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Abstract— The goal of saliency detection is to highlight ob-
jects in image data that stand out relative to their surrounding.
Therefore, saliency detection aims to capture regions that are
perceived as important. The most recent bottom-up approaches
for saliency detection measure contrast based on visual features
in 2D scenes, ignoring depth value. This work presents an
effective method to measure saliency by mapping pixels into
foreground and background regions in RGB-D images. Namely,
we first segment an image into regions to evaluate the object
uniqueness and consistency using graph-based segmentation.
Then, we utilize the region color, depth, layout and boundary
information to produce robust foreground and background
saliency measures. Finally, we combine the two saliency maps
based on Gaussian weights. As a result, our approach produces
high-quality saliency maps, which may be used for further
processing like object detection or recognition. Experimental
results on two datasets compare our method with the state of
the art and highlight its effectiveness.

I. INTRODUCTION

A. Motivation

For an intelligent robot, as with a human, salient region de-

tection plays a vital role in identifying and filtering informa-

tion in unknown and complex environments. Visual saliency

maps can competently guide the attention of an agent to po-

tentially relevant candidates and locations in a scene, which

is beneficial for many applications like object detection and

recognition. Current methods estimate the visual saliency

based on global or local contrasts of colors or textures in

an image [1]–[3]. However, such methods have difficulties

in handling variations in lighting and homogeneous color

distributions between foreground and background. As a

consequence, saliency detection, albeit considered practically

useful, is still a technologically challenging problem in the

field of computer vision.

With the advent of low-cost RGB-D sensors like the

Microsoft Kinect, the suitability of RGB-D-based methods

has become more universal. By utilizing additional depth

information and derived features, the view of saliency be-

comes more precise and thus more feasible for practical

applications [4], [5]. Depth data makes it possible to separate

objects which are similar in appearance. Inspired by those

advances, we incorporate depth values with visual features

to estimate salient regions. A simple practical scenario is a

mobile service robot as an object recognition system in a

real-world indoor environment.

The major focus of this work, therefore, is the development

of saliency detection measures to meet the requirements of
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Fig. 1. Saliency map examples. RGB image samples (left column) from
the public dataset in [4], graph-based RGB-D segmentation (middle column)
and the resulting saliency map (right column).

indoor mobile robots. In addition to considering contrast of

images, we combine depth cues with measures of distance,

color, spatial layout and boundary connectivity to calculate

a saliency map. Fig. 1(a) shows three scenes captured by a

service robot in an indoor environment from [4]. Multiple

foreground objects of potential interest can be seen in these

scenes. The segmented candidate regions are visualized with

different colors in Fig.1(b). Instead of attending to entire

segmented regions, we expect that the robot can identify

the most visually noticeable foreground objects through the

saliency map (Fig.1(c)).

For this purpose, we first introduce a segmentation method

which applies a graph-based algorithm for color and depth.

The graph-based segmentation is designed to identify homo-

geneous regions based on color as well as depth cues. The

algorithm clusters pixels in regard to similar properties but

retains the uniqueness and consistency of different objects.

This clustering in the segmentation stage largely decreases

the computational complexity since widespread areas may

usually be filtered as being visually unimportant due to low

variance. After discussing different saliency methods in use

today, we will propose a new saliency estimation approach

that integrates color, depth, spatial layout, and boundary

connectivity. Through the fusion of RGB and depth data,

the proposed method provides good results despite the pres-

ence of homogeneous color distributions between foreground

and background areas. To measure the performance of the

approach, we evaluate it on two datasets against different

state-of-the-art alternatives. The results show that combining
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visual color, depth value and spatial layout significantly

improves the accuracy of object detection algorithms.

The contributions and advantages of the proposed method

are as follows:

• The graph-based segmentation fuses RGB with depth

data to measure inconsistencies in the image. The

algorithm achieves superior detection of textured or

inhomogeneous colored objects compared to our pre-

vious work, where we were assuming mostly uniformly

colored fruits [6] or closest objects [7] and were thus

able to successfully use the homogeneity and shortest

distance in the segmentation.

• Given the assumption of rarity in regard to the scene

representation for objects of interest, we employ an

adapted and compact estimation of salient regions with

essential RGB-D characteristics using color luminance,

depth, spatial layout and boundary information. Fore-

groundness is estimated by difference of color, depth

and position. Backgroundness is produced by area,

boundary connectivity and the relative distance from

the center of one region to the image corners instead

of defining a narrow border region as an indicator for

background [8].

• The final saliency map is acquired by combining fore-

ground and background measures based on a Gaussian

filter.

The remainder of the paper is structured as follows: a

brief summary of relevant concepts in saliency algorithms is

presented in Section I-B. Section II describes our proposed

method, including the segmentation approach and saliency

algorithm. Moreover, visual samples of saliency results are

presented for the comparison of different saliency methods.

Finally, in Section III we present the experimental results

based on two datasets and conclude the paper in Section IV.

B. Related Work

In recent years, the development of methods for object

recognition and detection has been rapidly advancing. Many

researchers have studied the effects of saliency detection [1]–

[3], [8]–[10]. In general, saliency detection algorithms can be

roughly classified into two categories: top-down and bottom-

up. The top-down methods [11] obtain a saliency map by

learning visual knowledge. In other words, top-down saliency

methods require a large amount of annotated images for

training. In contrast, the bottom-up approaches [1]–[3], [8],

[9] focus on a low-level algorithm by determining contrast

of image regions relative to their surrounding, intensity,

color and orientation. These approaches do not require prior

training. Itti et al. [12] were the first to advocate a bottom-up

approach in visual attention. They utilized local contrast and

visual low-level features to acquire saliency. Subsequently,

Achanta et al. [13] acquired a saliency map by computing

the difference between the image and a Gaussian blurred

version of the original image. Though being simple and com-

putationally efficient, the method failed when the saliency

region occupied more than half the pixels of the image, or in

the presence of complex backgrounds. Achanta presented a

revised approach based on the idea of maximum symmetric

surround [14], which is derived from the assumption of a

relation between scale and position of the candidate object

in the image. Cheng et al. [2] proposed a global histogram-

based contrast for saliency detection. The dissimilarity of

a pair of patches is determined by comparing their color

histograms. Saliency filters were presented by Perazzi et

al. [3] relying on estimating an element uniqueness and

distribution as a function of image contrast. Inspired by

recent advances in contrast analysis, Zhu et al. [9] proposed

a saliency optimization from background detection. They

utilize a measure describing the connectivity between region

and image boundaries.

While there is a wealth of research on visual saliency

maps, few attempts have been made to combine depth

values to form a saliency map. Maki et al. [15] presented

a computational model for attention by using depth cues.

In this depth-based model, closer targets were mapped to

higher priority in an attentional scheme. Ouerhani et al.

[16] proposed an alternative method which utilizes depth

as an additional channel that is combined with color and

other features. Lang et al. [5] collected a human eye fixation

database in both 2D and 3D scenes by the Kinect sensor.

They derive depth priors that may be applied to saliency

maps aiming to predict visual attention areas of humans.

Another method for incorporating visual saliency and depth

information was proposed by Ciptadi et al. [4]. This method

used 3D layout and shape features from depth measurements

to generate a saliency map. They presented promising results

by saliency-based segmentation using a superpixel Markov

Random Field (MRF). Our work follows the paradigm of

bottom-up approaches incorporating depth cues.

II. METHOD

In this section, the segmentation algorithm and salient

measures under RGB-D data are described. The main task

of this work is to let the robot automatically detect salient

objects in a scene. Hence, we focus on the need for captur-

ing salient objects. The algorithm proposed in this section

includes three steps to address and optimize this problem.

At first, we use a graph-based RGB-D segmentation to

cluster pixels in an image. This process minimizes the search

space and integrates common colors, textures and depth

in a region. Then, we present a method which combines

salient foreground and background regions to model the

corresponding saliency map. In a final step, we compute the

desired saliency map by a weighted combination of saliency

sub-maps.

A. Graph-Based RGB-D Segmentation

The goal of the segmentation process is to select possi-

ble salient region candidates from an intricate environment

represented by the RGB-D data stream. In this paper, we

apply the graph-based approach from [17] to label different

elements in an RGB-D image. First, we treat an RGB-D

image as a fully-connected directed graph G = (V,E) with

vertices vi ∈ V and a set of edges (vi, vj) ∈ E. Each edge
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Fig. 2. Segmentation examples. Raw RGB and gray-scale depth samples
(top two rows), graph-based depth segmentation (the third row), graph-based
color segmentation (the fourth row) and graph-based RGB-D segmentation
(bottom row)

(vi, vj) ∈ E has a weight value w(vi, vj) to measure the

dissimilarity between neighbouring vertices vi and vj . The

similarity between vertices in homogeneous regions is higher

than in discrepant regions. In our case, the weight w(pi, pj)
refers to the distance between adjacent pixels in RGB and

the gray-scale depth map simply defined as:

w(pi, pj) = ‖RGBD(pi)−RGBD(pj)‖ (1)

=
√

‖RGB(pi)−RGB(pj)‖
2
+ (D(pi)−D(pj))2

Here, RGB(pi) represents the 3-dimensional vector of red,

green and blue values of the pixel pi in RGB color space.

Respectively, D(pi) is the gray-scale depth representing the

distance of the pixel pi. We firstly normalize four channels

to the range [0...255]. To reduce influence of noise artifacts,

we then apply a Gaussian filter to smooth each of the

four channels before calculating the edge-weights. Finally,

we construct a minimum spanning tree (MST) to merge

similar regions using the minimum weighted edge between

the regions.

Fig. 2 shows the graph-based segmentation results using

the RGB, depth and the combined color and depth-based

segmentation, respectively. Results indicate that fusion of

RGB and depth provides the best segmentation quality. This

is reasonable since color is an informative but sensitive

feature, while the depth value is very well able to capture

the compactness of objects, and thus may be used to remove

over-segmentation using solely color.

B. Foreground Saliency Measure

After segmentation, we obtain multiple different regions,

each of which has similar homogeneous inner properties.

We expect to determine a saliency map from these regions.

Based on segmented regions, the saliency measurements are

calculated by foreground saliency features and background

information, due to uniqueness of the foreground and con-

sistency of the background.

We assume that foreground salience is significant and

distinctive in an image. The distinctiveness refers to a region

with high difference from its neighborhood. In this section,

we propose a new foreground salience measure based on

distribution of color, depth, position and area as an extension

to the approach by [3].

In an image, the foreground salience value FS of each

segmented region is calculated as:

FS(ri) = ar(ri) ·

N
∑

j=1

‖ cd(ri)− cd(rj) ‖
2 ·wfs(ri, rj)

(2)
ar(ri) is the area ratio of the region ri to the entire image and

is used as an additional weighting factor as opposed to [3]. N

represents the number of segmented regions, and cd(r) again

is extended to use depth information and represents average

color in CIELab-space combined with depth in region r.

The Gaussian weight wfs(ri, rj) is a local contrast term of

foreground, as introduced in [3]:

wfs(ri, rj) = exp(−
1

δ2fs
‖pi − pj‖

2)

FS(ri) effectively represents the rarity of a region ri with

color, depth cdi and area compared to all other regions rj .

C. Background Measure

To be able to efficiently filter out true negative as well as

false positive saliency candidates, it is important to define

adequate measures that are able to identify the respective

regions. Since image background usually features some nice

properties like high area ratio and a wide spread close to the

image borders, those characteristics are often modelled in

literature for saliency filtering. While salient regions may be

regarded as local region candidates, with a high variance in

small areas, background regions may be interpreted as their

counterpart featuring global homogeneity and high depth

values, and as thus being highly suitable for broad-phase

filtering. We follow this well known paradigm and wish to

find a background representation that, combined with the

foreground representation, is able to remove or weaken false

saliency candidates and thus deliver better estimates.

Taking these considerations into account, we propose a

measure CDis(ri) to quantify the position of a region ri in

an image. It is defined as

CDis(ri) = 1−
minj ‖ p̄i, cj ‖

dc
(3)

where p̄i represents the center position of region ri, cj
represents the corner positions of the image and dc is the

distance of the image center to its corners. Assuming, that

background is far away from the image center, CDis(ri)
may be interpreted geometrically as the distance from one
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(a) raw RGB image (b) depth image (c) segmentation
labeling

(d) foregroundness (e) backgroundness (f) saliency

Fig. 3. Overview of our saliency mapping algorithm. Raw RGB-D data (a-b) is used to segment the scene into homogeneous regions, the resulting regions
are shown in (c). In the next step, foreground and background measures are computed from color, depth and the spatial distribution of the regions (d-e).
The final saliency map is obtained by combining the foreground and background maps (f).

region to the center of the image. It will be large for objects

being close to corners and small for objects around the center

of the image.

The Boundary Connectivity measure proposed by Zhu

et al. [9] is used to quantify how heavily a region ri is

connected to the image boundaries:

BCon(ri) =
len(ri)

√

area(ri)
(4)

where len(ri) is a region perimeter on the boundary,

area(ri) refers to its area. The salient region has a small

BCon(ri) value, compared to the background region.

Finally, we define a dissimilarity measure for background

saliency between regions as:

BS(ri) =
N
∑

j=1

‖ area(ri)− area(rj) ‖ ·wbs(ri, rj) (5)

The background saliency BS(ri) may be interpreted as the

difference of the scale of region ri compared to all other

regions rj . Similarly to FS, the Gaussian weight wbs(ri, rj)
is defined as

wbs(ri, rj) = 1− exp

(

−
(BCon(ri) + CDis(ri))

2

δ2bs

)

(6)

which effectively describes the position of the region, with

values close to zero indicating that the region is far from

corners and boundaries. The background usually has a larger

value than other regions. The parameter δbs controls the

range of the background measure.

D. Final Saliency Map

Because of the complementarity between foreground and

background saliency, we combine these two kinds of saliency

maps together with different weights. We normalize fore-

ground FS as well as background saliency BS to the range

[0, 1] and assume both estimations to be independent. Hence

we combine two measures as follows to compute the final

saliency map Sal,

Sali = BSi · exp(−t · FSi) (7)

The weight t is determined according to the information

contained in the corresponding map. In our case, we set t = 3
as the scaling factor throughout all experiments.

As can be seen in Fig. 3, the input RGB-D images (Fig.3(a)

and Fig. 3(b)) are first merged into homogeneous regions

as depicted in Fig. 3(c). Two samples of foreground and

background saliency maps are shown in Fig. 3(d) and Fig.

3(e). Finally, the resulting saliency map is shown in Fig. 3(f).

III. EXPERIMENTAL RESULT

In this section, we evaluate our saliency detection method

by using two different datasets: the RGB-D dataset provided

by Ciptadi et al. [4], which we in the following refer to

as DSD (depth salient data), and the MSRA dataset from

Liu et al. [19]. Both datasets include images with complex

background and low contrast objects, as well as manually

labelled ground truth masks (GT) for salient object candi-

dates. Several state-of-the-art saliency detection algorithms

are chosen for comparison and are in the following referred

to as SF [3], MSS [14], IG [13], AC [18], IT [12], MZ [20]

and SR [10], respectively. To be more precise, we compare

the results of different approaches on the introduced datasets

if saliency maps are available for the current benchmark

dataset. So for example, RGB based algorithms are not

evaluated on the RGB-D dataset since they are not tailored to

make use of the additional depth information (e.g. AC, SR).

On the other hand, we extended some of the algorithms, e.g.

IG [13] to additionally utilize depth information if this was

possible in a straightforward fashion.

A. Evaluation on DSD dataset

The DSD dataset is an RGB-D dataset, comprising 80

RGB-D images using a mobile robot in a real-world indoor

environment. For performance evaluation, we first give a

visual comparison of different methods on this dataset. Three

image sample results on the DSD dataset are shown in the

top three rows of Fig. 4. The first column represents the input

RGB image samples and the last column depicts the binary

ground truth masks. Visually, our method (FBS) performs

best compared to other methods in regard to the GT masks

and delivers best results in regard to our desired saliency.

Since performance of saliency is highly dependent on

the desired properties and the interpretation of important

objects in scenes, it is generally not easy to compare different

methods. Therefore, to be able to quantify the different

results over the whole database and complying with the

related work (e.g [3]), we choose the mean absolute error

(MAE) as a measure, which simply describes the difference

between the obtained saliency map S and the GT.

Conforming to the visual impression, Fig.5 shows that our

method also outperforms the other approaches in regard to
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(a) raw RGB (b) IG [13] (c) MSS [14] (d) SF [3] (e) CP [4] (top 3)
and AC [18]
(bottom 3)

(f) FBS (g) GT

Fig. 4. Visual comparison of saliency maps obtained by different state-of-the-art algorithms. Our method produces saliency maps that highlight the whole
object region and outline the foreground better than other methods. The top three image samples are taken from the RGB-D dataset published in [4], the
bottom three rows are RGB samples without depth from the MSRA dataset in [19].

Fig. 5. Mean absolute errors of different algorithms on the DSD dataset.

MAE, and provides a better estimate of the desired saliency

maps. Since the MAE is designed to capture pixel intensity

differences, it gives a good approximation of the performance

of the compared algorithms.

Next we analyze the performance of our algorithm in

regard to the depth extensions. Our proposed approach as

expected delivers the best results when we use the combined

RGB-D version, although very good results are already

Fig. 6. Mean absolute errors on RGB-D dataset (DSD [4]). Results obtained
with our proposed method (FBS) using color, depth and combined color and
depth information (left). And comparison to alternative algorithms IG [13]
extended to use depth (IG RGBD) and CP [4] (right)

achieved with color only as can be seen in Fig.6. Furthermore

we compared the IG algorithm, that we extended to use

additional depth information, with the CP algorithm, which

naturally is tailored for depth data. The minor extensions to

the RGB-D version of the IG algorithm make it almost as

powerful as the proposed method.
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Fig. 7. Comparison of mean absolute errors and precision, recall and F-measure bars for different algorithms on the MSRA-1000 RGB database.

B. Evaluation on MSRA dataset

To further evaluate our algorithm, we also perform ex-

periments on the MSRA dataset. MSRA [19] is a standard

benchmark dataset comprising 1000 instances with accurate

human-labelled masks (GT) for salient objects. Visual sam-

ples are again presented the bottom three rows in Fig.4.

Since this dataset does not provide depth image samples,

we plug in a SLIC based segmentation into the proposed

method which does not depend on depth data. For the other

stages of our pipeline, we create dummy depth images with

all depth values initialized to zero. Furthermore, we evaluate

and compare to the RGB-only based AC algorithm instead

of the previously evaluated CP algorithm on RGB-D. The

vision samples again demonstrate, that our saliency approach

is able to compete with other state of the art methods,

even when only color is available. In our final analysis we

additionally evaluated precision and recall bars on the whole

MSRA dataset as depicted in Fig.7. The obtained results once

again emphasize the robustness and accuracy of our proposed

method, even on color-only image samples.

IV. CONCLUSION

In this paper, we proposed a saliency detection method

which is able to successfully detect multiple objects on

a mobile robot. To solve the defined task of detecting

salient objects in the scene, we propose an improved RGB-

D based segmentation method to be able to automatically

cluster major regions of interest. The clustering maintains the

uniqueness and consistency of different objects and decreases

computational complexity for the later stages, which rely

on color and depth information. Furthermore, we proposed

a new method to effectively generate a saliency map by

combining foreground and background saliency maps. We

utilized contrast-based saliency measures by color, depth

and spatial layout information. Depth was used to recoup

complementary object information for segmentation as well

as saliency tasks. The proposed approach is very well suited

to compete with state-of-the-art saliency algorithms and even

outperformed them on both evaluated datasets.
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