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Abstract— Traversable region detection is important for au-
tonomous visual navigation of mobile robots. Only short range
traversable regions can be detected using traditional methods
based on stereo vision because of the limited image resolution
and baseline of stereo vision. In this paper, we propose a novel
method to detect long range traversable regions without using
any supervised or self-supervised learning process. Superpixels
are clustered using an improved spectral clustering algorithm
to segment the image effectively, and after integrating short
range traversable region detection based on u-v-disparity, the
traversable region can be extended to long range naturally.
The experimental results show that the proposed method works
well in different outdoor/field environments, and the detecting
range can be improved greatly in comparison with traditional
methods. Furthermore, the proposed superpixels clustering
algorithm can also be applied in other robot vision tasks like
road detection and object recognition.

I. INTRODUCTION

To realize autonomous navigation, mobile robots should
be able to detect traversable regions which we define as
the regions that do not contain geometric obstacles in the
environments. In comparison with laser scanners and ultra-
sonic sensors, stereo vision can provide richer information
including color, texture and depth, and thus has become
increasingly popular in this research topic. Stereo vision
can measure the ranges to objects by calculating dispari-
ties between stereo images. After acquiring the disparities,
traversable regions or obstacles can be detected robustly
and efficiently using a series of approaches based on u-v-
disparity.

V-disparity was originally introduced by Labayrade, et al.
[1] aiming at detecting obstacles, where v is the ordinate of a
pixel in the (u, v) image coordinate system. By accumulating
pixels with the same disparity value d in each row, a v-
disparity image (d, v) can be built. In the v-disparity image,
perpendicular obstacles can be mapped to vertical lines
whose pixel intensity represents the width of the obstacles,
and the traversable region modelled as a succession of planes
can be projected as slanted line segment, also named as
ground correlation line in [2]. Hu, et al. [3] proposed the
concept of u-v-disparity. Similar to a v-disparity image, a
u-disparity image is built by accumulating pixels with the
same disparity value d in each column, where perpendicular
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obstacles can be mapped to be horizontal lines whose pixel
intensity represents the height of the obstacles. So line
detection algorithms like the Hough transform can be used
to detect traversable regions and obstacles for mobile robots.

Although the u-v-disparity methods mentioned above
work, only short range traversable regions can be detected,
generally less than 10 meters [4]–[6]. At long ranges, the
range/disparity data become too sparse or noisy to evaluate
the traversability because of the limitations on resolution and
baseline of stereo vision. The typical results can be found
in Fig. 1. In this case, optimal path planning may not be
realized, and mobile robots may drive into long cul-de-sacs,
so the efficiency of visual navigation will be reduced greatly.
To deal with this problem, the most famous work is using
self-supervised online learning or near-to-far learning, to
generalize short-range classification from stereo-based geom-
etry to long-range classification from imagery [5]–[8]. The
general steps are as follows: detecting a traversable region
locally with stereo data, selecting features from the classified
terrain, then learning a two-class classifier for traversable and
non-traversable regions using supervised learning algorithms
like support vector machine (SVM), and finally applying the
classifier to classify long-range data.

However, humans can perceive the environment and find
traversable regions by analysing the scene images naturally
without a learning process. So our question is: is it possible
to detect long range traversable regions just by image pro-
cessing without any supervised or self-supervised learning
process?

During the past decade, superpixels have become increas-
ingly popular in computer vision applications, because they
capture redundancy in the image and reduce the complexity
of subsequent image processing tasks [9] [10]. Especially
some recent implementations of the superpixel algorithm
[11] can be run in real-time, which makes them possible to
be used in robotics application. Good superpixel algorithms
can adhere well to image boundaries, which benefits image
analysis like semantic image segmentation. In this paper,
we propose to cluster superpixels with an improved spectral
clustering algorithm to segment the image into different
regions with semantic meaning, and then extend the short
range traversable region detected by a u-v-disparity based
method to long range naturally, as shown in Fig. 1.

The next sections are organized as follows: the framework
of our long range traversable region detection method will
be proposed in section II; short range traversable region
detection based on u-v-disparity will be introduced briefly in
section III; in section IV, we propose to cluster superpixels
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Fig. 1. (1st column) The original left images from stereo vision. (2nd column) Short range traversable region detection results (green) using
the u-v-disparity method. (3rd column) The generated superpixels using the Preemptive SLIC algorithm. (4th column) The superpixels
clustering results using the improved spectral clustering algorithm. (5th column) The final long range traversable region detection results
(green) using the proposed method. The images in the 1st∼4th rows are from the LAGR dataset [12], and the image in the 5th row is
acquired on the NUDT campus by the NuBot rescue robot.

with an improved spectral clustering algorithm, and then
extend the detected short range traversable region in section
III to long range; experimental results with different datasets
are presented in section V, and the real-time performance is
also discussed; section VI concludes this paper.

II. LONG RANGE TRAVERSABLE REGION
DETECTION FRAMEWORK

In this section, we propose the framework of our long
range traversable region detection method, as shown in Fig.
2. After the left and right image are acquired by stereo vision,
we calculate the disparity information using stereo matching,
and detect short range traversable regions in the left image
based on u-v-disparity. Then we use a fast version of the
SLIC superpixels algorithm, namely Preemptive SLIC [11],
to segment the left image into superpixels. After extracting
color and texture features from each superpixel, we cluster
the superpixels to segment the image into several regions
with semantic meaning using an improved spectral clustering
algorithm. By integrating short range detection results, the
traversable region can be extended to long range naturally

without any supervised or self-supervised learning process.
The proposed method is introduced in detail in the following
sections.

III. SHORT RANGE TRAVERSABLE REGION
DETECTION BASED ON U-V-DISPARITY

In the first author’s earlier research [13], an efficient
algorithm was proposed to detect traversable region based
on u-v-disparity which is similar as the work in [14]. The
algorithm is divided into the following steps:

• Generating the disparity image: after acquiring the left
image and right image from stereo vision, we generate
the disparity image firstly by applying ELAS (Efficient
LArge-scale Stereo Matching) [15], which performs
quite well and fast even in relatively low-textured im-
ages.

• Calculating the obstacle disparity image and the non-
obstacle disparity image: considering that traversable
regions can be projected to be slanted line segments,
called ground correlation lines, in the v-disparity image,

547



Fig. 2. The framework of the proposed long range traversable region detection method.

and the affection from non-traversable regions in the v-
disparity image would make it difficult to detect correct
ground correlation lines, we calculate the obstacle dis-
parity image by binarizing the u-disparity image and
performing a morphological close operation, and then
generate the non-obstacle disparity image by subtracting
the obstacle disparity image from the disparity image.
The final v-disparity image can be calculated from the
non-obstacle disparity image. During this process, the
affection from non-traversable regions mentioned above
can be removed as much as possible.

• Detecting the ground correlation line and projecting
back: the ground correlation line can be detected easily
by using the Hough transform, and traversable regions
can be detected by projecting back all pixels in the v-
disparity image that contribute to the ground correlation
line on the left image.

The typical stereo images and traversable region detection
results are shown in Fig. 3. More details about this algorithm
can be found in [13], where experimental results show that
the algorithm works well in various environments. However,
because of the limitation of imaging resolution and baseline
of stereo vision, only short range traversable regions can be
detected, which reduces the efficiency of visual navigation,
especially for long range path planning.

IV. LONG RANGE TRAVERSABLE REGION
DETECTION BASED ON SUPERPIXELS

CLUSTERING

Superpixels have become a good pre-processing step to
reduce the computation cost of subsequent processing for
many vision applications. In this paper, we propose to cluster
superpixels according to the color and texture information
from each superpixel, so the image can be segmented into
different regions with semantic meaning, which will be used
to extend the detected short range traversable region into long
range.

A. Generating superpixels using Preemptive SLIC

Simple linear iterative clustering (SLIC) [9] is a good algo-
rithm to generate superpixels that adhere to image boundaries
with computational and memory efficiency. However, the

(a) (b)

(c) (d)

(e) (f) (g)

(h)

Fig. 3. (a)(b) The left and right image acquired on the NUDT campus by
the NuBot rescue robot. (c) The disparity image. (d) The obstacle disparity
image. (e) The non-obstacle disparity image. (f) The final v-disparity image.
(g) The detected ground correlation line (red). (h) The detected traversable
region (green).
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computation cost is still too high on a standard desktop
CPU for robot vision applications. In [11], Neubert, et
al. present an adaption of SLIC, Preemptive SLIC, that
preserves the high segmentation quality level of the original
implementation and can be run in real-time. So we use
Preemptive SLIC to generate superpixels on the left image
from stereo vision, as shown in Fig. 1 and Fig. 4. In this
paper, about 200 superpixels are generated from each image.

B. Extracting color and texture features from superpixels

After obtaining the superpixels, some feature should be
extracted before clustering them. In this paper, we consider
color and texture features that compliment each other. For
the color feature, we first transform the image into HSV
space, which is more robust to varying illumination than
RGB space, and then extract a color histogram from each
superpixel. In constructing the color histogram, the H, S, and
V channel are discretized into 9, 8, and 6 bins respectively,
which were determined experimentally. The dimension of the
color histogram feature is 432.

Because the superpixels are not regular and fixed in shape,
we calculate a texture value for each pixel, and then construct
a histogram within each superpixel as the texture feature
similar as that in the color histogram. We compared several
methods with very low computation complexity to compute
the texture value, including local binary patterns (LBP) [16],
center-symmetric local binary patterns (CS-LBP) [17], local
ternary patterns (LTP) [18], Weber’s law descriptor (WLD)
[19], and local homogeneity [20], and we found WLD
performs best in our case. We compute the WLD value Iwld

on the pixel xc as follows:

Iwld = arctan[

7
∑

i=0

(xi − xc) ∗ 3

xc
] (1)

where xi(i = 0, ..., 7) are the eight neighbours of xc. After
normalizing Iwld into [0, 255], we can construct a histogram
within each superpixel as the texture feature. The dimension
of the texture feature is 256. The WLD values computed
from Fig. 3(a) are shown in Fig. 4(b). Finally, we acquire
the feature set {c1, ..., cn} and {t1, ..., tn} from each image,
where ci and ti are the color and texture feature respectively,
and n is the number of superpixels.

C. Clustering superpixels using improved spectral clustering

As one of most popular modern clustering algorithms,
spectral clustering often performs better than traditional
algorithms like K-means [21]. Given a dataset {s1, ..., sn},
the original spectral clustering can be described as follows:

• Construct the affinity matrix A ∈ Rn×n, where Ai,j =
exp(−d(si, sj)

2/2σ2), when i 6= j, and Ai,j = 0, when
i = j. d(si, sj) is the distance between si and sj .

• Compute the degree matrix D, where Di,i =
∑n

j=1
Ai,j , and the normalized affinity matrix L =

D−1/2AD−1/2.
• Assuming 1 = λ1 ≥ λ2 ≥ ... ≥ λk be the k largest

eigenvalues of L, where k is the number of expected

clusters, construct the matrix V = [v1, v2, ..., vk] ∈
Rn×k, where v1, v2, ..., vk are the corresponding eigen-
vectors.

• Form the matrix Y from V by normalizing each
of V ’s rows to have unit length, where Yi,j =

Vi,j/(
∑k

j=1
V 2
i,j)

1/2.
• Treat Yi, each row of Y , as a point in Rk, and cluster

{Y1, ..., Yn} into k clusters via the K-means algorithm
to obtain the final clustering of the original dataset.

In our case, si = {ci, ti}. We calculate d(ci, cj) and
d(ti, tj) by matching the feature histograms. We compared
Correlation, Chi-Square, Intersection, Bhattacharyya, Eu-
clidean distance and Earth Mover’s Distance (EMD), and
found that the Correlation distance is best for our application.
Taking d(ci, cj) as an example, it is calculated as follows:

1.0− (

∑L
l=1

(ci(l)− c̄i)(cj(l)− c̄j)
√

∑L
l=1

(ci(l)− c̄i)2
∑L

l=1
(cj(l)− c̄j)2

+ 1.0)/2.0

(2)
where c̄i =

∑L
l=1

ci(l)/L, and L is the dimension of
the histogram. The smaller d(ci, cj) means smaller distance
between ci and cj .

Then we combine the color feature and the texture feature
with adaptive weights. When comparing the mean value of
all d(ci, cj), namely d̄c, and the mean value of all d(ti, tj),
namely d̄t, we assume that a larger value means better dis-
crimination between the superpixels using the corresponding
feature, so we calculate d(si, sj) as follows:

d(si, sj) = d(ci, cj) ∗
d̄c

d̄c + d̄t
+ d(ti, tj) ∗

d̄t

d̄c + d̄t
(3)

We also modify the original spectral clustering algorithm
as follows:

• Because σ is a kind of scale parameter needed to be set
when constructing the affinity matrix A, we calculate
it autonomously by maxn

i=1(minn
j=1d(si, sj)), where

i 6= j.
• We decide the number of clusters k autonomously

according to the eigenvalues. For 1 = λ1 ≥ λ2 ≥ ... ≥
λn, we set k = 1 + argi(max|λi − λi+1|λi 6=1).

• The K-means algorithm used in the final step of spectral
clustering converges quickly to a local optimum, so the
initial setting of cluster centers will affect the clustering
results, and it is not good to choose initial cluster centers
randomly. We adopt the following method to choose ini-
tial centers by maximizing the distances between them:
choosing the first center from {Y1, ..., Yn} randomly,
and then choosing the other k − 1 centers one by one
from {Y1, ..., Yn} with the largest distance to the already
chosen centers. Good clustering results can be achieved
using this method, as shown in Fig.1 and Fig. 4.

D. Extending the traversable region into long range

Using the improved spectral clustering algorithm, we can
segment the image into several regions with sort of semantic
meaning effectively, like ground with soil, ground with
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(a) (b)

(c) (d)

Fig. 4. The processing results on Fig. 3(a). (a) The generated superpixels
using Preemptive SLIC. (b) The computed WLD values. (c) The superpixels
clustering results using the improved spectral clustering algorithm. (d) The
final long range traversable region detection results (green).

grass, ground with shadows, etc. Then we can extend the
detected short range traversable region naturally using a
simple strategy: for each clustered region, if over 50% of its
area are within the detected short range traversable region,
the whole clustered region is considered to be traversable.
The union of the short range traversable region and these
traversable clustered regions make up the final long range
traversable region, as shown in Fig.1 and Fig. 4.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setup

We use two challenging datasets to test our proposed long
range traversable region detection method. The first one is a
publicly available dataset from the LAGR project including
six image sets [12], which were acquired by the robot
equipped with a Bumblebee2 stereo vision system developed
by Point Grey on different field environments with different
terrain appearances and under different lighting conditions.
There is a sequence of 100 images in each image set. The
manually labelled results are provided as ground truth, where
each pixel is classified to be one of three classes: obstacle,
ground plane (traversable region), and unknown. The second
dataset was acquired on the NUDT campus by the NuBot
rescue robot developed by the first author’s research group
in NUDT, as shown in Fig. 5. The robot is also equipped
with a Bumblebee2 stereo vision system. The typical images
from these two datasets are shown in Fig. 1 and Fig. 3.

B. The experimental results

Because ground truth is provided in the LAGR dataset, we
can evaluate the performance of our method with quantitative
results. Three criteria are used: precision, recall, and root-
mean-square error (RMSE). They are defined as follows:

precision =
TP

TP + FP
(4)

Fig. 5. The NuBot rescue robot equipped with a Bumblebee2 stereo vision
system.

recall =
TP

TP + FN
(5)

where TP is the number of pixels which are detected as
traversable correctly, TP+FP is the number of pixels which
are detected as traversable, and TP + FN is the number of
pixels which belong to ground truth traversable region.

RMSE =

√

√

√

√

N
∑

i=1

(ŷi − yi)2/N (6)

where ŷi and yi belong to {0,1}, N is the number of pixels
in the image, and smaller RMSE means better performance.
ŷi = 1 means that the corresponding pixel is detected as
traversable, and 0 means non-traversable. yi = 1 means
that the corresponding pixel is traversable, and 0 means
non-traversable according to ground truth. In this paper,
we consider the obstacle class and unknown class as non-
traversable.

The performance of our method is shown in Table I when
testing with each image set of the LAGR dataset. The typical
results are demonstrated in Fig. 1. We also test our method
using our own dataset, and the typical results are shown
in Fig. 1 and Fig. 4. More results on these two datasets
can be found on our submitted accompanying video. The
detection rate of traversable regions can be improved greatly
with only a small reduction on the detection precision using
our proposed method in comparison with the traditional
method based on u-v-disparity. The traversable region can
be extended to long range effectively. Furthermore, because
disparity information can only be generated within the part
of the left image with corresponding points in the right
image, parts of short range traversable region are missing
when using the method based on u-v-disparity. Most of these
missing traversable regions can also be detected using our
method. In comparison with the near-to-far learning method
[7] using the same LAGR dataset and the same performance
criteria RMSE, the performance of our method is comparable
to the baseline near-to-far learning method (mean RMSE =
0.2692 and 0.273 respectively), although no supervised or
self-supervised learning process is needed in our method.

We test the performance of our method when only using
the color feature or the texture feature. As shown in Table
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TABLE I

THE STATISTICS ON THE PERFORMANCE OF OUR PROPOSED METHOD IN COMPARISON WITH SHORT RANGE DETECTION RESULTS BASED ON

U-V-DISPARITY. THE PERFORMANCE OF OUR METHOD WHEN ONLY USING THE COLOR FEATURE OR THE TEXTURE FEATURE, AND USING THE

ORIGINAL SPECTRAL CLUSTERING BY CHOOSING THE INITIAL CLUSTER CENTERS RANDOMLY IN THE K-MEANS STEP IS ALSO PRESENTED.

DS1A DS1B DS2A DS2B DS3A DS3B mean value
the method based on u-v-disparity 0.9919 0.9772 0.9537 0.9525 0.9815 0.9924 0.9749

our proposed method 0.9706 0.9293 0.9186 0.9213 0.9535 0.9779 0.9452
precision only using the color feature 0.9742 0.9251 0.9163 0.9150 0.9556 0.9787 0.9441

only using the texture feature 0.9732 0.9202 0.8438 0.8505 0.9472 0.9525 0.9146
choosing initial cluster centers randomly 0.9722 0.9307 0.9208 0.9222 0.9504 0.9789 0.9459

the method based on u-v-disparity 0.8212 0.8154 0.8382 0.8154 0.7616 0.5283 0.7634
our proposed method 0.9170 0.9495 0.9400 0.9116 0.8884 0.8003 0.9011

recall only using the color feature 0.9178 0.9488 0.9344 0.9117 0.8707 0.7697 0.8922
only using the texture feature 0.9030 0.9041 0.9347 0.9184 0.8769 0.7275 0.8775

choosing initial cluster centers randomly 0.9147 0.9472 0.9342 0.9076 0.8888 0.7959 0.8981
the method based on u-v-disparity 0.3277 0.3092 0.3210 0.3380 0.3282 0.4820 0.3510

our proposed method 0.2521 0.2347 0.2662 0.2856 0.2545 0.3224 0.2692
RMSE only using the color feature 0.2459 0.2391 0.2743 0.2927 0.2680 0.3419 0.2770

only using the texture feature 0.2632 0.2791 0.3450 0.3511 0.2693 0.3854 0.3155
choosing initial cluster centers randomly 0.2528 0.2356 0.2697 0.2885 0.2571 0.3256 0.2715

I, the experimental results verify that the performance can
be improved by using these two features together to cluster
superpixels. We also compare the performance when using
the improved spectral clustering algorithm or the original
version by choosing the initial cluster centers randomly in
the K-means step, as shown in Table I. Better performance
can be achieved by using the improved spectral clustering
algorithm. It is worth mentioning that even small improve-
ments in the performance criteria are very valuable, because
the traversable regions at long range only occupy small part
of the image.

C. The real-time performance

We test the real-time performance of our method using 150
frames of stereo images from our own dataset. The needed
computation time to perform each step is shown in Fig. 6.
The dimension of the image is 640*480, and the computer
is equipped with a 2.4GHz i7 CPU and 4GB memory. We
find that the mean computation time is about 191ms, and
only 5 frames of stereo images can be processed to detect
long range traversable region. However, most of the time,
about 104ms, is consumed by generating the disparity using
stereo matching, so when using an RGB-D sensor which
can output the disparity already, or using FPGA hardware
to perform stereo matching, long range traversable regions
can be detected at a frame rate of 11 fps. It is acceptable
for visual navigation of mobile robots, because in our case,
traversable regions are detected at long range, which does
not need to be done for each frame of stereo images.

D. Discussions

Besides traversable region detection, our superpixels clus-
tering algorithm can be used as a preprocessing step directly
in many other robot vision tasks, like object recognition
for service robots and road detection for unmanned ground
vehicles, as shown in Fig. 7.

Although experimental results show that our method works
well in different outdoor/field environments, the clustering
results should be improved in some cases. As shown in
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time to detect traversable region based on u−v−disparity
time to generate superpixels by Preemptive SLIC
time to extract color and texture features
time to cluster superpixels and detect long range
traversable region

Fig. 6. The needed computation time to detect long range traversable
region using the proposed method.

Fig. 8(a)(b), the clustering results are not always optimal
or sometimes even wrong. There are also many situations
which are difficult for our method to deal with. As shown
in Fig. 8(c)(d), the image appearance is affected greatly by
strong sunshine and shadows, so the clustering results are
right but still not good for traversable region detection. Better
features should be extracted from superpixels to improve our
method and make it more robust to extreme environmental
conditions.

VI. CONCLUSIONS

In this paper, we focus on detecting long range traversable
regions without using any supervised or self-supervised
learning algorithm. We proposed to cluster superpixels using
an improved spectral clustering algorithm, so the image can
be segmented into several regions with sort of semantic
meaning effectively. After integrating short range traversable
regions detected using a u-v-disparity based method, the

551



(a) (b)

(c) (d)

Fig. 7. (a)(b) The superpixels clustering results for object recognition.
(c)(d) The superpixels clustering results for road detection. The toy and
road regions can be segmented successfully.

(a) (b)

(c) (d)

Fig. 8. (a)(b) The superpixels clustering results are not always optimal or
sometimes even wrong. (c)(d) The superpixels clustering results are right but
still not good for traversable region detection because of the great affection
from strong sunshine and shadows.

traversable region can be extended into long range natu-
rally. The experimental results show that our method works
well in different outdoor/field environments, and long range
traversable regions can be detected efficiently for visual
navigation of mobile robots.
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