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Abstract— Detecting and tracking humans are key problems
for human-robot interaction. In this paper we present an
algorithm for mobile robots to detect and track people reliably,
even when humans go through different illumination conditions,
often change in a wide variety of poses, and are frequently
occluded. We have improved the performance of face and
upper body detection to quickly find people in each frame.
This combination enhances the efficiency of human detection in
dealing with partial occlusions and changes in human poses. To
cope with the higher challenges of complex changes of human
poses and occlusions, we at the same time combine a fast
compressive tracker with a Kalman filter to track the detected
humans. Experimental results on a challenging database show
that our method achieves high performance and can run in real
time on mobile robots.

I. INTRODUCTION

Detecting and tracking multiple humans on mobile robot
platforms still remains a challenging task. State-of-the-art
algorithms have not yet solved challenging problems of hu-
man detection and tracking. First, the mobile robot has often
to track the moving humans in a large variability of pose
and appearance. Second, the mobile robot frequently has to
cope with challenges of full occlusions or self-occlusions.
Moreover, due to frequent movement, the mobile robot has
often to change the field of view, causing fast changes of the
human appearance in each frame. Thus it is not easy for the
mobile robot to reliably track people over long periods of
time. Eventually, the mobile robot has to interact with many
people in real time, resulting in a limitation of computational
costs of the tracking system.

Taking inspiration from several state-of-the-art approaches
[11, [2], [3], we propose a new algorithm of detecting
and tracking multiple people on mobile robots. The first
important component is a set of person detectors, helping
mobile robots in each frame to reliably find the location of
humans and update the human trackers. This set includes the
face detector and upper body detector. The face detector is
helpful and strongly reliable when the human face is visible
and the upper body detector has significant advantages when
dealing with the occlusion of the lower body or the face. Due
to complicated changes in human pose and appearance, our
detectors can not find the position of a person in every frame.
Hence, to keep tracking people efficiently, we use a tracking
method, based on the combination of a fast compressive
tracker and a Kalman filter. This combination enhances the
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Fig. 1.

Example tracking result of our algorithm.

efficiency of our system to adapt to human changes of pose,
scales and appearance as well as to partial or full occlusion.
In addition, we utilize the depth information from RGB-D
images to reduce computational costs and false positives,
resulting in a real time performance of human detection and
tracking on the mobile robot.

The remaining parts of this paper are organized as follows:
in Section II we mention the state-of-the-art algorithms of
face recognition which motivated our research. In Section
III, our method is presented in detail. In Section IV the ex-
perimental results obtained from databases are described. We
conclude this paper in Section V, mentioning our intentions
with regard to our future work.

II. RELATED WORK

Although there are many approaches to tracking multi-
ple humans by mobile robots, such as sample-based joint
probabilistic data association filters [4], and Kalman filters
[5], most of them have not been successful to adapt to
human changes of pose, scales and appearance as well
as to partial or full occlusions. State-of-the-art algorithms
of human detection [6], [7], make a great contribution to
tracking-by-detection approaches [8], [9], thus significantly
improving the tracking system of mobile robots. Choi et al.
[1] proposed a method of detecting and tracking people by
mobile robots, based on the algorithm of Reversible Jump
Markov Chain Monte Carlo Particle Filtering (RI-MCMC).
Due to detecting humans based on relatively reliabale ob-
servation cues of humans in each frame, this method was
shown to be robust to complicated changes of human poses
and partial occlusions. These observation cues include a
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Fig. 2. Flow chart of our approach.

human detector using a Histogram of Orientations [7], a face
detector using the Viola-Jones method of objection detection
[6], and the detectors of skin, motion and depth-based shape.
However, the computational costs of the detectors and the
tracking algorithm of Reversible Jump Markov Chain Monte
Carlo Particle Filtering are very expensive. For human-robot
interaction, the computational complexity of this algorithm
has not met the requirement of real time performance.

Other promising approaches for human tracking are online
learning methods to handle the complex appearance variation
of human poses. Some examples of these algorithms include
incremental learning [10], online multiple instance learning
[11] and visual tracking using L1 minimization [12]. To
deal with the appearance change of the object and its
partial occlusion, Zhang et al. [3] proposed the method of
compressive tracking. This method uses compressed features,
extracted from the tracked object, to online update a simple
Bayes classifier. As a result, this classifier is able to quickly
adapt to the object changes of pose, rotation, deformation,
and self-occlusion. In addition, this method is suitable for
real time applications due to its low computational costs.
Since the mobile robot and humans often move and change
their directions and orientations, an effective improvement
of the compressive tracker can be a good solution to adapt
to all these changes and reliably track humans.

III. APPROACH

Figure 2 illustrates an overview of the proposed person
detection and tracking framework for mobile robots. Human
detection is applied in each new frame. The detection module
is comprised of a face detector and an upper body detector.
In order to meet the requirement of real time mobile robot
performance, one detector is used in the current frame and
the other one is used in the next frame, and so on.

In the stage of face detection, the technique of depth-based
skin color segmentation is provided to speed up the search of
the face and reduce the false positive rate. Since the search
areas in each frame are reduced significantly, the Viola-Jones
method of face detection [6] is implemented to detect humans
quickly and reliably.

In the stage of upper body detection, an upper body detec-
tor is trained on the CALVIN dataset [2]. Since searching for
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Fig. 3. Flowchart of segmentation steps for upper body and face detection.

humans in the whole image is a time consuming operation,
we decrease search areas in each image and estimate human
scales necessary to search in those areas. For this reason,
the depth information is utilized to segment potential areas
where humans probably appear, and skip non-human areas
in each frame. As a result, the trained upper body detector
can in real time quickly find the humans in images.

Our tracking method is based on a fast compressive tracker
and a Kalman filter. The new position of our tracker is taken
either from the output of the fast compressive tracker or from
the predicted position of the Kalman filter and it depends
on whether large occlusion regions are found in the current
frame or not. If a complete occlusion is found, the Kalman
filter plays an important role to predict the next position of
the temporally occluded human. If no significant occlusion
is recognized, the fast compressive tracker provides a more
accurately predicted position than the Kalman filter. In our
research, the depth information has proven to be useful for
detecting occlusions.

A. Face detection

As mentioned in our previous work [13], if the image
of the frontal face is visible we apply our face detector
to quickly and reliably detect people. As shown in Figure
3, the information of geometric constraints, navigation and
the technique of depth-based skin color segmentation are
provided to make our face detector much faster and more
accurate. Our face detection involves three basic steps: First,
in order to reduce computational costs we use a set of
sampling points spanning the whole image to collect the in-
formation of color, texture and depth. Second, the constraints
of geometry and navigation information are used to remove
the background. Finally, the techniques of skin detection
and depth-based skin colour segmentation are applied around
filtered sampling points to find the potential regions in which
the face detector is able to localize the face position. In
addition, we can speed up face detection by limiting the
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Fig. 4. Tracking steps of a fast compressive tracker.

range of facial scales, which is mentioned in [13] and thus
estimate the sizes of the humans that are possible present in
these regions.

B. Upper body detection

Similar to the above step of face detection, the informa-
tion of geometric constraints, navigation and the technique
of depth-based segmentation are helpful for removing the
background and reducing search areas, as shown in Figure
3. As a result, we have a small set of search areas where the
upper body detector is applied for to detect humans, based
on Histograms of Oriented Gradients [7]. Basically, similar
to what we do in face detection, we estimate the sizes of
humans in these search areas in order to significantly reduce
computational costs.

The upper body detector is trained by using a linear SVM.
Particularly, search windows are divided into cells which are
used to compute a Histogram of Oriented Gradients. The
upper body detector classifies the search window running
through every position and scale to find the human location.

C. Fast compressive tracking

If large changes in the appearance of humans by illumi-
nation, different poses or by partial occlusion exist, the data
association temporally fails. When those failures happen,
the fast compressive tracker plays a very important role,
following the human and adapting to those complex changes
as well as to partial occlusion.

To keep tracking the human, the fast tracker uses a search
window, which is updated by each corresponding detection,
as shown in Figure 4. First, we collect a set of image samples
near the current human location in the search window. Then
we estimate the distance between the human, appearing
in the search window, and the camera by sampling the
depth information in this search window. Similar to the
segmentation step presented in our previous work [13], we
use a set of sampling points spanning the whole search
window to collect the information on depth. The technique of
depth-based segmentation is applied around sampling points
to find the human, which is the biggest segmented region
in the search window. The distance between the human and
the camera is estimated based on the average depth value
of the sampling points belonging to the segmented region.
In order to filter out samples, the above technique of depth-
based segmentation is used for all samples to segment objects
in each of these samples. Because a distance estimation
between the human and the camera exists, a sample can be
filtered out if no segmented object is in the range closer than
0.5 meters from the tracking human location.

After reducing a large amount of negative samples, the
remaining samples are kept for classification. Each filtered
sample z € R**" is convolved with multiple-scale filters

hi1,..., hw,n computed as follows
_JL 1< < 1<y<j
hij(2,y) = {0, otherwise M

where ¢ and j are the sizes of a filtered image.
These images are concatenated as a feature vectors z =
(71, ...xm)T € R™ where m = (wh)?.

Since this feature vector x is very high dimensional, we
use a random projection to transform = € R™ into a lower
dimensional space v € R"

v= Rz 2

where R € R™™ ™ is a random projection matrix. The
elements of this random projection matrix are defined as

1, with probability 2—15
ri; =+/s$x < 0, withprobability1 — % (3)
—1,  with probability 2—15
where s = m/4.
By using a naive Bayes classifier for each feature vector
v € R™, we can find the new position of the tracking human
in the current frame, corresponding to the maximal response
of this classifier. All elements in v are modeled with a Bayes
classifier as follows:

p(vily=1)p

_ IT% p(y=1) p(vily=1)
H(v)_wg(nl T (0s ly=0)p(y= o) Zlog (p(v ly= 0)) @

where p(y = 1) = p(y = 0), and y € {0,1} is a binary
variable representing the sample label.

After using the classifier H in (4) to find the tracking loca-
tion, the classifier H is updated to adapt to human changes of
rotation, occlusion and scale as well as to adapt to complex
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Fig. 5. Update steps of a fast compressive tracker.

changes of background and illumination. For updating, we
collect a set of possitive samples near the current center of
the search window and a set of negative samples far away
from this position, as shown in Figure 5. Similar to the
step of classification, low dimensional features v € R™ are
extracted from these two sets of samples following the steps
of depth-based filtering, multi-scale filter banks, and random
projection. We use these features to update the classifier
parameters. Since the conditional distributions p(v; | y = 1)
and p(v; | y = 0) are Gaussian distributions with

p(vi |y =1) ~ N(ui,8;), p(vi|y=0)~N(u,8) 6

we have to update the parameters g}, 6}, 19 and 69 in the
classifier H. These parameters are updated online as follows

i = Ak + (1= M)t
(6)
o < VA2 + (1 =N (01)2 + A0 = N (uf — ph)?
where ot \/ Zk oly—1 (vi(k) — p1)? and ul o=

LS, Oly=1 vl(k), and X is a learning parameter.

D. Kalman filter for occlusion handling

When a new fast compressive tracker is initiated, a Kalman
filter is also set up as an alternative tracker in case that the

human is completely occluded by another person or large
objects. That means that the output of the Kalman filter is
used for tracking when the human is significantly occluded
and the fast compressive tracker can not provide a reliable
prediction.

A Kalman filter consists of measurement update equations
and time update equations. When the compressive tracker
is still tracking the human efficiently without recognized
occlusion, the measurement update equations correct the
Kalman filter by using the significantly reliable output from
the fast compressive tracker. The time update equations are
used to predict the current position of the human, and this
prediction only replaces the one from the compressive tracker
when an occlusion is found. The Kalman filter state vector
includes five parameters which are x-y coordinates of the
bounding box of the human region, the velocity in the x and
y directions, and the scale of the human region. The state-
space representation of the Kalman filter is given as

T
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where 2, §; are the coordinates, and :L:’t, gj’t are the
velocities, §; is the scale of the human region. A; is defined
as the time interval and W; is the measurement noise. In
order to update the Kalman filter, the output of the Naive
Bayes classifier in the fast compressive tracker is given as
the measurement input. The Kalman filter uses this data to
effectively correct the system. The measurement correction
equation is represented as follow

Tt Tt T4
Yt Ut may 1 0 A 0 Of |9
2| = |o| + K| [mye| =0 1 0 Ay 0f |27 )
vl |y, ms.| [0 0 0 0 1|y,
St St St

where K is the Kalman factor, mz;, my; and ms; are the
measurement variables computed from the position and size
of the human assessed by the compressive tracker.

The prediction of the Kalman filter is required whenever
the human location can not be found by the compressive
tracker due to occlusion by other persons or objects. When
the human is significantly occluded, the fast compressive
tracker can filter out all samples since no segmented object
closer than 0.5 meters to the tracking human location can be
found. For this situation, the Kalman filter is considered in
the short time interval as the alternative solution to continue
to track the occluded human. After ¢, frames, if a new
detection is matched to the tracker, the fast compressive
tracker is recovered at the new detected position. Otherwise,
if we can not find any detection matching the Kalman filter
during t; frames, the target is automatically terminated.

E. Hungarian algorithm for matching

When we find a new detection of a human we use the
Hungarian algorithm to search the tracker corresponding to



this detection. If it is not matching any available tracker,
a new tracker is initiated on the new detected position. If
the Hungarian algorithm finds the corresponding tracker, this
tracker is updated by the new detected position. On the
other hand, if no detections are found for the same tracker
during a period of termination, this tracker is automatically
terminated.

The Hungarian algorithm is based on the cost values
corresponding to the overlap ratio between valid targets and
new detections in each frame. In order to compute the cost
for each pair of a target and a detection, we based the formula
on the overlap ratio between them, as follows

fe)
2% 55

RF = 2" %k
D T
Si +5k

(2

©))

where s is the overlap area, s” is the area of the i*"
detection and sg is the area of the k' target. The cost is
computed as following

otherwise (10)

0
k __
o= {—log(Rf)

where R,,;, is a threshold to evaluate whether the distance
between the detection and the target is too far or not.
By minimizing the cost function as mentioned in [13], an
optimal solution is found to correctly match targets and
detections.

IV. EXPERIMENTAL SETUP

A. Dataset

We used the first Michigan dataset (static dataset) [1],
collected in indoor environments with a fixed Microsoft
Kinect camera mounted approximately 2 meters high, to test
the accuracy and the processing time of our method and
its competitors. This database consists of 17 log files each
spanning 2 to 3 minutes. For evaluating the accuracy of our
method under the conditions of a running mobile robot, the
second dataset (the on-board dataset) was used with a Mi-
crosoft Kinect camera mounted on-board a robot (PR2). This
dataset consists of 18 log files recorded in offices, corridors
and the cafeteria. Our goal was to evaluate the performance
of our method in indoor environments in which both the
humans and the robot move under different illumination
conditions and in which the human either changes in a variety
of poses or is occluded. Figure 8 shows some sample images
extracted from our datasets.

We evaluated the accuracy and the processing time of
our method and its closest competitor, the Reversible Jump
Markov Chain Monte Carlo Particle Filtering (RJ-MCMC)
[1]. In all our experiments, humans are hand-annotated
by bounding boxes around upper bodies. The experiments
implemented on both Michigan datasets were carried out
using C++ on a PC with 2.5 GHz Intel Core i5 CPU.
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Fig. 6. Results of human tracking on the first Kinect dataset. Our algorithm,
with an improvement of 8.0 %, significantly outperforms the RJ-MCMC.

B. Results

We use the log-average miss rate (LAMR), mentioned in
[14], to compare the performances, shown by the curve of
miss-rate versus false-positive-per-image (FPPI). The log-
average miss rate is computed by averaging miss rate at nine
FPPI rates evenly spaced in the range of 1072 to 10°. If a
curve ends before reaching a given FPPI rate, the minimum
miss rate is applied.

On the first dataset, we show the comparison of two
algorithms in Figure 6. Our algorithm, an improvement of
8.0 %, significantly outperforms the RJ-MCMC. On the
second dataset, the improvement of our algorithm is 8.55
%, as indicated in Figure 7. These results prove that the
combination of the fast compressive tracker and Kalman
filter is more efficient than the RJ-MCMC, even when we
do not use the expensive human detectors, such as the full
body human detector, the depth based shape detector, the
motion detector and skin color detector. Although both the
face detector and the upper body detector can detect humans
reliably, they can not detect the human in certain complicated
poses in many frames. In these cases, the fast compressive
tracker gives a high contribution to the performance of our
algorithm due to its robustness to different poses of humans
as well as in partial occlusion. In addition, the Kalman
filter plays a significant role as the alternative to the fast
compressive tracker to deal with a full occlusion.

Besides the accuracy of an algorithm, the processing time
is also a very important factor in mobile robot performance.
Hence we also compare our algorithm with the RJ-MCMC
to point out which one meets the requirement of real time
processing. The speeds of our algorithm and the RJ-MCMC
on the Michigan datasets are shown on Table I. Although RJ-
MCMC uses a GPU implementation, it is still much slower
than our algorithm. This is explained by some improvements
in reducing the search space of human detections as well
as decreasing the number of search samples in compressive
trackers. In particular, in each frame the fast compressive
tracker just has to classify 40 samples on average instead
of more than 7000 samples as the original one. This signif-
icantly improves the speed of the fast compressive tracker.



Fig. 8.

OURS (51.46%)
RJ-MCMC (60.01%) -~
0.8 7
e 06 T
o I
E 04 .
0.2
0
107 10°

false positives per image

Fig. 7. Results of human tracking on the second Kinect dataset. Our
algorithm, with the improvement of 8.5 %, is better than the RI-MCMC.

TABLE I
COMPARISON OF SPEED ON THE MICHIGAN DATABASE

\ \ First dataset \ Second dataset \ Platform
Ours 23.8 fps 22.2 fps CPU
RJ-MCMC 4 fps 4 fps GPU

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a system for multiple
person detection and tracking by a mobile robot. The results
indicate that the fusion of detections from the face detector
and upper body detector provides reliable observation cues
for tracking multiple humans. Furthermore, the combination
of the fast compressive tracker and Kalman filter is robust
to motion, pose variation and occlusion. In the future, we
are trying to develop an algorithm of human reidentification
based on the information of color and depth in order to
combine it with the current tracking system. This combi-

Examples of tracking results. The mobile robot can detect humans in different poses and in severe occlusions.

nation will enable the mobile robot to track people more
reliably and be able to recover lost tracks caused by long
term full occlusions or temporary disappearance of humans
in the robot’s field of view.
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