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Abstract— In this paper, we propose a fast algorithm for
computing stereo correspondences and correcting the mis-
matches. The correspondences are computed using stereo block
matching and refined with a depth-aware method. We compute
16 disparities at the same time using SSE instructions. We
evaluated our method on the Middlebury benchmark and
obtained promosing results for practical realtime applications.
The use of SSE instructions allows us to reduce the time
needed to process the Tsukuba stereo pair to 8 milliseconds
(125 fps) on a Core i5 CPU with 2x3.3 GHz. Our disparity
refinement method has corrected 40% of the wrong matches
with an additional computational time of 5.2% (0.41ms). The
algorithm has been used to build 3D occupancy grid maps from
stereo images. We used the datasets provided by the EuRoC
Robotic Challenge. The reconstruction was accurate enough to
perform realtime safe navigation.

I. INTRODUCTION
In binocular stereo, we are given two images captured

by a pair of stereo cameras, left camera and right camera,
such that one right camera is shifted (along the x-axis)
with respect to the other camera with given distance B
called baseline. The task is to find for each point of the
reference image its corresponding pixel on the target image.
In the standard stereo correspondence form, the search for
correspondence of a pixel p(x, y) on the reference image is
restricted to a 1D search along the horizontal line having
the same y-coordinate on the target image. A commonly
made assumption in stereo is to consider the intensity being
consistent. In other words, it is assumed that the intensity of
a pixel on the reference image is equal to the intensity of
its corresponding pixel on the target image. Despite being a
classical problem of early vision, stereo matching is a diffi-
cult problem because of half-occlusions, textureless regions,
repetitive patterns, sensor noise and depth discontinuities.
Half-occlusions occur when a point is seen only by one
camera. Asking to determine the correspondence for half-
occluded points is an ill-structured problem. The best thing
to do in this case is to clearly identity them. On textureless
regions, constraints made upon intensity consistency are not
discriminative. There is a need to carefully use information
from other parts of the image to enhance the results on
these textureless regions. The existence of repetitive pat-
terns could introduce ambiguities. Developing algorithms
that try to handle all of the afore-mentioned challenges
does lead to impractically slow algorithms. For applications
like environment mapping using stereo cameras mounted on
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Fig. 1. Reconstruction using our stereo algorithm. The green points show
the trajectory of the quadrocopter. The color of the voxels encodes the height
z-axis (Best viewed in color).

quadrocopters, there is a need for fast algorithms. We seek
building maps on-board in real-time on these flying robots.
We propose in Sec. III of this work a fast dense stereo
matching algorithm. We show in Sec. IV that our stereo
algorithm allows to build maps which are as accurate as the
ones we get by the use of some (much slower) sophisticated
stereo algorithms.

II. RELATED WORK

Most stereo algorithms are constructed from a pipeline of
the following four blocks [1]: cost function, cost aggregation,
disparity optimization and disparity refinement. Stereo algo-
rithms can be divided into two categories: local stereo algo-
rithms and global stereo algorithms [1]. While in local stereo
only a local neighborhood of the pixels is used for matching,
in global stereo pixels of the whole image contribute to
the computation of the correspondence. Although exhaustive
work has been done by the computer vision community
to propose methods for the first three building blocks, the
disparity refinement has been less investigated. This makes
most of these algorithms perform poorly in half-occlusions
and textureless regions. The very sophisticated refinement
methods such as image in-painting [2] and segmentation-
driven methods [3] are generally slow. Recent works [4]
have shown that using a good refinement method could make
the simple local matching algorithms as accurate as some
sophisticated global optimization-based stereo algorithms.
Refinement methods are of particular importance for local
matching algorithms because the estimation of the disparity
for each pixel individually leads to the violation of the



smoothness constraint of the objects.
The global optimization based stereo algorithms [5] [6]

[7] model the correspondence problem as a Markov random
field (MRF) problem. They design an energy function to
represent the global cost associated with the selection of a
disparity for all of the pixels in the image. The proposed
methods differ in the way the energy function is designed.
Nevertheless, the energy function for all these algorithms
contains a data term and a smoothness term. The data term
measures how the selected disparity fits the data. This is
done by warping the reference image using as displacement
vector map, the candidate disparity map. In the ideal case
this will exactly generate an image similar to the target
image. In practice we optimize the error between them.
The smoothness term insures the coherence of the disparity
map. The classical least-squares methods for solving such
energy minimization problems are impractical due to the data
dimension. Approximating the minimal energy by the use
of graph cuts [7] makes global stereo algorithms efficient
enough and suitable for some off-line applications.

Local stereo algorithms [4] [8] [9] as opposed to global
stereo can be implemented very efficiently. Moreover, they
are suitable for parallel computing either using software
instructions such as SSE or by using special hardware such
as GPUs and FPGAs. It is not always true that local stereo
matching algorithms are faster than global matching algo-
rithms. Trying to improve the accuracy of correlation based
local stereo, the researchers have proposed different types of
cost functions [10] and aggregation methods [11]. The basic
block matching algorithm assumes the disparities to be the
same within the correlation window [9]. This assumption is
violated at the depth discontinuities. Correlation windows of
smaller sizes could reduce the errors. Unfortunately, making
the window sizes smaller can also significantly decrease the
signal to noise ratio. This yields unstable disparity values.
[12] proposed the variables correlation windows in which the
disparity is not computed for the pixel at the center of the
windows as usual but in predefined positions. The disparity
associated to the windows in which the lowest cost is found is
then selected.[13] combined correlation windows of different
sizes. Adapting the size and the shape of the correlation
windows individually [8] [9] for each pixel is the way to
get the best results, but this could slow down the algorithm
extremely [9]. The shape of the correlation windows can
be adapted by weighting the contribution of the different
pixels to the final aggregated cost. The more the disparity
of a neighboring pixel is similar to the disparity of central
pixel, the larger the weight should be. Color similarity is a
common way for estimating the weights [8]. With regard to
the design of cost functions, several methods [10] have been
proposed by the computer vision community. These methods
include the sum of absolute differences SAD, the sum of
squared differences SSD and the normalized cross correlation
NCC. Variants of these methods exist like zero-mean sum of
absolute differences ZSAD. Compared to NCC and SSD,
SAD does require only simple +/- arithmetic operations. As
a result it can be computed very efficiently. In our algorithm

we have chosen SAD not only because it is efficient but also
because it is more robust against noise than the SSD.

There is a third category of stereo algorithms lying be-
tween global stereo and local stereo. These hybrid stereo
algorithms are known as semi-global matching algorithms
SGM. Hirschmller [14] was the first to propose this kind of
algorithms. [15] has proposed a variant of SGM. Semi-global
matching algorithms are fast but, they are still considerably
slower than the efficient block matching algorithms.

III. THE STEREO ALGORITHM

A. Initial disparities computation

We compute the correspondences using the sum of ab-
solute differences (SAD) cost function. We aggregate the
SAD over a local window of fixed size. In order to keep
the algorithm faster we have chosen neither to use multiple
correlation windows nor to adapt the window shape and size.
To make the system robust against noise we compute the
SAD not on the intensities directly but on their derivatives
along the x-axis. We use the Sobel operator to compute these
derivatives. This way, we build a disparity space image DSI
[16]. The DSI stores for each pixel of the reference image
the similarity costs on the target image for the different
disparities. The input pixels are coded as 8 bit characters
and the computation of the costs for the different disparities
can be done independently. This allows us to process 16
disparities at the same time using Streaming SIMD Exten-
sions (SSE). The processors supporting SSE are provided
with internal registers of 128 bits size. We load the registers
with 16 pixels (128 bits) to be processed. Then we unpack
the 128 bits register into two 128 bits registers such that
each pixel is coded with 16 bits and the 8 high-order bits set
to zero. We then send a signal to the processor arithmetic
unit to perform the computation. Having the pixels coded
in 16 bits is required in order not to overrun the buffer
size. The accumulated sums of the absulte differences are
stored in 128 bits variables. The use of SSE instructions
makes the computation of the cost aggregation task very
efficient. Cost aggregation is the most time consuming task of
almost any correlation based local algorithm. Thus, making
it efficient makes the overall algorithm fast. One of the
traditional techniques to speed up the computation for block
matching stereo is to use integral images. This makes the
computation of the cost independent of the window size
and very usefull when we have to deal with large windows.
However, a relatively small window of size 5x5 has best fit
our needs and we estimate that we do not need to use the
integral images. The aggregated cost at the pixel p(x, y) is
given by Eq. 1.

Costsad(d) =∑
i,j∈W

|OI1(x+ i, y + j)− OI2(x+ i− d, y + j)| (1)

Where W is the correlation window, OI1(x+ i, y + j) is
the gradient at the position (x+ i, y+ j) on the first image.
We perform the simple winner-takes-all strategy to select the



most likely disparity d. The selected disparity d∗ is given by
the Eq. 2.

d∗ = argm
d
in(Costsad(d)) (2)

B. Mismatches detection and correction

We compute two disparity maps, one with the left image
as reference image and the second disparity map with the
right image as reference image. We then proceed with
a left-right consistency check for removing the suspected
mismatches. We compare the disparity of a pixel in one
disparity map with its re-projection in the other disparity
map. If the difference is larger than a given threshold then
the pixel is set to be an outlier. This occurs particularly in
regions where the pixel is occluded in the second view and
in textureless areas. The result is a disparity map, which
generally contains a substantial amount of missing disparities
(holes). We illustrate the case of half-occlusions in Fig. 2.
The scene is composed of three boxes. The orange box lies
on the front and occludes some parts of the green box for
the left-side camera. These occluded parts are shown in green
on the line. The orange box does also occlude some parts
of the blue box for the right-side camera. These parts are
shown in blue on the line. We use a simple and efficient
method for filling the holes. It is obvious that the required
action is to fill the holes with the background disparities. The
background disparities correspond to the small disparities. In
our method we scan the horizontal lines of the disparity map
independently, and for each line we first identify the holes.
Then we compute for each hole the averaged disparity on
a local neighborhood on valid pixels on the left and on the
right of the hole. We compare these averaged disparities and
decide accordingly which disparities to use to fill the hole.
We fit a line on the hole border with smallest disparity and
we compute the missing values by extrapolation. The line
fitting process is illustrated in the Fig. 2.

The mismatches correction method described above does
not require any time consuming preprocessing such as
segmentation and plane fitting as proposed by [7]. Our
method differs from method [17] used for Depth-Image
Based Rendering (DIBR) and 3D Television in the way that
we fit horizontal lines to extrapolate the missing values and
they used a constant disparity value for the missing pixels.
This method has been abandoned by the DIBR community
because it can have visual artifacts for which the human
eye is very sensitive. They preferably opt for more advanced
and accordingly complex and time consuming refinement
methods such as image in-painting. We believe that for
mobile robots the use of our fast hole filling is reasonably
good. Our method differs from the common method based
on interpolation in the sense that interpolation methods blur
the edges at the depth discontinuities. Despite being simple,
intuitive and very efficient it has strongly improved the
overall accuracy on the Middlebury benchmark. However,
we should notice that this hole filling method can fail when
there are wide regions of invalid disparities. In that case,
the propagated valid disparities might differ from the correct

Fig. 2. Occlusion happens at depth discontinuities. The orange box is
in the front and occludes some parts of the other boxes. For filling the
invalid disparities we perform line fitting process based on valid neighboring
disparities and propagate the disparities to the occluded regions.

values. This is why we fill the hole only when the width of
the gap is smaller than a threshold. In our experiments we
set this threshold to be equal to 1/8 of the image width.

C. Edge preserving filter

Generally, objects of the scene are smooth over given
areas and can have depth discontinuities near edges. The
disparities that we get from the previous steps might contain
some unrealistic disparity changes within smooth parts of
the object. A common post-processing method to enhance the
disparity map is to filter the noise with a smoothing filter. We
filter the disparity map with the symmetric nearest neighbor
SSN non-linear filter, which makes the disparity map smooth
while it does not blur the disparity map at the discontinuities.
We found that SSN performs better than the median filter.

IV. 3D RECONSTRUCTION

Building a volumetric occupancy map of the environment
is a very important task for mobile robotics. It allows the
robot to be aware of its environment and helps the robot
to perform a wide range of tasks, such as safe navigation
by avoiding obstacles and exploration. Laser range finders
are the commonly used sensors for map building because
they are very accurate. Unfortunately, the use of laser range
finders has many drawbacks. Most laser scanners are too
heavy to be carried by Micro-Ariel Vehicles (MAV). They
are active sensors with a dedicated light source, requiring
additional power for lighting the scene. And due to the
mechanical scanning system used for moving the beam they
produce scans at lower frame rates than cameras. State
of the art laser scanners that attempt to reduce some of
these drawbacks are quite expensive. Alternative sensors
which do not have the afore-mentioned drawbacks are stereo
cameras and RGBD cameras. The Kinect-style RGBD cam-
eras provide good range estimates in indoor environments,
but they fail when the amount of infrared light is large
and thus are not suitable in sunlight. Stereo cameras are
becoming the sensor of choice to fulfill the afore-mentioned



requirements. Nevertheless, most sophisticated stereo algo-
rithms are computationally expensive. This has made the
simple block matching algorithms like the one we proposed
widely used algorithms in real applications. Even the Kinect
sensor computes the depth estimation using a block matching
algorithm implemented on FPGA. The rise of small single
board computers like the Intel NUC with SSE support and
low power consumption (15 Watt) makes the use of stereo
algorithm for computing the depth on-board flying robots a
reasonably good choice. In the following we describe how
we build a 3D map using our stereo algorithm. We have used
our stereo algorithm to build volumetric occupancy grid maps
from stereo pairs captured by a stereo system mounted on
a quadrocopter. We assume that the 6DoF camera poses are
known. We use the Robust Octomap which is an improved
version of the original Octomap [18]. The Robust Octomap
[19] has been designed to specially fit with stereo. The
Octomap based map building system models the environment
by dividing the volume into voxels organizing these voxels
in an Octree structure. The map is updated by integrating the
depth measurements (point clouds) in a probabilistic manner.
We have intentionally chosen the application of building
a map using Octomap because in such applications it is
tolerated to use less accurate depth measurements as long
as the end point is detected within the correct voxel. This
does not apply for the end points which are located near the
voxels boundaries. In this case, slight depth errors could lead
to errors in the map.

Unlike many stereo algorithms that do not fill the invalid
pixels, our algorithm produces dense environment maps by
integrating fewer measurements. Those algorithms need to
view the scene from other poses in order to get valid
disparities for the missing points. To insert measurements
from our stereo camera we need to generate point clouds
from the disparity maps computed by the stereo algorithm.
Since the ambiguity of stereo estimates grows quadratically
with respect to the depth, in [19] they proposed a map update
method which deals with this problem. We refer to [19] for
more details. In order to compute the disparity map from the
stereo images we first need to rectify the stereo images. The
intrinsic cameras parameters including the cameras matrices
and the lens distortion coefficients were estimated using the
Kalibr [20] calibration method. Kalibr uses special patterns
for calibration. These patterns allow for a more precise
estimation of the corner positions and this way provide a
more accurate estimation of the cameras parameters when
compared to other methods [21]. Based on these parameters
we compute the rectification transforms using the OpenCV
implementation of the method [22]. To rectify the stereo pairs
we remap the input images with the computed rectification
transforms. The rectification step transforms the real stereo
system to a virtual system in which the cameras are perfectly
aligned and have the same focal length. Note that we need
to compute the rectification maps only once and reuse them
to rectify all the other stereo pairs. The steps for building an
occupancy map are as follows:

• Rectify the stereo images to restrict the search for the
correspondences from 2D to 1D.

• Perform dense stereo matching using our algorithm
described in Sec. III for computing the disparity map.

• Generate point clouds by re-projecting the points of the
reference image to 3D.

• Insert the point clouds (with known 6DoF poses) into
the global map by probabilistically updating the voxels
lying between each 3D point of the point cloud and the
camera center.

The reconstruction is evaluated by computing the correla-
tion error of our results with respect to the ground truth. The
Matthews correlation coefficient MCC is used a measure for
this purpose.

V. RESULTS

We performed two sets of experiments. First, we tested
our dense stereo algorithm using the Middlebury benchmark.
Second, we evaluated the reconstruction results using the
stereo datasets and the online evaluation tool provided by
the EuRoC Challenge (http://www.euroc-project.eu/).

A. Evaluation of the dense stereo algorithm

We used a window size of 5×5 and set the error threshold
to 0.5 on the benchmark table. The average percent of bad
pixels on the four stereo pairs (Tsukuba, Venus, Teddy and
Cones) is 19.7%. Our algorithm is ranked better than the
global optimization based algorithms graph cut [23] and
Constant time belief propagation [6]. We get these good
results compared to GC and CSBP particularly because the
Cones stereo pair includes a substantial amount of occluded
pixels. This stereo pair includes large occlusions (See Fig.
3) which were recovered successfully by our refinement
method. Like the other algorithms we got the worst results
on the Teddy stereo pair.

We have made our experiments on an Intel Core i5 2×3.3
GHz computer with 4GB RAM. We used a correlation
window of size 5×5 pixels and a post-processing filter of
size 5x5. The run-times of the different steps are shown in
Table II. As one can expect when block matching is used, the
run-time grows linearly with respect to the input image sizes
and disparity ranges. Although our hole filling method does
require only about 5% of matching time, it has corrected
40% of the missing disparity values. Reducing this way the
average of the bad pixels from 32.70% to 19.70%. The final
step of our algorithm is the filtering of the disparity map
using an edge preserving filter. To achieve this task we used
a median filter with a window size of 5x5. Fig. 4 shows
the percentage of bad pixels before and after the refinement.
We used a median filter instead of our the symmetric nearest
neighbor (SSN) filter because our implementation of the SSN
was not optimized and made the overall stereo algorithm
slower. However, we found that

Although our algorithm is less accurate than the global
optimization based algorithm TSGO and GC+Occ, our al-
gorithm is much faster. While these iterative algorithms
perform the matching in several hundreds of milliseconds our



TABLE I
PERFORMANCE EVALUATION ON THE MIDDLEBURY DATASET

Algorithm Avg rank Percentage of bad pixels on all image regions
Tsukuba Venus Teddy Cones Average all images

TSGO [5] 33.4 10.0 7.8 16.4 10.2 11.2
AdaptingBP [24] 46.3 9.3 5.1 16.7 13.2 13.6

GC+Occ [25] 94.2 7.1 11.3 30.1 19.2 17.4
Our method 102.4 16.5 6.5 25.8 19.7 19.7

GC [23] 112.5 9.8 15.0 38.5 25.5 21.6
CSBP [6] 122.9 23.8 9.2 27.8 24.7 21.9

RINCensus [26] 123.8 29.5 8.5 24.5 22.5 20.0

Fig. 3. Cones dataset and its occlusion map.
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Fig. 4. Percentage of bad pixels before the refinement (grey) and after the
refinement (green).

TABLE II
RUNNING TIME IN MILLISECONDS

Dataset Match &
Consist
check

Hole filling Filtering Max disp Total time

Tsukuba 5.80 0.41 1.31 16 7.52
Venus 10.19 0.64 2.41 32 13.24
Teddy 15.50 0.76 1.86 64 18.12
Cones 14.98 1.27 2.12 64 18.37

Fig. 5. Our results on the Middlebury benchmark. The left column shows
the disparity maps before filling the holes. The second column shows
the results after filling the missing disparities. The last column shows the
disparity maps after filtering with the median filter.

algorithm performs the matching in less than 20 milliseconds
for any stereo pair of the Benchmark. The Fig. 6 shows the
comparison of the running times between our algorithm and
the global stereo algorithms GC and CSBP and the Semi-
global stereo algorithm ELAS [15]. The running times for
our algorithm, ELAS and CSBP were reported for an Intel
Core i5 with 2×3.3 GHz CPU. An OpenCL implementation
of the CSBP was used. The running time for GC is reported
for an Intel Pentium 4 with 2 GHz. Please notice that the
y-axis has a logarithmic scale.
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Fig. 6. Running time comparison. The y-axis has a logarithmic scale.

Fig. 7. Snapshots of the scene to be reconstructed

B. Evaluation of the 3D reconstruction

We used the stereo datasets provided by the EuRoC
challenge. These stereo datasets are captured using a quadro-
copter. EuRoC provides three stereo datasets of the same
scene with an increasing degree of difficulty. EuRoC pro-
vides the true 6DoF poses for all the stereo pairs. We used
the robot operating system (ROS) to make this experiment.
The accuracy of the reconstruction is evaluated using the
Matthews correlation coefficient MCC. We speed-up the
reconstruction by integrating new measurements only if the
difference between the current pose and the previous poses
has reached a given threshold. As expected, we got the best
accuracy (MCC=0.81) for the dataset 1. We have done the
reconstruction using the ELAS SGM algorithm [15] and
obtained maps which are comparable to the ones that we have
obtained with our algorithm. We believe that this is due to
the fact that our algorithm is accurate enough to find in most
cases the voxel which contains the end point of the ray. Fig.
7 shows some pictures of the scene to be reconstructed. We
visualize the reconstructed Octomap using ROS-Rviz. Fig.
8 shows some screen-shots of the final map reconstructed
using our stereo algorithm. The color encodes the height (z-
axis). The violet color corresponds to lowest altitude and the
red color corresponds to highest altitude.

(a)

(b)

Fig. 8. Reconstruction using our stereo algorithm. The green points on (b)
show the trajectory of the quadrocopter.

VI. CONCLUSION

We proposed a fast stereo algorithm which fits nicely for
the task of mapping using quadrocopters. The key advantage
of our algorithm is its efficiency. It is suitable to use it when
real-time stereo processing is required on a medium level
embeded PC on a MAV.
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