Conclusions from an Object-Delivery Robotic
Competition: SICK Robot Day 2014

Sebastian Buck, Richard Hanten, Goran Huskié¢, Gerald Rauscher,
Alina Kloss, Jan Leininger, Eugen Ruff, Felix Widmaier, Andreas Zell
Cognitive Systems
University of Tiibingen

Abstract—Contrary to controlled experiments in a laboratory,
robotics competitions pose a real challenge to an intelligent
autonomous system. To allow a good performance, robotic sys-
tems have to be very robust to unforeseen circumstances in a
highly constrained time frame. In this paper we present the
design, implementation and performance of the robotic system
we developed for participation in the SICK robot day 2014, with
which we achieved very good results, placing second, with the
same maximum score as the first. The task of this competition was
to alternately fetch and deliver objects in a simplified warehouse
scenario. Participating robots had to be able to carry out different
tasks, such as detecting filling and delivery stations, receiving and
analysing bar-code labelled objects as well as navigating in an
arena among three other robots.

I. INTRODUCTION

Participation in a competition poses multiple constraints on
the design and implementation of a robotic system. Contrary to
many other situations, deadlines cannot be extended and the
system has to perform autonomously on the first try. Every
part of the system has to perform at the same time and every
part has to collaborate with every other reliably. Competitions
are therefore a challenge that motivate a design that is simple
and efficient, yet robust to influences that cannot be controlled
or anticipated. Smaller robotics competitions are an exercise
in team work and act as benchmarks, just as well as larger
contests like RoboCup, the DARPA challenge and others [1].

The SICK Robot Day is a bi-annually hosted competition
by the SICK AG, Waldkirch, Germany, a well known producer
of sensor systems. In times past the objectives have varied no-
tably, from perception and interaction, as described by Scherer
et al. [2], Masselli et al. [3], Cigolini et al. [4] and Fejfar et
al. [5], to navigational tasks as depicted by Fredriksson et al.
[6]. Additional difficulty has always been caused by multiple
competing robots performing simultaneously in an arena that
is small enough to provoke robots encountering each other.

In this paper we describe our resulting system for the
participation in the SICK Robot Day 2014, in which four
robots were competing at a time to fetch and deliver objects
in a scenario resembling the tasks in an automated warehouse.
Besides a mechanism for collecting and delivering the objects,
participating robots had to be able to detect filling- and delivery
stations, navigate autonomously, and at the same time avoid
collisions with other robots. The goal was to deliver the most
objects, where each correctly delivered object was awarded
one point and each erroneous delivery one penalty point.

This paper is structured as follows. Section II states the
requirements posed by the rules of the competition. Section

IIT illustrates the design of the resulting system and presents
the different components. Section IV presents experimental
results. Section V summarizes the conclusions. In section VI
we discuss the results and the lessons we learned.

II. REQUIREMENTS

The task at SICK Robot Day 2014 resembled that of
a warehouse robot. There existed an approximately circular
arena with about 12m diameter in which four robots competed
at the same time. With a time limit of 10 minutes, each robot
had to alternately collect labelled objects at filling stations and
transport them to delivery stations based on the object label.

The octagonal collection area, where the robots had to
approach one of four filling stations, was located in the central
part of the arena. Once a robot had reached the designated
filling spot, it had to signal the human operator to provide an
object to be delivered. These objects were known to be wooden
cubes of side length 6cm, which were labelled on each side
with the designated delivery station using a bar code imprint.
On the outer boundary there were four delivery stations, one
for each possible object label. Whereas the filling stations
could be selected freely, every delivery station could only be
used to hand off one specific object type. Therefore robot-robot
interactions were inevitable and had to be accounted for.

Both filling and delivery stations comprised of a ring of
diameter 30cm at a height of around 50cm and a bull’s eye
target sign for precise positioning (see Fig.2). Delivery stations
were additionally marked with a large sign displaying one of
the digits printed onto the wooden cubes. The robots therefore
had to be able to detect both the bull’s eye and the number
signs. Once a robot had reached a station, it had to activate a
green signal lamp to indicate its intention to collect or deliver
an object. Afterwards the rules specified, that a human operator
would insert or remove a cube within at most 10 seconds.

To successfully participate at the competition, a robot
therefore had to fulfill the following requirements:

e Detection and localization of number signs displaying
the digits 1 to 4

e Detection and localization of bull’s eye target signs
e Receiving a cube and detecting its presence
e Reading the imprinted bar codes

e Localisation and navigation in a shared space with
three other robots

III. DESIGN AND IMPLEMENTATION

Here we present the final system design and implementa-
tion we used for participating in the SICK Robot Day 2014.

A. The platform

Fig.1 displays one of the two identical robotic systems we
have constructed based on hardware we used at RoboCup [7] a
few years back. These robots are based on an omnidirectional
base with three omnidirectional wheels. The original use case
demanded relatively large robots to be able to interact with soc-
cer balls. For this competition we lowered the center of gravity
as much as possible to allow faster movement speeds without
increased risk of toppling in case of emergency braking. For
processing we installed an Intel Core2Duo P8700 dual-core
processor with 2.53GHz clock speed and 2GB of RAM just
above the motors in an open space previously unused.

Fig. 1. Front view of one of our two robots with a hopper on top. Visible
sensors: Allied Vision Marlin (center), PointGrey Firefly (top, inside the
hopper), SICK LMS100 (bottom).

The platform was equipped with a hopper in the shape of
a pyramid with a triangular basis standing on its tip, which
we used to gather the cubes. Inside this hopper we mounted
a PointGrey Firefly, which was used for detecting the cubes
and reading their bar codes. Furthermore, we added a required
green signalling lamp to indicate to human operators that
the robot intends to receive or deliver a cube. We employed
two laser scanners for obstacle avoidance and localization, a
front facing SICK LMS100 and a rear facing SICK TiM551
which together allowed for 360° vision with only little blind
spots to the sides of the robots. Additionally we used a
front facing Allied Vision Marlin camera for sign and target
detection. Front and rear are just defined for discussion, since
the platforms are omnidirectional and therefore do not have a
constrained movement direction.

Our robots were running the Ubuntu 14.04 operating sys-
tem, on which we implemented all our software using ROS [8],

OpenCV [9] and a self developed framework for prototyping
and experimentation with cognitive systems called cs::APEX!.

B. Target detection

(a) Number sign and partly occluded
bull’s eye target

(b) Masked image

(c) Regions of interest (d) Resulting detection

Fig. 2. Bull’s eye detection is performed on regions of interest. These are
determined by first projecting the laser scan onto the image plane to mask
everything but the border [2(b)] and then extracting [2(c)] and analysing [2(d)]
dark patches with light backgrounds.

The primary part of localising filling and delivery stations
was the detection of bull’s eye patterns as seen in figure 2(a).
These patterns were placed directly below the wooden rings
through which the objects were thrown by the human operators
and had to be used to accurately stop below.

Since the height of the surrounding border of the arena
was known to be about 50cm, we first created a mask to
quickly dismiss large parts of the camera image by extract-
ing a band of 35cm around the expected height of target
signs. This was achieved by projecting each point p, =
(ri cos(ay), i sin(a;))” of the front laser scanner onto the
camera image using the camera calibration matrix A and the
static transform between camera and laser scanner frames 77,
to calculate the image coordinates

(u,v); = A- STy, -1 (cos(ov), sin(y),)~ (1)

where z is not measured but specified and r; and «; are the
range and angle of the ¢th ray, respectively.

The points (u,v); were calculated twice, first for a height
of z = 0 and then for z = 35cm, resulting in two sets Ljyy,
and Ly;qy, where Lj,, corresponds to the projection of the
laser scan and Lpgp is shifted upwards. Finally, the polygon
between Lio, and Lj;gp was filled to generate a matte as
shown in figure 2(b). The masked image then was examined for

Thttp://www.ra.cs.uni-tuebingen.de/software/apex/

regions of interest by first applying a blackhat morphological
operator and then performing a connected component analysis
using cvBlob [10]. Large components were normalized to
improve robustness against lighting changes and then further
processed.

We calculated Canny edge features [11] and applied the
probabilistic Hough transform [12] in order to extract the
horizontal and vertical line in the bull’s eye pattern. Detected
lines were processed using various heuristics to reject short
or skewed lines. Every pair of the remaining lines was tested
for intersection. If the angle of intersection was near 90°, a
target message was published using the reprojection of this
intersection as the position.

C. Sign detection

Delivery stations were marked with signs displaying the
numbers 1 to 4, whereby the number represented the type of
cube that could be delivered. The robot therefore had to be
able to detect these signs and read the depicted number.

To solve this problem we compared two artificial neural
nets, the one we used at SICK robot day 2010 based on the
Stuttgart Neural Net Simulator (SNNS) which was described
in detail in [2] and a later approach using JANNLab [13]. The
need for an alternative classifier stemmed from the observation
that some numbers could not be detected as well as others. The
new neural net was implemented as a multilayer perceptron
(MLP) network as well.

To optimize the runtime cost, we also used a laser pro-
jection mask as described in III-B. Here we extracted a band
above the wall in which the signs had to be seen, which further
reduced costs compared to the previous approach in [2].

Detected signs were mapped in a sign map mg for future
reference, such that the robot did not have to search for the
appropriate sign for every delivery run. We have implemented
a Gaussian mixture model to be able to model hypotheses in a
way robust to false detections. For the model of a sign we used
a two dimensional Gaussian distribution for the z-y position
and a von Mises distribution for the orientation. As shown by
Bishop et al. [14], the maximum-likelihood solution € for the
orientation of a hypothesis is then given by

1 1
0 = atan2 (N ;sin(&), N ; 008(91-)> ,)

where 6; are the individual measurements of the orientation
and N is the number of measurements. For path finding we
referred to this sign map and chose the target pose based on
the best hypothesis.

D. Cube and bar code detection

After collecting a new cube, the target delivery station had
to be determined. To get the numerical value of the cube’s bar
code we used the ZBar library [15]. Bad lighting conditions or
a wedged cube could cause a failure of the bar code analysis.
Therefore we needed a second robust system to frequently
check whether an object is in the hopper or not.

(a) Empty, no pattern

(c) Cube in optimal position

(d) Cube wedged

Fig. 3. The cube hopper camera scene.

1) Intensity Standard Deviation: Our first approach to
realize a cube detection was to calculate the standard deviation
of the intensity values. The robot’s hopper is painted black, so
the standard deviation of the empty camera scene is minimal,
as can be seen in Fig.3(a). The moment a cube enters the scene,
the standard deviation rises considerably.

A problem with this approach is, that it heavily relies on a
well configured camera which adapts to the lighting conditions.
Once the shutter adoption fails, the approach does not work
anymore. A change in lightness can be observed comparing
Fig.3(a) and Fig.3(c).

2) Neural Network: As JANNLab was already a part of
the software infrastructure, the idea was born to try out a
neural network based approach. The basic concept was to
train a neural network to detect the characteristics of a pattern
independent of the lighting conditions and resulting image
brightness.

A multilayer perceptron was applied to that task. The net-
work was trained using data generated under several different
lighting conditions. We also took data conditions in account
which were more extreme than the competition conditions.

(a) Visible pattern (b) Occluded pattern

Fig. 4. Visualization of the intensity vector used for the MLP.

For training and usage of the network a vector of 100
intensity values was extracted from the pattern within the
scene. The values were later on normalized to an interval from
—1.0 to 1.0 to make them suitable for the neural network. In
Fig.4 a visualization of a intensity vector using a Bézier color
function is shown.

E. Localization and Mapping

To localize the robot in the arena, a graph based simulta-
neous localization and mapping (SLAM) algorithm was used.
A plane localization algorithm, e.g. Monte Carlo localization
was not suitable, because the exact map of the arena was
unknown before the competition and the preparation time at
the competition was too limited to build up a map. A SLAM
algorithm using only scan matching, like the open-source
module of the Hector framework by Kohlbrecher et al. [16],
did not work, because the arena was too symmetric to detect
correct movements from the scans. To our knowledge, the most
accurate open-source implementation of a graph-based SLAM
algorithm is Karto [17]. However, this algorithm assumes a
static environment and is usually used for exploration and not
for long term use. These characteristics cause two problems in
our task.

There were other robots in the arena that moved and
sometimes stood still. If another robot was not moving for a
certain time it was included as occupied space in the map.
This occupied space is remembered by the algorithms for
several iterations, even if the other robot has moved away.
This complicates path planning, because it adds unnecessary
costs to the cost map. To solve this problem we preprocessed
the laser scan with a jump distance segmentation filter. This
filters a scan using the difference Ar = |ry — rg41| of two
neighbouring rays 7y, and r41. If Ar exceeds a threshold 7" a
new segment is started. A segment is removed if the euclidean
distance of its start and endpoint is below a minimum value
Siin O @ above maximum value S,,,4;.

The second problem is that Karto stores all matched scans.
Every time a map is requested from the path planner, all n
stored scans have to be integrated into a grid map. Therefore,
the computational complexity and the time to provide a map
increase linearly with the number of stored scans. Since long
waiting times caused time-outs in the path planner, we had to
limit the map creation time without decreasing the localization
accuracy. This was done by limiting the number of scans being
used for map update. To also include some older scans in the
map, scan selection was divided in to three intervals. A dense
interval used the scans s, with index n — 100 < k < n, in the
semi dense interval scans with index n — 200 < k < n — 100
and k;_1 < k; — 10 and in the sparse section the scans with
n — 1000 < k£ <n — 200 and k;_q < k; — 100 where used.
In the background the whole graph with all scans is kept to
achieve high localization accuracy from loop closures and to
avoid drifting of the map.

F. Map analysis

One important reason for performing SLAM instead of
driving reactively was to be able to use a map of the envi-
ronment for determining the positions of filling and delivery
stations. Delivery stations were assumed to be on the arena
border. In case a station was unknown, the robot scanned the
border systematically by driving clockwise around in the arena
while looking in the tangential direction.

The filling stations were placed on every second side of
an octagonal island at the center, whereby the side facing the
starting position of the robot was guaranteed to be a station.
To determine the exact positions of the four filling stations,

we first classified every occupied cell in the grid map into
centre and border. Hereby we assumed that the segmentation
filter described in section III-E was able to completely remove
every robot from the laser scans such that the map would only
contain occupied cells for walls.

On all cells labelled as centre we performed RANSAC with
an octagon model: We repeatedly sampled two points assuming
they were the endpoints of one side s; of the octagon. We
then extended s; in the direction of the centroid of the map
to a full octagon by adding ss to sg. Then we selected side
f1 = s; as a filling station side, for the ¢ which minimized the
angle between side s; and the starting position. We then added
every second side: fo = S(i12) mod 8> J3 = S(i4+4) mod 8
fa= S(i4+6) mod 8-

For 1 <7 < 4 we published the projection

ey T g
pl_c+ ||f1fc|| (||f’b

c||+0.3) 3)
of the centre of side f; as a filling station, where p; was
projected 30cm in front the wall, away from the centre c.

We then checked a rectangular box around p; for laser
scan hits in order to decide which filling station was free and
which was in use. As shown in figure 5(a), we also performed
this procedure for the remaining four sides, because we had
assumed a square centre island and only had limited time to
change the algorithm to detect an octagon.

(a) Analysed map showing the de- (b) Cost map (simulation) used for

tected octagon and 8 free sides path planning. High costs are red.

Fig. 5. RANSAC analysis of the grid map given by SLAM and generation
of a cost map using the distance transform.

G. Navigation

We employed a full navigation stack including path plan-
ning and following. The map generated by the SLAM sub-
system was preprocessed and then used for path finding. The
resulting path was postprocessed and then used by a path
following controller.

1) Map preprocessing: Before every request r = (s, g) for
a path from starting pose s to goal pose g, our navigation
stack requested a grid map representation m of the current
pose graph. m was then treated as an image and submitted to
a morphological convolution to grow obstacles and close small
unknown regions, whereas circular regions around s and g
were kept unchanged to allow planning as closely to obstacles
as possible. Afterwards, a combined map m’ was computed, by
firstly integrating the current readings from both laser scanners

into the map m. Using m’ we computed a cost map m,., by
calculating the distance transform and then scaling and capping
the values such that costs were maximal at obstacles and went
to 0 for distances larger than 2.5m, which can be seen in
Fig.5(b).

2) Path planning: Given the map m and a cost map m.,
we implemented a variant of A* using the simple Ly heuristic
given by the norm || - ||2. Since our robots were omnidirec-
tional, we also implemented a simple omnidirectional motion
model using the natural 8-neighbourhood of a grid map. For
the past-cost we used ¢'(¢) = g(¢) + mc(q), where g(q)
denotes the known distance from s to the current configuration
g and m.(q) the cost of configuration g. We manually tuned
the scale of m, such that resulting paths stayed as far away
from obstacles as possible while not completely ignoring
configurations ¢ with m.(q) > 0.

In a postprocessing step we used a heuristic to simplify
path segments by recursively removing nodes in regions with
no costs associated and checking if the resulting path was still
valid. This was motivated by the fact that slanted paths in
an 8-neighbourhood are often longer and more ragged than
necessary due to only being able to represent multiples of 45°
when expanding a node. After simplification we performed
path smoothing and interpolation to allow for a better path
following.

3) Path following: The path following controller is based
on the idea presented by Mojaev et al. [18], which was further
described and used in the dissertation of Li [19]. The idea
is a simple control law based on an orthogonal projection
of the vehicle to the desired path, as shown in Fig.6. The
orthogonal projection is defined as an exponential function of
the tangential component in the projected point on the path. If
we denote the orthogonal projection as x,,, the tangential axis
as x¢, and the initial distance from the path as z,,,, we get the
expression

Ty = Tpg exp(—kxy),)

where k represents a positive constant which regulates the
convergence speed of the orthogonal projection. The tangential
angle of the exponential function is then

dc = arctan(—kxy). 5)

If we consider the fact that the controlled robot is omnidirec-
tional, its linear velocity in the world frame can be described
as

Vg = vpcos(a),

(6)

vy = vpsin(a),

where o = ¢, + 0;. Here, v,, is the nominal velocity, 6; the
tangential angle of the desired path and « is the driving di-
rection angle. The angular velocity is controlled independently
using a PID controller. Stability analysis of the algorithm can
be found in [19].

For the purpose of this competition, we have extended the
algorithm by adding velocity control. The velocity was not
constant, as in [18] and in [19], but it was rather depending
on the curvature Macek et.al [20], distance to the obstacles,
distance to the goal and angular velocity. The basic idea

) | X,

Fig. 6. The principle of the orthogonal projection path following algorithm.

from [20] was slightly changed, so that the velocity changes
exponentially. The final expression for the velocity is then

l
K, K
UV = vpexp ((Kn Z ||I€1H +Kw|w\ —+ df + dg)>
1=ip o)
(7N

Here, K, K, K,, K, are positive constants used to adjust
convergence, ip is the index of the currently projected point
on the path, and [is the index of the look-ahead distance. The
curvature in a certain point is k;, w is the angular velocity, d,
the distance to the nearest obstacle, and d,, the distance to the
goal.

4) Obstacle avoidance: The path planner we used was fast
enough to allow a simple obstacle avoidance scheme: Once
we detected an obstacle that stayed on the current path for
too long, the robot stopped and issued the system to generate
a new path. We had developed several layers of safety: The
path planner preferred paths that stay away from obstacles
because of the cost map. The control in Equation 7 decreased
the velocity of the robot in the vicinity of obstacles. We
additionally employed a safety zone in the driving direction,
such that if an obstacle was detected in this zone, the robot
was stopped completely.

H. State machine

For high level planning we implemented the finite state
machine depicted in figure 7. After waiting for a user to give
the ”go” signal by pressing a sequence of buttons on the remote
control, the robot was completely autonomous.

A first state was introduced to explore the central area,
such that our map analysis component was able to determine
the position of the filling stations. This initial exploration
consisted of driving a predetermined distance diagonally in
order to allow the SLAM system to build up a map. Afterwards
we iterated fetching and delivering cubes, where both states
consisted of several sub states.

Fetching a cube, visualized in figure 8, included selecting a
free filling station, planning and following a path there. Once
the calculated target pose had been reached, the robot had to
use the bull’s eye target detection to orientate itself towards the
station. It then drove forward until the distance to the wall was
below Hcm, signalled the human operators and then backed

(explore centre Hwait for go signal)@.

timeout
received cube station N is unknown
.2@1, } SO

no cube station N is known

deliver cube find delivery for N

cube delivered station N found

cube still inside hopper

Fig. 7. The finite state machine we implemented. Error states were omitted.

at target error or

timeout

I signal on l

go to free
filling station

position to
target

timeout

positioned

signal off l
did not
received cube N get a cube
@ evaluate cube <
at target

Fig. 8. The meta state fetch cube in figure 7.

up again. If at this point no cube had been received, e.g. if
the target position had not been accurately reached, the robot
issued a retry. Otherwise the cube was analysed and the sub
state was left.

Delivering a cube was essentially the same as fetching a
cube, only instead of going to a free filling station, the path
finding module was requested to plan a path to the appropriate
target station if it was known. Otherwise we switched to
finding this unknown station by driving around the arena in
a clockwise direction.

IV. EXPERIMENTAL RESULTS IN THE LAB

Experiments have been performed in our laboratory and in
a gym of the University of Tiibingen. Some of the experiments
have been repeated after the competition for more precise
results in this paper.

A. Target detection

The performance of the bull’s eye target sign detection was
acceptable for the competition and worked in every instance.
There is an inherent downside to our line extraction approach
due to motion blur. Even at relatively low rotational speeds,
motion blur was too much of an influence, for target signs to
be detected at larger distances. However, we only needed to
detect these signs in the final step of approaching a station.
The map analysis was sufficient to allow planning a path that
ended directly in front of a filling station, where the signs were
clearly visible. In the case of delivery stations, we relied on

detecting number signs at larger distances and then used path
finding to position the robot in front of these number signs,
where again the target signs were easily visible. That is why
the targets only had to be robustly seen at distances of 2m or
less, in which case motion blur didn’t affect the detection rates
too much.

B. Sign detection

For evaluation of the sign detection we refer to Scherer
et al. [2]. The approach has not been modified, except for
masking out irrelevant parts of the camera image, which
had an impact on the runtime but not on the classification
performance. The new approach based on JANNLab looked
very promising and achieved higher detection rates in our
test environments. On site at the competition, however, there
were a few reproducible false positive detections caused by
the environment. This is why we decided to use the old neural
net, accepting the lower true positive rate for the benefit of far
fewer false positives. Due to the lower true positive rate, we
had to reduce the robots top speed to ensure that signs could
still be mapped accurately while exploring the environment.

C. Cube and bar code detection

The standard deviation and MLP based detections were
evaluated on datasets containing images taken under several
different poses and differing lighting conditions. We consid-
ered that either an object is already in the hopper or the hopper
is completely empty. Also we present the raw results of the two
approaches without any filter within the processing pipeline.

In table I the results of the evaluation can be observed.
The labels in the confusion matrices indicate the state of the
hopper. It is either empty or full.

The standard deviation based approach was tested on 1306
frames without the background pattern used by the second
approach. The variance threshold was set to 50 to detect an
object within the camera scene. The MLP based approach was
tested on 1325 different frames containing the pattern.

Std Dev. Prediction MLP Prediction
empty | full empty | full
[empty | 563 150 [empty | 662 14
Acual = ss a5 | Al aar 643
TABLE 1. CONFUSION MATRICES FOR CUBE DETECTION APPROACHES.

The results lead to the conclusion, that the MLP based
approach is much more robust than the simpler approach.
There is almost no logical filtering afterwards necessary. In
the end the standard deviation based approach suffers from
being highly dependent on the behaviour of the camera.

D. Localization

The segmentation filter produced good results because the
maximum robot size was limited to 0.6m by the rules. We
set the segment size minimum value to S,,;, = 1.2m to be
sure that a segment is removed even if two robots are standing
close to each other. The threshold for the minimum distance
of rays was set to 7" = 0.1m so that small robots could still be
separated from a wall, and the octagon was still seen as one

big segment. A comparison of a map created with and without
the scan preprocessing can be seen in Fig.9.

Our method of limiting the map creation time also showed
good results as we could limit it to 62ms, while at the standard
algorithm the time would increase with 0.5ms per scan.

Fig. 9. Grid map without preprocessed scans (left) and with segmetation
filter preprocessed scans (right)

E. Navigation

1) Path planning: Our path planner was tuned to a map
resolution of 5cm. The worst case for running time for path
finding is a goal pose that cannot be reached, because then
the search exhausts the complete state space. We tested this
by using a map of the arena and finding a path to a point on
the outside of the map, which on average took around 120ms.
Additional costs came from post processing of a planned path,
which took on average about 20ms. This short response time
allowed us to use the obstacle avoidance scheme we described
in 1II-G.

2) Path following: As already mentioned, the original path
following algorithm used a constant velocity, controlling only
the direction angle. This was tested on our robot in a test arena
and it worked well for the velocities up to 1m/s. However,
there was a problem of instability at higher speeds. Since the
velocity was constant, the robot would drive with full speed
in a curve, or near the obstacles, which would sometimes lead
to deviating too much from the path, or hitting the obstacles.
Also, it would drive with full speed until it would reach its
goal. In that moment, it would try to brake instantly, which
would always lead to behaviour close to roll over.

The solution to this problem was to extend the original
algorithm, as already described in the previous section. Our
approach gave us satisfying results up to a top speed of 2m/s,
since the robot would slow down in critical situations, so that
the following was more accurate, and the behaviour more
stable and safer. In the competition, the nominal speed was
1.5m/s, just for safety reasons.

The algorithm was firstly developed in MATLAB. Gazebo
was used for further simulation tests before implementing it
on the robot. In Fig.10 a sample desired path (green) can be
seen, as well as the real path performed by the robot (blue).
In this example, the robot has reached its goal position, and
it was oriented towards a look-at point (red dot) all the time.
The orientation of the robot is represented by a white arrow
marker.

Fig. 10. Desired vs. driven path.

V. RESULTS IN THE COMPETITION

The competition took place on October 11, 2014 in Wald-
kirch, Germany. Every attending team had a few hours before
the competition to test their systems on site. The arena,
which nobody had seen before, was mostly as expected. There
were only four delivery stations as opposed to the expected
worst case of ten stations. The size of the arena matched our
expectation, yet the central area for filling stations was not
as we had anticipated: The rules had specified that the filling
stations would be located at the 4 sides of a square island in
the centre of the arena, which ended up being an octagon with
4 unused sides as described in Section III.

Every robot had two runs of 10 minutes each, whereby the
better run was to be used for ranking. Out of the 14 competing
teams, five managed to score one or more points. Our robot
managed to correctly deliver six cubes in ten minutes, resulting
in a second place with as many points as the winner RIMLab
with their robot PARMA?. The tie was broken by consulting
the other run, in which our robot could only deliver three
cubes, because of a malfunction which resulted in our robot
standing still for five minutes after it had already moved for
about a minute.

The delay was most likely caused by a driver problem we
had infrequently observed a few times earlier, in which the
driver for our main laser scanner would freeze up and not
publish any new data. This is in accord with the log files,
which show that the laser scanner reported obstacles directly
in front of the robot when clearly there were none. Since this
problem had been observed earlier, we had implemented a
watch dog process to restart everything related to the laser
scanner subsystem in cases when no data was transmitted for
a while, but it seems that multiple restarts were required.

There are a few optimization possibilities which would
have allowed us to decrease the time per object in order to
deliver at least one more object:

e In contrast to many other teams, our robot waited for
the full 10 seconds on both filling and deliver stations
for safety reasons. For six delivered objects, this alone
resulted in 2 minutes of waiting time, which mostly
could have been avoided.

Zhttp://rimlab.ce.unipr.it/SickRobotDay2014.html

e To avoid CPU overload, which would have been detri-
mental to our SLAM module, we decided to disable
parts of the system when they were not needed, and
reduce the frame rates of our cameras. This resulted in
the need to wait in front of expected bull’s eye signs
to increase the confidence in the observation, which
costed another unnecessary 5 seconds per station and
about one minute overall.

e We used a maximum velocity of 1m/s in the first run,
which was already relatively fast compared to other
teams but was only a safety precaution to absolutely
avoid any dangerous situation.

For the second run we were able to quickly change our
state machine and decrease waiting times to the absolute
minimum. We also further increased the driving speed to
1.5m/s, however the effort was wasted because of the above
mentioned inactivity problem.

VI. DISCUSSION

During the preparations and the competition itself we have
learned valuable lessons concerning the implementation of
autonomous robotic systems under time constraints that we
want to discuss and share.

A. Encapsulation of assumptions

It has proven valuable to formulate all the assumptions
about the target environment and model them explicitly in
the resulting software. For example, one assumption was “the
centre area is square”, which we modelled as a class Square.
Once we realised that the assumption was not fulfilled, we only
had to implement another model Octagon. Unfortunately our
model was not general enough, because the assumption “every
side of the centre contains a filling station” was not explicitly
modelled and had to be implemented spontaneously, which
resulted in a suboptimal system.

Another assumption was “all numbers between 0 and 9
may or may not exist as codes”. This not only affects the
false positive rejection in bar code reading and number sign
detection, but also higher level functions, for example in a
guessing scheme in case a bar code could not be read. Other
examples we modelled are the maximum size of other vehicles,
the geometry of stations and that the arena was symmetric.

B. Rapid prototyping in a collaborative environment

One of the most important themes in software develop-
ment is modularization, especially with multiple collaborating
developers. Using ROS for robot specific parts and cs::APEX
for cognitive algorithms, we relied on pure message passing
interfaces, allowing us to quickly and efficiently develop and
reuse parts of the system with little overhead. Modularity also
allowed us to simply switch out the different implementations
of number sign detectors and map analysis components under
strict time constraints.

ACKNOWLEDGEMENT

The authors would like to thank Sebastian Otte for pro-
viding his implementation of different artificial neural network
algorithms. We also want to thank the SICK AG for sponsoring
each participating team with a SICK TiM551 laser scanner.

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(91
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

S. Behnke, “Robot competitions-ideal benchmarks for robotics re-
search,” in Proc. of IROS-2006 Workshop on Benchmarks in Robotics
Research, 2006.

S. A. Scherer, D. Dube, P. Komma, A. Masselli and
A. Zell, “Robust Real-Time Number Sign Detection on
a Mobile Outdoor Robot,” in Proceedings of the 6th

European Conference on Mobile Robots (ECMR 2011), Orebro,
Sweden, Sep. 2011. [Online]. Available: http://www.cogsys.cs.uni-
tuebingen.de/publikationen/2011/scherer11.pdf

A. Masselli, R. Hanten, and A. Zell, “Robust real-time detection of
multiple balls on a mobile robot,” in Mobile Robots (ECMR), 2013
European Conference on. 1EEE, 2013, pp. 355-360.

M. Cigolini, A. Costalunga, F. Parisi, M. Patander, I. Salsi,
A. Signifredi, D. Valeriani, D. L. Rizzini, and S. Caselli,
“Lessonslearnedinaballfetch-and-carryroboticcom etition,” Journal of
Automation, Mobile Robotics & Intelligent Systems, vol. 8, no. 1, 2014.
P. Fejfar and D. Obdrzdlek, “Smart and easy object tracking,” Vera
Kurkovd, Lukds Bajer (Eds.), p. 28.

S. R. H. Fredriksson, D. Rosendahl, and K. H. A. Wernersson, “An
autonomous vehicle for a robotday.”

K. Kanjanawanishkul and A. Zell, “Path following for an omnidirec-
tional mobile robot based on model predictive control,” in Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on. 1EEE,
2009, pp. 3341-3346.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

G. Bradski, Dr. Dobb’s Journal of Software Tools, 2000.

C. C. Lindn, “cvBlob,” 5 2014. [Online].
http://cvblob.googlecode.com

Available:

J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679-698, Jun. 1986.
[Online]. Available: http://dx.doi.org/10.1109/TPAMI.1986.4767851

J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using
the progressive probabilistic hough transform,” Computer Vision and
Image Understanding, vol. 78, no. 1, pp. 119-137, 2000.

S. Otte, D. Krechel, and M. Liwicki, “Jannlab neural network
framework for java” in MLDM Posters, P. Perner, Ed. IBal
Publishing, 2013, pp. 39—46. [Online]. Available: http://dblp.uni-
trier.de/db/conf/mldm/mldm2013p.html#OtteKL13b

C. M. Bishop et al., Pattern recognition and machine learning. springer
New York, 2006, vol. 1.

J. Brown, “Zbar bar code reader,” Februrary 2013. [Online]. Available:
http://zbar.sourceforge.net

S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and
O. von Stryk, “Hector open source modules for autonomous mapping
and navigation with rescue robots,” in RoboCup 2013: Robot World
Cup XVII. Springer, 2014, pp. 624-631.

R. Vincent, B. Limketkai, and M. Eriksen, “Comparison of indoor robot
localization techniques in the absence of gps,” Detection and Sensing
of Mines, Explosive Objects, and Obscured Targets XV, vol. 76641, pp.
76 641Z-76 641Z-5, apr 2010.

A. Mojaev and A. Zell, “Tracking control and adaptive local navigation
for nonholonomic mobile robot,” in Intelligent Autonomous Systems
(IAS-8). Amsterdam, Netherlands: I0S Press, Mar. 2004, pp. 521-
528.

X. Li, “Dribbling control of an omnidirectional soccer robot,” Ph.D.
dissertation, Cognitive Science Department, University of Tuebingen,
2009.

K. Macek, I. Petrovi¢, and R. Siegwart, “A control method for stable
and smooth path following of mobile robots,” in Proceedings of the
European Conference on Mobile Robots, 2005.

