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Abstract— Superpixels aim to group homogenous pixels by a
series of characteristics in an image. They decimate redundancy
that may be utilized later by more computationally expensive
algorithms. The most popular algorithms obtain superpixels
based on an energy function on a graph. However, these graph-
based methods have a high computational time consumption.
This study presents a fast and high quality over-segmentation
method by a watershed transform based on computing the
dissimilarity of pixels among RGB(D) cues and gradient maps.
Specifically, we first capture a gradient map based on an image
to enhance and explain directional variations in the image
scene. A distance function then measures the similarity among
adjacent pixels, which is calculated according to RGB(D) values.
A fast marker-controlled watershed (MCW) algorithm traverses
the entire image based on the distance function. Finally,
we acquire all watersheds consisting of superpixel contours.
Experimental results compare state-of-the-art algorithms and
highlight the effectiveness of the proposed method. As an
application, the proposed superpixel algorithm can be used in
applications aiming for real-time, like mobile robot saliency
detection and segmentation.

I. INTRODUCTION

Recently, an increasing amount of vision and navigation
research involving robots has been based on superpixels [1],
[2]. As a middle-level image feature, superpixels comprise
homogeneous color, texture and spatial regions in an image.
Superpixels belong to over-segmentation methods, which are
shown to be better than a rectangular patch box as they
can be aligned effectively. Two fundamental reasons allow
superpixels to be adapted widely to vision applications. On
the one hand, superpixels present more natural entities in
a scene including efficient features than pixels resulting
in discretization. On the other hand, computation can be
reduced by the size of superpixels.

Since superpixels are able to represent natural entities
much better than normal pixels, they can be widely and
effectively used in pre-processing for segmentation and for
detection in computer and robot vision. To be useful, this
over-segmentation method should produce effective super-
pixels with high compactness and a low computational
overhead. Current methods capture superpixels based on the
visual features of an RGB image [3]–[9]. However, there
are only a few superpixel algorithms that can handle su-
perpixel segmentation in real-time for practical applications.
Therefore, we have focused on finding a real-time and robust
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Fig. 1. Superpixel segmentation examples.

superpixel method useful for computer vision and robotics
tasks.

In addition, with the broad deployment of Microsoft
Kinect RGB-D sensors for vision applications, the require-
ment of RGB-D-based algorithms has become more univer-
sal [9], [10]. By using supplemental depth cues and derived
features, superpixel segmentation can be more precise and
thus more feasible for practical applications [9]. Depth values
can be assigned even to separate objects with a homogeneous
visual appearance. This advantage inspires us to combine
visual features with depth values in order to group super-
pixels together. A simple practical application would be the
pre-processing stage for classical segmentation and salience
detection for a mobile service robot in a real-world indoor
scenario.

The main focus of this work is the development of
an efficient superpixel segmentation method to adjust the
requirements of preprocessing for object detection for indoor
mobile robots. Fig.1(a) shows three scenes obtained by an
RGB-D sensor from [11]. Multiple objects with complex
context are shown in these scenes. Instead of analyzing
every pixel, we expect that the robot can quickly process
compact and more natural entities in an image. The concept
of superpixels, as shown in Fig.1(c), gives a basic theory to
solve these problems.

For this purpose, we use marker-controlled watershed
(MCW) transform based on a gradient map to produce
superpixel boundaries. In addition to analyzing and using
color information, we also can incorporate depth values
as measurements. Superpixels sharply decrease the compu-
tational complexity for the later stages of the processing
pipeline. Specifically, we first introduce an RGB-D gradient
map combining color with depth values to capture direc-
tional variations in RGB and depth image. The new RGB-D



gradient image provides complementary cues for boundaries,
even with a homogeneous visual distribution. As shown in
Fig. 2(d), although the pendant lamp in the image has a
similar color to the background, the depth data still reliably
gives distinct depth borders for preprocessing. A distance
function for evaluating the dissimilarity of pixels is then
proposed based on the color channels or together with depth
cue. Because the used sensor data is composed of both color
and depth values, it retains the uniqueness and consistency
of different pixels. Consequently, a fast MCW transform
is used to traverse every pixel in the image according to
the distance function. Ultimately, we evaluate the proposed
method against different state-of-the-art alternatives using
RGB-D datasets. The results show that watershed superpixel
segmentation based on gradient image furnishes fast and
robust superpixel results. It is adapted to be able to cluster
approximate color and depth information.

The advantages of our new superpixel method are:
• The method employs a fast MCW algorithm on color

and gradient map. Due to its low computational costs,
the proposed approach is well suited for real-time
applications.

• The approach of gradient based watershed in images
is applied to merge complementary color and depth
information to produce a gradient map. It achieves
a more general means for distinguishing objects in
complex environments.

The remainder of the paper is structured as follows. In
Sect. II, we give an overview of related work. Sect. III
describes our proposed method, including the technique of
creating an RGB-D gradient map and a fast MCW transform.
In Sect. IV we then present the experimental results based on
an RGB-D dataset and show some visual superpixel results
by comparison of different superpixel approaches. Finally,
we draw conclusions in Sect. V.

II. RELATED WORK

Research on superpixel algorithms has drawn much at-
tention during the last few years. The term superpixel was
first advocated by Ren and Malik in [12] and is helpful for
grouping pixels that feature similarities in color or low-level
features. Superpixel algorithms can be roughly classified into
two categories: graph-based and gradient-ascent-based [5].
Graph-based approaches are used to create an undirected,
weighted graph. Typically, an energy function relying on a
graph is proposed and optimized using graph cuts or similar
techniques. Most algorithms enforce color homogeneity by
minimizing objective functions. In contrast, regardless of be-
ing built around an energy function, gradient ascent methods
are not dependent on a graph structure. Instead, they use
a variety of different approaches to optimize the proposed
energy in order to generate a superpixel segmentation.

Felzenswalb and Huttenlocher (FH) [13] present a graph-
based approach to segment an image into superpixels. An
image is first represented by a graph with vertices as pixels
and weighted edges. It is a greedy algorithm that can

construct a minimum spanning tree in the graph and merges
minimum weighted edges between two neighboring points.
The constant intensity superpixels (CIS) [14] algorithm gen-
erates superpixels by partitioning the problem in an energy
minimization function and optimizing it with graph cuts. In
the end, an expansion algorithm [15] is used to optimize
every pixel. Comparable to CIS, superpixels (via pseudo-
boolean optimization (PB) [8]) obtain higher computational
efficiency by simplifying two pseudo-boolean functions. Fur-
thermore, another graph-based approach for images, name
the entropy rate superpixels (ERS) [7], generates superpixels
utilizing an objective entropy rate function. The entropy rate
function can be computed based on the elements of a color
term and a boundary term. Conrad et al. [6] describe contour
relaxed superpixels (CRS) based on maximum accordance of
the contours. The maximum accordance of the contours is
calculated by the image content and a Gibbs-Markov random
field model.

In contrast to graph-based methods, a classical gradient
ascent based algorithm named simple linear iterative cluster-
ing (SLIC) [5] adapts a local k-means clustering algorithm
to group superpixels in five-dimensional space defined by
L, a, b in the CIELAB color space. Subsequently, Bergh et
al. [4] introduce superpixels extracted via the energy-driven
sampling (SEEDS) algorithm, which clusters superpixels
based on a hill-climbing optimization framework. Inspired
by SLIC and the watershed algorithm [16], Neubert et al. [3]
achieve faster preemptiveSLIC and compact watershed (CW)
for superpixels. Recently, Weikersdorfer et al. introduced
the depth-adaptive superpixels algorithm (DASP) [9]. This
method calculates the density of superpixel clusters from a
depth map and clusters pixels using k-means. Nevertheless,
this method is time-consuming and therefore not suited
for real-time applications. In a review of superpixel ap-
proaches [17], Stutz et al. summarized and compared several
superpixel segmentation methods from 2003 to 2013.

Our over-segmenting method belongs to the category of
gradient ascent based approaches with a focus on improved
runtime and quality based on a gradient map by the MCW
transform.

III. GRADIENT MAP BASED SUPERPIXEL
SEGMENTATION

In this section, we describe the details of our approach.
Our superpixel segmentation method incorporates color and
depth values using a gradient map on a MCW transform.
Hence, the herein proposed improvements regarding the
watershed transform may be divided into two parts:

• Firstly, we calculate a gradient map from RGB or RGB-
D images, which should give distinct contours. The
depth information enhances curves even if the color
distributions are homogeneous.

• Secondly, we optimize the termination condition of the
watershed transform by a gradient map to accelerate the
algorithm.
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Fig. 2. Gradient images.

A. Gradient Map

A gradient map characterizes the directional variations in
an intensity image. It captures the variation and orientation
from a disorganized image matrix. In our case, we first
convert the color image into a gray image and extract the
gradient map from gray and depth cues by a Sobel filter.

Based on gradient images, boundary pixels correspond
to large gradient values, the direction of a boundary pixel
is perpendicular to the gradient direction. Fig. 2(b) and
Fig. 2(c) show gradient magnitude maps from RGB and
depth image respectively. Additionally, we can obtain an
enhanced gradient map by combining gradient maps from
the color image and the depth image, as shown in Fig. 2(d).
As mentioned above, the gradient map therefore captures
boundary features, that may be used to initialize markers in
order to accelerate the watershed transform.

B. Marker-controlled Watershed Transform

In the segmentation stage, we use the MCW transform,
which is a fast and efficient technique proposed by Beucher
and Meyer [16]. Neubert et al. [3] integrate a controllable
compactness constraint to improve the compactness and the
shape of watershed superpixels. Our approach is an extension
of Neubert’s method, incorporating the gradient map with a
watershed transform.

In our method, we first choose local gradient minima as
markers by a gradient map. The markers are essentially seed
points which are able to initialize the segmentation algo-
rithm. Every initial marker has a corresponding watershed
region, thus the size of markers is the same as the resultant
number of superpixel regions. The distribution of markers
exerts an influence on the segmentation result. The markers
then start to spread repeatedly pixel by pixel until they catch
a border around another marker.

We utilize a simple distance function Dist measuring
the dissimilarity of two adjacent pixels (p, q) in an image.
We approximate the dissimilarity by the maximum absolute
distance in the three color channels (RGB) as:

DistRGB(p, q) = max{|pR−qR|, |pG−qG|, |pB−qB |} (1)

Similarly, an distance function in an depth image can be
calculated as:

DistD(p, q) = |pD − qD| (2)

As a consequence, the measurement of RGB-D is defined as
follows:

DistRGBD(p, q) = α·DistRGB(p, q)+(1−α)·DistD(p, q)
(3)

D is a scaled depth map from a raw depth image. We set
the mixture parameter α to 0.5, effectively leading to a
uniform influence of RGB and depth values during MCW
segmentation.

In addition, a 4-neighborhood distance function (Dist4n)
of pixel p with its four adjacent points in an image can be
defined as:

Dist4n(p) = min
n=l,t,r,b

{DistRGB(D)(p, pn)} (4)

p hereby represents the current pixel, n represent one of the
four adjacent neighbors, with pl, pt, pr and pb being adjacent
pixels from left, top, right and bottom of p, respectively.
The gradient based superpixels method (gWatersheds) is
summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

For our experiments, we benchmarked on the publicly
available NYU RGB-D dataset published by Silberman
et al. [11]. The dataset includes 869 RGB-D images for
training, acquired from diverse indoor scenarios with low-
contrast objects and complex background. It also includes
ground truth data. Due to depth image preprocessing, the
effective resolution of the images in the dataset is cropped
to [608×448]. Therefore, the dataset comprises same sensor
data conditions as we expect in the case of our mobile
MetraLabs Scitos G5 indoor service robot equipped with a
Microsoft Kinect [18], [19].

We compare our method to seven state-of-the-art su-
perpixel algorithms, namely: constant intensity superpixels
(CIS) [14], superpixels via pseudo-boolean optimization
(PB) [8], entropy rate superpixels (ERS) [7], contour re-
laxed superpixels (CRS) [6], simple linear iterative clustering
(SLIC) [5], superpixels extracted via energy-driven sampling
(SEEDS) [4], [17], preemptiveSLIC and compact watershed
(CW) [3], respectively. For evaluation of segmentation qual-
ity, we focus on three evaluation metrics: runtime, boundary
recall and undersegmentation error.

A. Runtime Analysis

Runtime is a vital performance indicator in real-world
applications for robots. Real-time superpixel algorithms are
fundamental for subsequent image processing. Hence, we
first give the average runtime comparison in Table I. All
experiments were performed on an Intel Core i5-4590 CPU
at 3.30 GHz and 4 GB RAM.

The results show that our method may run on common
hardware at about 60Hz (15ms per frame), and therefore



TABLE I
RUNTIMES OF SEVERAL STATE-OF-THE-ART ALGORITHMS FOR DIFFERENT SEGMENT NUMBERS N ON THE NYU DATASET.

Time in ms N = 25 N = 50 N = 100 N = 200 N = 400 N = 800 N = 1600 N = 3200
Average

time
CIS [14] 7934.86 9305.06 9885.98 10086.10 10197.10 10086.60 9880.60 9621.69 9624.75

CRS [6] 235.52 279.92 309.22 368.06 456.39 575.59 726.78 926.19 484.71

PB [8] 42.35 42.46 42.49 42.54 42.60 42.61 42.64 42.68 42.55

SEEDS [4], [17] 138.12 146.05 136.46 113.31 156.64 147.44 187.59 172.35 149.74

SLIC [5] 129.90 134.21 135.54 139.00 140.77 141.79 142.18 142.49 138.23

preemptiveSLIC [3] 34.22 32.65 32.67 32.95 33.60 34.28 34.85 35.20 33.80

CW [3] 15.00 15.10 15.17 15.23 15.24 15.25 15.25 15.27 15.19

gWatershed (ours) 15.01 15.27 15.42 15.53 15.62 15.72 15.92 15.96 15.56

gRGBDWatershed (ours) 17.78 17.82 17.83 17.87 17.92 17.94 17.91 17.82 17.87

Algorithm 1 gWatersheds
Input: RGB or RGB-D images I
Output: Superpixels map S

1: Initialize array of queues Q[256]: each queue Q[h] serves
as a FIFO queue over the heightmap values h ∈ [0, 256);

2: Generate an initial watersheds area: initialize a zero
matrix S, set all the border values of S to Sborder = −1
and sample K > 0 seeds over S using gradient values;

3: // Initially process S and fill queues
4: for each pixel p(i, j) ∈ I and s(i, j) ∈ S do
5: if s(i, j) == 0 then compute gradient G(i, j);
6: if G(i, j) is border then s(i, j) = Sborder;
7: end if
8: end if
9: if s(i, j) == 0 ∧ (s(adj(i, j)) > 0) then

10: Calculate queue index hp = Dist4n(p);
11: Push pixel (i, j) into Q[hp];
12: s(i, j) = SinQ = −2;
13: end if
14: end for
15: // Process elements in queues until empty
16: for h from 0 to 255 do
17: while Q[h] not empty do
18: Pop pixel index (x, y) from Q[h];
19: for ∀ai ∈ adj(x, y) do
20: if s(ai) == 0 then
21: hai = DistRGB(D)(p(x, y), p(ai));
22: Push pixel ai into Q[hai ];
23: s(ai) = SinQ = −2;
24: else
25: for ∀aj ∈ adj(x, y) ∧ i < j do
26: if s(ai) > 0 ∧ s(aj) > 0
27: ∧(s(ai) 6= s(aj)) then
28: s(x, y) = Sborder;
29: end if
30: end for // adjacent aj
31: end if
32: end for // adjacent ai
33: end while // Q[h]
34: end for // h
35: if Queues not empty then Repeat from 16;
36: end if
37: return S;

gives us the desired real time performance. This is mainly
due to the watershed method, our focus on simple distance
metrics and the use of a gradient map to initialize the markers
to speedup the segmentation process. It is also the fastest
method, although only a minor improvement is achieved
in comparison with CW. CIS and CRS belong to more
sophisticated graph-based superpixel algorithms and feature
higher runtimes (> 480ms), as compared to other methods.
This is reasonable due to the computational complexity of
those methods.

Table I also summarizes the dependency of the tested
methods on the number of superpixels. Besides CRS, none of
the evaluated methods features major run time impact with
a higher number of segments.

Overall, PB, preemptive SLIC, CW and the proposed
method may be considered as suitable for real time appli-
cations. Nevertheless, taking into account superpixels as a
preprocessing step in a multi-stage application pipeline, even
small gains in performance may be considered crucial for the
real time suitability of the whole system.

B. Boundary Recall

Boundary recall is defined as the part of ground truth
edges, which is within a certain distance d from a superpixel
boundary. In order to evaluate the length of the boundaries
in the image, we use both boundary precision as well as
recall. Assuming Igt to be a ground truth boundary of the
image, and Ib to be the boundary calculated by superpixel
segmentation method, TP(Ib, Igt), FN(Ib, Igt) and BR(Ib, Igt)
represent true positives, false negatives and boundary recall,
respectively:

BR =
TP (Ib, Igt)

TP (Ib, Igt) + FN(Ib, Igt)
(5)

where TP is defined as the number of boundary pixels in Igt
with at least one boundary pixel in Ib in range d.

In contrast, the number of boundary pixels in Igt is
denoted by FN so that there is no boundary pixel found
in Ib in range d. The boundary recall is expected to be high
in order to make superpixels respect boundaries in an image.

As shown in Fig. 3, our methods (red curve from RGB im-
age and green curve from RGB-D images) perform slightly
better than SEEDS and CW. It is worth mentioning that the
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Fig. 3. Boundary recall with different algorithms on the NYU database.
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Fig. 4. Under-segmentation errors on the NYU database.

running time of our method is more than 8 times faster than
SEEDS.

C. Under-segmentation Error

Under-segmentation error (UE) is used for evaluating the
ability of recovering the ground truth object segments using
the combination of superpixels. For this purpose, a significant
penalty is applied on each superpixel which does not properly
overlap with a ground truth segmentation. Algorithms with
a high boundary recall are usually subject to a high under-
segmentation error. According to [5], this computation of the
UE metric is quantified as follows:

UE =
1

N

∑
G∈GT

∑
SP :SP∩G 6=φ

min(SPi, SPj) (6)

where N is the number of pixels in an image, G is a
ground truth segment, and SPi as well as SPj are superpixel
segments of SP divided by G.

The results in Fig.4 indicate that the under-segmentation
error of our method is slightly higher compared with SEEDS,
which exhibits the lowest under-segmentation error, and
comparable to most other methods.

Fig. 6. Saliency map examples. Raw color image samples (top row),
superpixel segmentation results (400 superpixels) (second row), mean of
image elements (the third row) and saliency maps based on [20] using
superpixels (bottom row).

Overall, our method features the best boundary recall with
moderate undersegmentation errors at lowest run times, and
therefore may be considered a good alternative to other
existing state-of-the-art approaches.

In addition to the quantitative performance evaluation, we
also give a visual comparison of the segmentation results
of all participating oversegmentation methods. As shown in
Fig. 5, rows represent the different superpixel algorithms and
columns three different image samples, respectively. Image
samples were taken from the NYU RGB-D dataset [11].

D. Sample Application

As we mentioned earlier, superpixels are an effective tech-
nique to abstract large numbers of pixels from perceptually
uniform region in an image. These clustered segments may
for example be used to drastically reduce the complexity of
salient object detection. Fig. 6 shows the results of object
saliency detection using superpixels as proposed in [20] and
serves as a proof of concept as well as an interesting topic
for future work.

V. CONCLUSION

In this paper we proposed a fast over-segmentation method
for growing homogeneous pixels into superpixels in an im-
age. In contrast to previous algorithms, we utilized the MCW
transform based on a gradient map. Due to the low runtime
complexity of the watershed segmentation, we obtained an
efficient superpixel method that delivers results comparable
to the state-of-the-art. Experimental results highlight the
speed and robustness of the proposed method, with average
runtimes being at approximately 15ms per frame. As such,
the proposed method may represent a serious alternative



Fig. 5. Visual appearance of the segments obtained by different state-of-the-art algorithms. Image samples taken from the NYU Depth Dataset [11]. For
all approaches parameters were chosen to produce around 400 superpixels. The algorithm name and reference from left-top-row to right-bottom-row: CIS
[14], CRS [6], SEEDS [17], SLIC [5], PB [8], preemptiveSLIC [3], CW [3] and the proposed gWatershed algorithm.

to other state-of-the-art approaches, especially if runtime
is crucial. Since superpixels maintain the uniqueness and
consistency of different objects and decrease computational
complexity for later pipeline stages, the application of the
proposed method is also highly suitable for vision-based
tasks in mobile robotics.
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