
DCTAM: Drift-Corrected Tracking and Mapping for Autonomous
Micro Aerial Vehicles

Sebastian A. Scherer1, Shaowu Yang2 and Andreas Zell1

Abstract— Visual odometry, especially using a forward-
looking camera only, can be challenging: It is doomed to fail
from time to time and will inevitably drift in the long run. We
accept this fact and present methods to cope with and correct
the effects for an autonomous MAV using an RGBD camera as
its main sensor. We propose correcting drift and failure in visual
odometry by combining its pose estimates with information
about efficiently detected ground planes in the short term and
running a full SLAM back-end incorporating loop closures and
ground plane measurements in pose graph optimization. We
show that the system presented here achieves accurate results on
several instances of the TUM RGB-D benchmark dataset while
being computationally efficient enough to enable autonomous
flight of an MAV.

I. INTRODUCTION

A. Problem Definition

Vision-based aerial robots are an increasingly popular re-
search topic. Its focus is on the goal of enabling autonomous
flight of robots using cameras as their main sensors, prefer-
ably in previously unknown environments. A very crucial
problem is pose estimation, since accurate pose estimates are
required for even most basic tasks, e.g. controlling a MAV
to hold its position or to follow a desired trajectory. This is
typically addressed by employing visual odometry on vision-
based aerial robots. Robots flying in unknown environments
are also required to map their surroundings. In order to create
consistent maps, it is thus also required to solve the SLAM
(simultaneous localization and mapping) problem.

B. Related Work

There is a plethora of work aimed at enabling MAVs with
RGBD or stereo cameras to fly autonomously already, but
we need to limit ourselves to the work most relevant to
this research. Bachrach et al. in [1] describe an autonomous
quadrotor using an RGBD camera as its main sensor, which
computes visual odometry on its on-board computer and re-
lies on a separate external computer for SLAM and planning
paths, which are then sent back to the MAV.

The MAV described by Schmid et al. in [2] relies on stereo
vision, with dense stereo matching performed in hardware on
an FPGA, and computes visual odometry and even 3D re-
constructions for semi-autonomous navigation with obstacle
avoidance on-board. It does not perform full SLAM, which

1Sebastian A. Scherer and Andreas Zell are with the
Department of Computer Science, Faculty of Science, University
of Tuebingen, Tuebingen, Germany. {sebastian.scherer,
andreas.zell}@uni-tuebingen.de

2Shaowu Yang is with the State Key Laboratory of High Performance
Computing (HPCL), College of Computer, National University of Defense
Technology, Changsha, China. shaowu.yang@nudt.edu.cn

is not a problem as long as it does not revisit places after
long flights.

We previously implemented and demonstrated an efficient
RGBD-SLAM system running on our autonomous MAV
in [3], which to our knowledge was the first time for an
MAV performing full RGBD-SLAM, which includes closing
detected loops and running pose graph optimization on-board
while flying.

C. General Approach

Our MAV is a quadrotor helicopter equipped with a
forward-looking Asus Xtion Pro Live RGBD camera as its
main sensor and a single-board computer with an Intel Core
2 Duo CPU hosted by a pxCOMex base board [4], which
performs all processing on-board. The main sensor is used
for visual odometry and SLAM.

Fig. 1. The quadrotor helicopter used in this work with its RGBD camera
and onboard computer.

In this work, we combine a modified version of the widely-
used visual odometry system PTAM1 (parallel tracking and
mapping, [5]) with a SLAM back-end to handle tracking
failures and closed loops to produce consistent maps in real
time on the on-board computer. We also embrace the fact that
visual odometry, especially using a forward-looking camera
only, will sometimes fail in the short term and drift in the
long run. We employ ground plane detection to make the
MAV robust to both tracking failure and long-term drift.

1PTAM can be considered both a visual odometry and visual SLAM
system. We do not consider it a full visual SLAM system here, since it
cannot explicitly find and close loops. This is not a serious problem in some
applications, especially when used in conjunction with a downward-looking
camera.

D. Contribution of this Paper

The contributions of this paper are as follows: We present
an efficient, accurate, and robust ground plane detection al-
gorithm based on RANSAC with a novel inlier/outlier/worse
outlier model described in Sect. III. We propose a fusion
method combining information about detected ground planes
with visual odometry, which allows to correct its drift in
attitude and altitude in Sect. IV. We use a heavily modified
version of PTAM as a visual odometry system, which is
described in Sect. II. We then go on to extend PTAM with a
SLAM back-end to turn it into a full SLAM system with loop
closing, pose graph optimization and incorporating ground
plane measurements, which is described in Sect. V. We prove
the accuracy of the proposed system by evaluating it on a
public RGBD benchmark dataset in Sect. VII and finally
demonstrate that our system enables a MAV to fly completely
autonomously using its on-board RGBD camera while per-
forming the full SLAM task on its on-board computer in
Sect. VIII. We publish our full software stack under an open-
source license, since we believe this stack can be useful not
only to other MAV groups: The SLAM back-end to PTAM
can also be used without ground-plane detection for bulding
consistent maps which is not possible with PTAM alone.

(a) RGB image (b) depth image

(c) full point cloud (d) ground plane visualization

Fig. 2. A typical RGBD scene encountered while flying indoors

II. PTAM AS VISUAL ODOMETRY

We use our heavily modified fork of PTAM (Parallel
Tracking and Mapping) [5] as a visual odometry system.
Our previous modifications include porting PTAM to ROS
and using depth measurements (if available) in addition to
2D measurements for map points initialization, tracking,
and bundle adjustment as described in [6]. We remove old
keyframes and corresponding map points and only keep
the most recent keyframes for tracking and local bundle
adjustment [7]. When tracking fails for a few frames, we

blindly predict the pose based on the last known velocity
before giving up on the current map and reinitializing it.

For this work, we could further improve tracking speed by
making sure that images are never copied on their way from
the camera driver to PTAM and limiting the number of map
points per keyframe by an upper boundary.

Limiting the number of map points per keyframe is
necessary since their number and thus the time required for
tracking may vary uncontrollably for different environments.
We fix this problem by disregarding all but the n best map
points per image pyramid level, ordered according to their
Shi-Tomasi score [8].

As mentioned above, we remove keyframes from PTAM
in order to limit its computational complexity. Just deleting
these keyframes forever, however, wastes useful information.
Instead, we now publish all keyframes with all their infor-
mation before they are deleted so they can be picked up by
a SLAM back-end (see. Sect. V).

III. GROUND PLANE DETECTION

During a typical indoor flight, the ground plane can be
clearly identified in most RGBD point clouds and thus
also depth images seen by the on-board camera, which is
demonstrated in Fig. 2. Our ground plane detection method
consists of the following steps: Sampling a number of sparse
3D points, detecting inliers and outliers using a custom
RANSAC scheme, robust refinement of the most promising
hypothesis based on inliers.

A. Sampling 3D Points

We sample the depth image at few sparse locations to
significantly reduce the number of depth measurements that
need to be considered. We obtain good results with consider-
ing one depth value out of a 10 × 10 grid. For a typical flight
with a forward-looking camera, we can usually disregard
the upper half of the image, since the ground plane can be
expected in the lower half of the image. Only if there are
very few valid depth measurements in the lower half, which
might be the case because the MAV is flying very close to
the ground, we fall back to considering the full depth image.

Using the intrinsic camera calibration, depth pixels are
then reprojected to 3D points.

B. Inlier/Outlier Detection

Out of all 3D points determined by sampling, only a
minor fraction might actually lie on the ground plane. We
employ a preemptive RANSAC scheme [9] with a custom
inlier/outlier/worse outlier model to quickly arrive at a well-
supported hypothesis.

We also consider the attitude estimate provided by the
on-board inertial measurement unit (IMU) to immediately
disregard hypotheses that are far off from its not always
accurate but rarely completely-off attitude estimate.

Inlier/Outlier/Worse Outlier Model: RANSAC (RANdom
SAmple Consensus) as originally described in [10] tries to
find a hypothesis which maximizes the size of its consensus
set (i.e. the number of inliers). This is also called using
an inlier/outlier model in [9], since it only considers the
fact whether a measurement is to be considered an inlier
or outlier.

Early on in our experiments, however, we found that
RANSAC with using the inlier/outlier model often fails in
ground plane detection when facing a vertical wall or in front
of a wide obstacle. A simplified 2D sketch of such a failure
case is shown in Fig. 3. Both hypotheses lead to exactly
the same numbers of inliers (7) and outliers (2), so it is
impossible to distinguish the better solution.

(a) (b)

Fig. 3. (a) A typical failure case of the basic inlier/outlier model for
RANSAC in ground plane detection and (b) the desired estimate obtained
using our proposed inlier/outlier/worse outlier model.

When trying to find ground planes, however, there are
two very different kinds of outliers which are very easy to
distinguish: Points above the ground plane are ubiquitous,
since we see walls and obstacles all the time. Points below
the ground plane, however, should be very rare: During
indoor flight on a single floor of a building, we expect to see
none except for some completely random sensor failures.

We thus introduce an inlier/outlier/worse outlier model,
which adds the following values to the score of a hypothesis:
+1 if the observation is an inlier, +0 if the observation is
a ”good” outlier above the ground plane, and −cbad with
cbad > 1 if it is a worse outlier below the ground plane.
We choose cbad = 10, which worked well in all of our
experiments. In the toy example above, hypothesis (a) would
score sa = −3 and (b) sb = 7. This means our proposed
model correctly solves this problem.

C. Robust Refinement

RANSAC will return a hypothesis which is best with
regards to its scoring function, which in turn only depends
on the number of inliers and (different kinds of) outliers,
but not necessarily the most accurate one. For accuracy, it is
required to further refine this hypothesis based on its inliers.
Since there will always be some points classified as inliers
by RANSAC that do not belong to the ground plane but to
the lower parts of obstacles, it is advisable to use a robust or
robustified method for this refinement instead of basic least
squares.

We robustify [11] the PCA method for plane fitting [12]
to refine the rough ground plane estimate obtained using
RANSAC based on its inliers.

Given N points pi = (xi, yi, zi)
T , the PCA method

assumes the plane to pass through their arithmetic mean:

µ =

∑N
i=1 wi · pi∑N

i=1 wi

(1)

And the normal of the plane should correspond to the
smallest Eigenvalue of the covariance matrix:

A =

∑N
i=1 w

2
i · (pi − µ) · (pi − µ)T(∑N

i=1 w
2
i

)
− 1

(2)

Where wi are weights for each point. The basic PCA
method for plane fitting treats all points equally, i.e.

wi = 1 ∀i (3)

In this case, equations 1 and 2 actually compute the basic
sample mean and sample covariance matrix.

A robust estimator of mean and covariance as described
in [11], however, computes the weights wi based on the
Mahalanobis distance of point pi from the current hypothesis:

wi =
ω(di)

di
(4)

Where di is the Mahalanobis distance between pi and the
current estimate of the mean and ω is an influence function:

ω(d) =

{
d if d < d0

d0 exp
(
− (d−d0)

2

b22

)
else (5)

Once the ground plane is found and refined, we can
represent it using its normal vector pointing up in the current
camera frame Cup and the camera height h with respect to
the plane.

IV. DRIFT CORRECTION

Given visual odometry pose estimates that drift over time
and occasional ground plane detections, we want to combine
both of them to a drift-corrected pose estimate such that

• corrected pose estimates are consistent with the latest
ground plane estimate, and

• correcting visual odometry pose estimates introduces as
few disturbances as possible, i.e. the correction trans-
formation applied to to visual odometry pose estimates
should be minimal in translation and rotation.

Using visual odometry alone, we can only estimate the
camera pose with respect to a fixed reference frame by in-
crementally combining all sequential relative pose estimates
in a chain:

WTCi = WTC0 · C0TC1 · · ·Ci−1Ti (6)

Ground plane measurements, on the other hand, put con-
straints on parts of the absolute pose WTCi

and are shortcuts
in the chain above.

Our proposed method of combining both for drift-
corrected pose estimates ˆWTCiconsists of two steps:

• Prediction using the relative pose estimate inferred from
visual odometry:

¯WTCi = ˆWTCi−1
· Ci−1TCi

(7)

• Correcting the predicted pose estimate by applying a
minimal correction transform such that the resulting
pose estimate is more consistent with the measured
ground plane:

ˆWTCi
= ¯WTCi

· Tcorr (8)

Correction Transform Computation: The drift-correction
transform Tcorr consists of rotation component Rcorr and
translation tcorr. The rotation part should bring the measured
up vector in camera coordinates Ciup parallel to the up
direction expected based on the current camera pose:

¯WRCi ·Rcorr
Ciup

!
= Wup (9)

Rcorr · Ciup
!
= ¯WR−1

Ci
·Wup (10)

There is a closed-form solution to compute the shortest
rotation Ra,b given two unit vectors a, b such that Ra,b ·b =
a, which can be derived from the fact that Ra,b should rotate
around an axis orthogonal to a and b by the angle between
both vectors.

Ra,b = I3 + S +
1

1 + d
· S · S (11)

Where S = [a× b]× is the cross-product matrix of the
cross product and d = 〈a, b〉 is the dot product of a and
b. To compute Rcorr above, we choose a = Ciup and
b = ¯WR−1

Ci
·Wup

The translation component on the other hand, should be
a small translation along the plane normal tcorr = s · Ciup
that brings the corrected camera pose to the measured height
h above the ground plane:

h
!
=
(

ˆWTCi

)
3,4

=
(¯WTCi

· Tcorr

)
3,4

(12)

!
=
(¯WRCi · tcorr + W tC

)
z

(13)
!
= s

(¯WRCi · Ciup + W tC
)
z

(14)

Which can easily be solved for s.
Correction Filtering: Even though ground plane estimates

are immune to long term drift, they still suffer from high-
frequency measurement errors. Applying the full correction
would introduce these errors into the corrected pose esti-
mates. We instead limit the influence of a single attitude
measurement by scaling it with a gain factor α < 1:

Tcorr = exp

(
α · log

[(
Rcorr tcorr

0 1

)])
(15)

V. SLAM BACKEND

The SLAM back-end is in charge of building maps given
keyframes that were deleted by the odometry front-end (i.e.
PTAM), including detecting and closing loops to counter
long-term drift and to keep the map consistent. Fig. 4 shows
the general principle of our SLAM back-end working in

parallel with and extending PTAM: PTAM’s tracking thread
is operating at camera rate, computing a pose estimate for
each incoming image. Its mapping thread becomes active
whenever there is a new keyframe and will optimize the
relatively small local map of the few latest keyframes using
bundle adjustment.

Fig. 4. Functional overview of PTAM front-end and SLAM back-end

The SLAM back-end waits for keyframes to be deleted
from PTAM and adds these to its own map. Whereas
PTAM and the camera driver are run as nodelets (modules
with separate threads within the same process) to minimize
overhead when transferring images, the SLAM back-end runs
in its own process at a lower priority, so it does not slow
down tracking. For each incoming keyframe, it will try to
perform the following steps:

A. Keyframe Conversion

The back-end uses a keyframe representation similar to
PTAM: A keyframe consists of a scale-space image pyra-
mid with FAST corners computed on every level. What is
changed is that map points are now stored within their source
keyframe and that we rely on local descriptors instead of
small image patches for matching.

PTAM uses a global representation for map points: All
map point positions are stored in a global reference frame.
This is impractical for pose graph optimization, so we instead
store map points relative to their source keyframe, i.e. in
which they were observed for the first time. This means that
map point positions will be adjusted implicitly during pose
graph optimization.

Finding map points within an image in PTAM relies on
comparing warped templates and minimizing their zero-mean
sum of squared differences (ZMSSD). This is feasible for
tracking as in PTAM, where the image region in which a
map point is searched for is small, but not for wide-baseline
matching as required when closing loops. We thus compute
BRIEF descriptors [13] for all corners and map points. We
choose BRIEF because it is fast and we rely on neither scale
invariance (which is achieved using a scale-space pyramid)
nor rotation invariance (since we are using a forward-looking
camera, flying close to hovering at all times) in a descriptor.

B. Retry Registration for Tracking Failures

Tracking in PTAM can sometimes fail for various reasons,
resulting in inaccurate motion model edges between two
keyframes when it had to reset its map. If this is the case,
we try to register these keyframes again using the descriptor-
based matching and registration described in Sect.V-E.

C. Implicit Loop Closure Detection

A trivial method of finding promising loop closure can-
didates is considering old keyframes whose pose estimates
are close to the current keyframe. We ignore keyframes that
are either too close in time to the current keyframe (since
we expect their drift to be negligible) or geometrically too
far way (since matching is unlikely to succeed). Among the
remaining keyframes, we find the one with the most map
points visible within the image of the current keyframe by
projecting map points according to current pose estimates. If
we can successfully register both keyframes (see Sect. V-E),
we add a loop closure edge to the pose graph.

D. Explicit Loop Closure Detection

For longer loops, drift might be too big to find loops based
on geometrical closeness of keyframe pose estimates. This
is why we also consider loop closure candidates based on
appearance, i.e. similarity of keyframes instead.

We use a hierarchical bag-of-words approach [14] to
retrieve the previous keyframe which is most similar to
the current one. Again, if we succeed in registering both
keyframes, we add a loop closure edge.

E. Keyframe-to-Keyframe Registration

Attempts to register a pair of keyframes (A,B) start by
matching map points of keyframe B to corners of A. Using
these matches, we can compute a pose estimate by solving
the PnP problem. We do this by applying Gao’s solution to
the P3P problem within a preemptive RANSAC scheme to
identify inliers and arrive at a rough estimate for the relative
pose ATB . In a second step, we estimate the inverse relative
pose BTA by matching map points of A to corners of B. If
there were enough inliers in both cases and both relative
poses agree, we refine the relative pose using nonlinear
optimization, minimizing the 2D reprojection error of all
map point/corner pairs that were inliers, and insert an edge
between both keyframes into the pose graph.

We also considered matching all corners to all corners and
running full bundle adjustment on all matches. This proved to
be much slower than the method described above, though,
since it involves matching many more feature descriptors
(there are typically more than ten times as many corners as
map points), applying a slower five point algorithm within
a RANSAC scheme, and finally optimizing both relative
keyframe pose and map point positions. We do not want to
add new map points or change their relative positions once
they are transferred to the back-end, so this increased effort
would not be of much use.

F. Pose Graph Optimization

1) Keyframe-Keyframe Edges: The final pose graph con-
sists of several binary edges between keyframes that were
either computed by visual odometry, by blindly applying the
motion model if visual odometry failed, or by keyframe-
keyframe registration within the backend. We assign the same
constant weights to VO and KF-KF edges and a much lower
weight to motion model edges, since their relative poses are
very uncertain.

2) Ground Plane Edges: If we found a ground plane in
the original image that was made a keyframe by PTAM, this
is an incomplete absolute pose measurement we should also
use in pose graph optimization. We utilize this information
by adding special unary edges with the following two repro-
jection errors for height and attitude:

eatt = acos
((

CiRW ·Wup
)T · Ciupmeas

)
eh = hmeas − hexp

The first element is on the angle between measured and
expected up direction, the second element is the error in
height. Both the expected up direction Ciup and height
origin hexp can be found in the third row of the homogeneous
transformation matrix that corresponds to the current pose
estimate of the keyframe pose.(

WTCi

)
3

=
(
Ciup

T
hexp

)
3) Implementation: The actual optimization of our pose

graph is implemented using g2o [15], which supports de-
riving custom SLAM edges and thus allows us to easily
integrate ground plane measurements.

VI. NAVIGATION

We implemented two navigation schemes to prove the
vision-based autonomy of our MAV. The first is a semi-
autonomous navigation scheme using drift-corrected visual
odometry poses, the second is a fully autonomous waypoint
navigation system using SLAM poses.

A. Semi-Autonomous Navigation

We call this method semi-autonomous navigation, since
the operator interacts with the MAV during its flight, re-
motely modifying the desired pose of the MAV. The MAV
will try to reach and hold the latest desired pose using a PD
position controller, which is provided with the drift-corrected
visual odometry pose as its input.

For semi-autonomous navigation, relying on pose esti-
mates by drift-corrected visual odometry alone is perfectly
fine: Since the human operator specifies desired poses rel-
ative to the MAVs current pose, drift in x, y and yaw is
automatically corrected by the operator. The SLAM back-
end in this case is only responsible for producing consistent
maps.

B. Fully Autonomous Waypoint-Following

Our second navigation scheme is fully autonomous
waypoint-following using SLAM pose estimates. Here we
want the MAV to follow a predefined path given as a list of
waypoints, with drift in x and y corrected by loop closures
whenever possible.

Using the SLAM pose estimate to directly control the
MAVs pose, however, can lead to instability during flight,
since it can exhibit large jumps after closed loops, which
would result in extreme control outputs. We instead imple-
ment the following navigation scheme using both SLAM and
visual odometry pose estimates:

When trying to reach a waypoint w provided in SLAM
coordinates Sw, we compute and update its drift-corrected
visual odometry coordinates V Ow at a constant rate. We limit
the distance between the MAV’s current pose and V Ow to
prevent extreme control output: If V Ow is too far away, we
choose the admissible pose closest to V Ow instead.

VII. EVALUATION ON BENCHMARK DATASET

We evaluate the system described above and its individual
building blocks using the TUM RGBD benchmark dataset
[16], which contains several log files of image streams
captured with an RGBD camera including its ground truth
pose estimates obtained from an external tracking system.
We choose four logs that correspond to a handheld-slam (all)
scenario and ideally contain clearly visible ground planes.

A. Ground Plane Detection

We first compare the accuracy of the various ground
plane detection techniques described in Sect. III
based on the ground truth data included in the file
fr3 long office household. The results can be seen in table I,
where RANSAC denotes the common preemptive RANSAC
method using an inlier-outlier scheme, I/O/W RANSAC is
preemptive RANSAC using our Inlier/Outlier/Worse Outlier
Model, I/O/W + PCA is the above followed up with a
refinement step using the PCA method and I/O/W + ROB.
PCA uses our robust refinement method. We compute height
error ∆h and attitude error ∆α which is the angle between
actual and expected up direction.

∆α in [◦] ∆h in [cm]
MAE RMSE MAE RMSE

RANSAC 25.25 33.22 33.35 35.38
I/O/W RANSAC 1.22 1.52 2.60 3.38
I/O/W + PCA 0.60 0.71 0.92 1.12
I/O/W + ROB. PCA 0.58 0.68 0.56 0.73

TABLE I
GROUND PLANE ACCURACY OF METHODS DESCRIBED IN SECT. III.

We can clearly see that each extension successively im-
proves the result. Plane estimates using basic RANSAC are
more than one order of magnitude worse compared to all
other methods because it often detects other planar surfaces
(e.g. the surface of a desk) instead of the actual ground plane.
This problem is solved in successive methods by penalizing

Fig. 5. Point cloud reconstruction of the fr3 long office household map
and SLAM graph (top) and actual map (bottom) with points currently used
by visual odometry (red) and the SLAM back-end (gray).

outliers below the ground plane with the inlier/outlier/worse
outlier model.

B. Drift-Corrected Odometry

We also explicitly investigate drift in height and attitude
using visual odometry (VO) and drift-corrected visual odom-
etry (DC-CVO) by considering the final error in attitude
and height, as can be seen in table II. Even though VO
alone is rather accurate already, DC-VO offers a significant
improvement in both drift in height and attitude.

VO DC-VO
∆h [cm] ∆α[◦] ∆h [cm] ∆α[◦]

fr2 desk 4.58 3.96 2.44 1.66
fr3 office 7.71 1.18 0.82 0.13

TABLE II
FINAL ERROR IN HEIGHT AND ORIENTATION.

C. VO, DC-VO, and SLAM

Finally, we compare the accuracy of visual odometry, drift-
corrected visual odometry, and the SLAM back-end using the

RGBD benchmark tool2, which reports the drift in relative
position error (RPE) per time and the absolute trajectory error
(ATE). The results are shown in table III. Ground truth data
for the last entry is not publicly available but obtained the
results from the online evaluation service. We consider the
pose estimates obtained at camera rate for VO and DC-VO
and keyframe poses for SLAM.

VO DC-VO SLAM
ATE RPE ATE RPE ATE
[cm] [cm/s] [cm] [cm/s] [cm]

fr1 room 12.67 4.48 n/a n/a 8.16
fr2 desk 7.69 1.83 7.58 1.62 8.44
fr3 office 4.18 1.17 3.88 1.46 2.10
fr3 office(v) 2.51 1.01 3.29 1.19 3.19

TABLE III
VISUAL ODOMETRY ACCURACY ON VARIOUS DATASETS AS REPORTED

BY THE RGBD BENCHMARK TOOL.

Note that the errors reported by the benchmark tool some-
times increase for DC-VO. The reasons are twofold: Since
our drift-correction step deliberately corrupts the relative
pose in order to improve the absolute pose estimate, we can
expect RPE to increase. ATE is computed by the benchmark
tool after aligning evaluated and reference trajectory using a
rigid body transform that minimizes ATE in a least-squares
sense. This alignment often removes most position drift
already. Disabling this functionality leads to the expected
results that differ significantly. We decided to report the
results obtained by the standard evaluation, however, to avoid
confusion when comparing with other publications.

VIII. EXPERIMENTS WITH AUTONOMOUS MAV

A. Fully Autonomous Flight of our MAV using SLAM poses

We first demonstrate that the proposed system enables
our MAV to fly completely autonomously when following
a set of predefined waypoints using the method described in
Sect. VI-B. We do this by letting the MAV fly the same
rectangle three times in a row within our laboratory. A
screenshot of the visualization containing a part of the built
map can be seen in Fig. 6, or in much more details videos
available online.3 The current pose estimate is depicted using
the simple quadrotor model. The red arrow is the currently
active waypoint, whereas the big coordinate frame is the
currently active set point for position control. We also show
keyframes (small red frames), visual odometry edges (green),
loop closure edges (blue) and ground plane edges (orange).
Within the dense point cloud reconstruction, one can see a
few very small red points, which are the map points currently
used by PTAM.

2https://vision.in.tum.de/data/datasets/
rgbd-dataset/tools

3Videos are available at:
http://www.cogsys.cs.uni-tuebingen.de/mitarb/
scherer/dctam/

Fig. 6. Visualization while our MAV is flying fully autonomously by
following a predefined path within our robot laboratory.

Fig. 7. Visualization while our MAV is navigating semi-autonomously,
i.e. autonomously flying to waypoints that are modified by an operator in
flight, (top) and overview of the reconstructed room at the end of the flight
(bottom).

B. Semi-Autonomous Flight

We also show a semi-autonomous flight in order to demon-
strate that we can also map slightly larger environments using
on-board processing alone. We rely on semi-autonomous
operation as described in Sect. VI-A in this case. A visu-
alization of the map built by the MAV in flight and the final
map of the room is shown in Fig. 7. Again, please refer to
the accompanying video for more images.

C. Evaluation: Processing Time

We evaluate the processing time required for individual
steps of both tracking and the SLAM back-end while our
MAV is flying semi-automatically through our laboratory.

https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
http://www.cogsys.cs.uni-tuebingen.de/mitarb/scherer/dctam/
http://www.cogsys.cs.uni-tuebingen.de/mitarb/scherer/dctam/

The measured times are shown in Table IV. During this
ca. 5 minutes long flight, it created a map consisting of
307 keyframes in total. Fast tracking is imperative to enable
autonomous flight, especially when using only a basic PD
controller. It is obvious that our combination of ground
plane detection and tracking using PTAM can conveniently
be computed onboard at camera rate (30 Hz), even though
there are now three major threads competing for two cores of
the CPU. Image preparation includes converting the original
RGB image to grayscale, which is still required.

step time [ms]
image prep. 1.55 ± 0.84
ground plane 0.96 ± 0.75
tracking 22.17 ± 13.42
total 24.79 ± 13.85

step time [ms]
KF conversion 20.34 ± 8.96
loop detection 48.71 ± 27.42
registration 59.68 ± 26.16
PGO iteration 5.62 ± 4.16

TABLE IV
COMPUTATION TIMES REQUIRED BY STEPS FOR TRACKING (LEFT) AND

THE SLAM BACK-END (RIGHT).

IX. CONCLUSIONS & FUTURE WORK

A. Conclusions

We present a drift-corrected software system for efficient
on-board visual odometry and SLAM, aimed at but not
limited to being used by MAVs. We demonstrate its accuracy
on parts of the TUM RGBD benchmark dataset and show that
this system enables our MAV to fly both semi-autonomously
with relative set points chosen by a human operator and fully
autonomously following predefined paths of waypoints.

B. Future Work

Future work will focus on completely autonomous ex-
ploration of indoor environments. The major missing step
towards this goal is efficiently converting keyframe-based
maps to representations that are more useful for path plan-
ning and exploration than point clouds, e.g. occupancy grid
maps. A promising and efficient method was recently shown
in [17], a suitable method of handling loop closures when
building occupancy grid maps, preferably without having to
rebuild the whole occupancy map, however, still remains to
be investigated.

We currently assume to get at least a few depth measure-
ments for each keyframe, as is the case for both RGBD and
stereo cameras, in our modified version of PTAM. The back-
end, however, never uses these depth measurements but relies
only on triangulated 3D map points instead. We are con-
sidering extending our back-end to also support monocular
SLAM by converting both keyframe to keyframe registration
and pose graph optimization to work on the scale-drift aware
Lie group SIM(3) instead of SE(3) as proposed in [18].

REFERENCES

[1] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin,
D. Maturana, D. Fox, and N. Roy, “Estimation, planning, and mapping
for autonomous flight using an rgb-d camera in gps-denied envi-
ronments,” The International Journal of Robotics Research, vol. 31,
no. 11, pp. 1320–1343, 2012.

[2] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa,
“Stereo vision based indoor/outdoor navigation for flying robots,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, Nov 2013, pp. 3955–3962.

[3] S. A. Scherer and A. Zell, “Efficient Onboard RGBD-SLAM for
Fully Autonomous MAVs,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2013), Tokyo Big Sight, Japan,
November 2013.

[4] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “PIXHAWK:
A system for autonomous flight using onboard computer vision,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, May 2011, pp. 2992–2997.

[5] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[6] S. A. Scherer, D. Dube, and A. Zell, “Using depth in visual simulta-
neous localisation and mapping,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, St. Paul, Minnesota,
USA, May 2012.

[7] K. Schauwecker, N. R. Ke, S. A. Scherer, and A. Zell,
“Markerless Visual Control of a Quad-Rotor Micro Aerial Vehicle
by Means of On-Board Stereo Processing,” in 22nd Conference
on Autonomous Mobile Systems (AMS). Stuttgart, Germany:
Springer, September 2012, pp. 11–20. [Online]. Available: http:
//www.springerlink.com/content/x7p122p320v3q027/

[8] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE
Computer Society Conference on, 1994, pp. 593–600.

[9] D. Nistér, “Preemptive RANSAC for live structure and motion estima-
tion,” Machine Vision and Applications, vol. 16, no. 5, pp. 321–329,
2005.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[11] N. Campbell, “Robust procedures in multivariate analysis i: Robust
covariance estimation,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 29, pp. 231–237, 1980.

[12] J. W. Weingarten, G. Gruener, and R. Siegwart, “Probabilistic plane
fitting in 3d and an application to robotic mapping,” in Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, 2004, pp. 927–932.

[13] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in Computer Vision–ECCV 2010.
Springer, 2010, pp. 778–792.

[14] D. Galvez-Lopez and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, October 2012.

[15] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[16] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
Benchmark for the Evaluation of RGB-D SLAM Systems,” in Proc.
of the International Conference on Intelligent Robot Systems (IROS),
Oct. 2012.

[17] K. Schauwecker and A. Zell, “Robust and efficient volumetric oc-
cupancy mapping with an application to stereo vision,” in In IEEE
International Conference on Robotics and Automation (ICRA), 2014.

[18] H. Strasdat, J. Montiel, and A. J. Davison, “Scale drift-aware large
scale monocular slam.” in Robotics: Science and Systems, vol. 1, no. 2,
2010, p. 4.

http://www.springerlink.com/content/x7p122p320v3q027/
http://www.springerlink.com/content/x7p122p320v3q027/

	INTRODUCTION
	Problem Definition
	Related Work
	General Approach
	Contribution of this Paper

	PTAM AS VISUAL ODOMETRY
	GROUND PLANE DETECTION
	Sampling 3D Points
	Inlier/Outlier Detection
	Robust Refinement

	DRIFT CORRECTION
	SLAM BACKEND
	Keyframe Conversion
	Retry Registration for Tracking Failures
	Implicit Loop Closure Detection
	Explicit Loop Closure Detection
	Keyframe-to-Keyframe Registration
	Pose Graph Optimization
	Keyframe-Keyframe Edges
	Ground Plane Edges
	Implementation

	NAVIGATION
	Semi-Autonomous Navigation
	Fully Autonomous Waypoint-Following

	EVALUATION ON BENCHMARK DATASET
	Ground Plane Detection
	Drift-Corrected Odometry
	VO, DC-VO, and SLAM

	EXPERIMENTS WITH AUTONOMOUS MAV
	Fully Autonomous Flight of our MAV using SLAM poses
	Semi-Autonomous Flight
	Evaluation: Processing Time

	CONCLUSIONS & FUTURE WORK
	Conclusions
	Future Work

	References

