minimizing
the following error:

E(a, b, c) =

dn∑
d=d0

(
(a+ bd+ cd2)− σd

σd
· wd

)2

, (4)

where wd is the width of a bin. The estimated standard deviations and the
estimated models are shown in Fig. 1. For better display, the sensor names are
abbreviated in the figures as follows: FX6, IFM, Fotonic, Kinect, Xtion. The
coefficients of the estimated models can be found in table 1.

We found, that the sensors based on the time of flight approach had an error
behavior which could not be covered by a polynomial function for near distances.
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Table 1. Models of the Normal Distributed Noise.

Model σ(d) = a+ bd+ cd2

Sensor a
[
10−3m

]
b
[
10−3

]
c
[
10−3

m

]
IFM O3D200 9.181 −3.533 3.503
Fotonic E70P 1.284 0.871 1.280
Microsoft Kinect 7.152 −6.750 3.296
ASUS Xtion Pro Live −3.396 5.392 1.134

This is caused by oversaturated pixels of the sensor if the measured object is
in a near distance. Since the distance for which the pixels start oversaturating
highly depends on the surface, we did not consider according standard deviation
samples for the model.
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Fig. 1. Sampled standard deviations and modeled standard deviations of the different
sensors.

Unlike the variance of all other sensors, the uncertainty of the Nippon Signal
FX6 can not be modeled by a second order polynomial function of the distance.
The main reason for this observation might be the measurement principle of
the FX6 or sensor internal calibration methods. Therefore we do not provide a
variance model of the Nippon Signal FX6. Also the range of the IFM O3D200
sensor was very limited. Therefore we estimated the variances of this sensor up
to a distance of 3.5 m.
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4.2 Object Detection

To evaluate the performance of object detection, we used a cylinder as sample
object. For a cylinder it does not matter if it is seen from different sides and
it is easy to fit in a model. In contrast to a cluttered scene, we know exactly
the size and position of the object. This way the measurements can be repeated
when new sensors are available. Compared to a sphere it is easier to change the
surface by wrapping thin materials around a cylinder. Furthermore, cylindrical
shapes e.g. legs, human body parts, wheels, buckets, stands, etc. are more com-
mon in real mobile robot environments. For the standard setup a cylindrical,
orange plastic tube from a hardware store with radius r = 100 mm and height of
485 mm was placed in a dark room (2 Lux), one meter away from the sensor. The
sensor was placed approximately 300 mm above the ground. From this setup the
parameters were changed individually. At each setting 30 frames were recorded.
The acquired point cloud is roughly cut in a way that only the cylinder and the
ground plane are seen. The ground plane is detected by a RANSAC algorithm
and then removed. From the leftover points the model parameters for a cylinder
and the inliers were calculated using RANSAC algorithm with normals, as im-
plemented in the Point Cloud Library [21]. The algorithm was set up with 1000
iterations and a threshold of 200 mm. Finally the cylinder model was optimized
by minimizing the error over all inliers. With the model parameters and the
detected inliers, different evaluations were done to find three indicators.

The normally distributed noise is calculated from the standard deviation
of the displacement using equation (3). To calculate the displacement ei, the
distance of a point to the cylinder axis of the model is calculated and the radius
from the model is subtracted. Then the absolute error Er of the found radius rf
to the true radius rt is calculated as Er = rt−rf . Normally distributed noise and
radius error indicate how accurate and reliable the measurements are. The rate
of detected points R is an indicator for the availability of sensor measurements
under certain conditions:

R =
Nd

Nt(α,A, s)
. (5)

To be able to compare the number of detected points Nd for different sensors
and distances, this number was normalized by the number of theoretically visible
points Nt. The number of theoretically visible points can be estimated using the
angular resolution α of the sensor, which we get from the field of view and
the number of pixels (table 2), and the visible area A of the object at known
distances s. For each sensor the three indicators in the standard setup are listed
on the right of table 2.

Change of Distance To evaluate the above described indicators for different
depth values, the cylinder was placed at different distances in front of the sensor.
The results for the three indicators for different distances are shown in Fig. 2.
The top plot shows the normally distributed noise σ as described above. The plot
in the middle shows the mean radius error Er over 30 frames, the bars indicate
the standard deviation of the error. At the bottom, the mean rate R of detected
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Table 2. Given Sensor Properties and Experimental Evaluated Indicators

Field of View [deg] Number of Pixels Evaluated Indicators
h x v h x v σ [mm] Er [mm] R [%]

Nippon Signal FX6 50 x 60 59 x 29 10.8 51.1 14
IFM O3D200 40 x 30 48 x 64 11.3 29.8 67
Fotonic E70P 70 x 53 160 x 120 5.0 19.6 87
Microsoft Kinect 57 x 43 640 x 480 1.9 0.9 84
ASUS Xtion Pro Live 58 x 45 640 x 480 1.7 -2.5 88

points and its standard deviation is plotted. It can be seen, that the normally
distributed noise of the Nippon Signal FX6 increases between 0.5 m and 1.3 m
but then stays almost constant around 10 mm. At a distance greater than 2.5 m
the cylinder in the 30 frames was not detected reliably enough to calculate the
indicators.

For the IFM O3D200 the normally distributed noise also increases at close
ranges but then decreases after 1.5 m. The radius error of this sensor increases
linearly with the distance at a rate of 4% and low standard deviation, while the
point rate drops. For the Fotonic E70P the normally distributed noise increases
linearly with a rate of approximately 3.4 mm/m. The radius error of the Fotonic
is lower than the one of the IFM O3D200 but still increases linearly with a rate
of 1.1%. The rate of the detected points of the Fotonic E70P is low for distances
less than 0.7 m but then reaches up to almost 90% and decreases linearly. The
lower rate at a closer distance might be caused by oversaturation, when too much
light of the modulated light source is reflected from the object to the sensor.

The sensors Microsoft Kinect and ASUS Xtion Pro Live are very similar.
They have a low normally distributed noise, which increases linearly with a rate
of 3.99 mm/m and 3.88 mm/m. The mean radius error toggles around zero, while
the rate of detected points decreases from 90% at 80 cm to 30% at 3.5 m. Also
some saturation effects are indicated by a lower rate at ranges closer than 0.7 m.

The ToF sensors have a higher normally distributed noise and a higher radius
error than the structured light sensors. To investigate if the decreased accuracy is
caused by a lower number of points due to the lower resolution of the ToF sensors
(as seen in table 2) two smaller cylinders with a radius of 55 mm and 80 mm are
placed one meter apart from the sensor. It is found that the errors decrease with
the radius. This means a small number of points does not necessarily increase the
noise or the radius error. However, the higher radius error could be connected
with the point rate.

Environmental Illumination Another big issue is environmental illumina-
tion. Therefore the cylinder was illuminated by different light sources with dif-
ferent illuminance (Fig. 3). The illuminance was measured with an external Lux
meter placed next to the 3D sensor, pointing in the same direction. For lower
illuminance, indirect daylight from a window and regular office illumination from
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Fig. 2. The three indicators normally distributed noise (top), absolute radius error
(middle) and rate of detected points (bottom) depending on the distance

a fluorescent lamp was used. For high illuminance a 575 W metal-halide lamp
turned on in two steps was used as well as indirect and direct sunlight outdoors
on a sunny day. In Fig. 3 the outdoor measurements are indicated through cir-
cles. It can be seen that for the Nippon Signal FX6 and the IFM O3D200 the
lighting conditions have little influence on the noise, it increases a bit (15%) for
bright sunlight. This light has a strong effect on the Fotonic E70P, where the
noise increases over 100%. For the structured light sensors the noise stays almost
constant until they do not deliver any measurements for illuminance higher than
4,000 Lux. It is hard to find a correlation between the radius error and the illu-
minance, except for the Fotonic E70P at 15,000 Lux. This is interesting, because
the radius error gets a negative value of −9 mm and a high standard deviation
of 15 mm. At this illumination the rate of detected points is also very low. That
means that for directly illuminated scenes the Fotonic E70P has a similar noise
and point rate as the other two ToF sensors but with a lower radius error. As
it can be seen in the lower diagram of Fig. 3, indoor light does not affect the
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point rate of the structured light sensors, but outdoors with indirect sunlight
the point rate can drop between 20% and 40%.

Fig. 3. The three indicators normally distributed noise (top), absolute radius error
(middle) and rate of detected points (bottom) depending on environmental illumina-
tion.

Surface To evaluate the influence of the object surface the cylinder was covered
with different materials. The materials, sorted from low to high reflectivity, are:
black cotton cloth, dark jeans, brown package paper, white cotton cloth, white
paper, the shiny orange plastic surface of the tube and shiny aluminum foil.
As it can be seen in the top diagram of Fig. 4 the sensors Nippon Signal FX6
and IFM O3D200 have a high noise with dark surfaces and with shiny surfaces.
The lowest noise occurs with white paper where the noise of the Nippon Signal
FX6 is only 1.5 mm higher than the noise of the Fotonic E70P. Which is mostly
constant around 4 mm. It only increases with shiny surfaces, up to 9 mm for
aluminum foil. For the structured light sensors the noise stays almost constant
within less than 3 mm for all surfaces. The radius error also increases for shiny
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surfaces. For non shiny surfaces the radius error of the structured light sensors
and the Fotonic E70P is negative. This means the found radius is greater than
the true radius. The most negative value of −18 mm appears for the Fotonic
E70P with dark jeans. For the IFM O3D200 the most points are detected with
the orange tube at one meter. The point rate of the Fotonic E70P is close to
100% for non shiny surfaces. For shiny objects the rate drops down to 10% with
aluminum. Despite the lower rate of 40% at aluminum, the surface has no or
very little influence on the noise and absolute error of structured light sensors.
In the tested setups, aluminum is the worst surface for all sensors causing higher
noise and radius error, as well as reducing the rate of detected points. Still a few
points are detected at a distance of one meter and the structured light sensors
are most robust in this case.
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Fig. 4. The three indicators normally distributed noise (top), absolute radius error
(middle) and rate of detected points (bottom) depending on the object surface. The
surfaces are sorted from low reflectivity on the left to high reflectivity on the right.
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5 Conclusion

The paper presents an empirical comparison of several 3D sensors. For all sen-
sors the same setups are used. This reveals the strength and weaknesses of the
sensors under different conditions and enables an appropriate choice of a sensor
for a certain application. For all sensors the normally distributed noise, the ab-
solute radius error and the rate of detected points is evaluated under different
conditions. The tested conditions are distance of the sensor to the object, en-
vironmental illumination and the surface of the object. It is found that for the
most sensors, distance has the biggest influence. Further is found, that the ab-
solute error of the radius increases with the distance for ToF Sensors. However,
for the Nippon Signal FX6 the distance has not so much influence on noise and
absolute radius error, even the environmental illumination has nearly no effect.
This shows that this sensor is robust and reliable for most conditions. Still very
shiny surfaces like aluminum have a huge influence on the error of ToF sensors
where structured light sensors are more robust. The structured light sensors
Microsoft Kinect and ASUS Xtion Pro Live are very accurate for close ranges
up to 3.5 m, where the increase of noise can be assumed to be linear. But for
far ranges the noise increases quadratic, as expected from the sensors’ working
principle. Through this the ToF sensors have a lower noise at far distances. This
is also found by [10]. Another drawback of the structured light sensors is that
they do not deliver any measurements for direct sunlight on an object causing
≥ 15000Lux and the point rate drops already down between 20% and 40% with
indirect sunlight at 2000Lux. This makes these sensors not reliable for outdoor
use. Having only investigated static scenes, we plan to compare the sensors for
dynamic scenes.
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