
Synchronous Dataflow and Visual Programming
for Prototyping Robotic Algorithms

Sebastian Buck, Richard Hanten, C. Robert Pech and Andreas Zell

University of Tübingen, Sand 1, 72076 Tübingen, Germany
{sebastian.buck, richard.hanten, robert.pech,

andreas.zell}@uni-tuebingen.de

Abstract. Robots perceive their environment by processing continuous
streams of data, which can be very naturally modelled as a dataflow
graph. The development of new perception algorithms is often an itera-
tive process, involving the investigation of a set of parameters and their
influence on the system. The amount of immediate feedback available to
the developer can make these influences more obvious and can therefore
speed up development. We present a framework based on synchronous
dataflow and event-based message passing that forms the basis of a visual
programming language for rapid prototyping of robotic perception sys-
tems. We explicitly model algorithmic parameters in the dataflow graph,
which results in a more expressive feature set. We provide an open-source
implementation, consisting of a user interface for immediate feedback
and interactive manipulation of dataflow algorithms and an independent
execution framework that can be directly used on any robot.

Keywords: perception, prototyping, visual programming, dataflow, robotics

1 Introduction

Robots interact with their environment and therefore need to solve a variety of
perception tasks. Information has to be extracted from the raw data recorded by
the robot’s sensors, before any action can be performed. These tasks, which can
be collectively seen as a part of a robot’s cognitive functions, interpret streams
of data for an indefinite amount of time.

Designing and implementing perception algorithms for a robotic system often
begins with prototyping and experimentation, followed by iterative refinement.
This is especially the case in research and education, where existing functional-
ities should be reused and improved. Reusability is an important characteristic
of a well designed system. To create a reusable piece of software, it is important
to maximize modularity, such that modules can be shared by different projects.

Many modern robotic systems and frameworks, such as ROS [1], are im-
plemented using message passing. By only depending on the types of messages
coming in and going out, this approach results in a very low coupling between
modules, which simplifies team work. The ROS graph can be viewed as dataflow
programming, where information flows from sources, like camera drivers, through



various other processes into sinks, for example the motor drivers. Different pro-
cesses in such a system can read and produce messages at different frequencies
and the overall asynchronous dataflow is thus hard to describe and control.

Synchronous data flow (SDF), on the other hand, models the flow of data
explicitly and is widely used in signal processing. In SDF it is known a priori
how many messages a node will consume and produce in each iteration. Processes
that read one message on each incoming channel and produce one message on
each outgoing channel are called homogeneous and allow an efficient execution
without needing message queues, as shown by Lee and Messerschmitt in [2].

The asynchronous approach is well suited for modelling an entire robotic
system, since different subsystems have different requirements: Low-level control
has to be executed at very high frequencies, whereas high-level decision making
might only be necessary relatively infrequently. Perception is a subsystem that is
situated in between the two extremes, preferably running at frequencies equal to
the data acquisition rate. The sequential nature of most perception algorithms
is ideally implemented using SDF and derivations thereof. There already exist
many approaches to model perception as a pipeline of processes, to which we
will compare our approach in Section 5.

The main idea of this paper is to define a pragmatic dataflow model that can
be directly used for prototyping perception algorithms with visual programming:

– We develop an implementation of coarse-grain synchronous data flow models
without message queuing. Our model is based on SDF and is tailored to allow
interactive dataflow graph manipulation. We explicitly model computation
parameters in the data flow and introduce aspects of control flow. We show
how the scheduling of such graphs can be controlled by the user (Section 2).

– We provide an open-source implementation of the presented dataflow frame-
work, called the Cognitive Systems Algorithm Prototyper and EXperimenter
(CS::APEX), which consists of a graphical user interface and an execution
back end. The user interface allows direct interaction with the structure of
the dataflow graph and introspection into the flow of data (Section 3).

– We share the lessons we learned using the framework in research projects,
educational courses and robot competitions. Additionally we show how the
introduction of control flow aspects makes this model more expressive for
more complex applications than pure dataflow models (Section 4).

2 Graphical Model for Coarse-Grained Dataflow

The idea of this section is to give a useful and expressive model for the imple-
mentation of a dataflow-based visual programming framework with the following
requirements:

– Dataflow graphs can be created and modified at run-time.
– Parameter values can be changed through the dataflow and by the user.
– Data in the flow can be inspected at any step in the process.
– The user can influence the scheduling policy of the processing nodes.
– Irregular events are made visible to the user and can be handled coherently.



2.1 Homogeneous synchronous data flow

Flow-based programming has been extensively investigated in literature. Our
approach is derived from homogeneous synchronous data flow (SDF) [2], which
is widely used for signal processing pipelines.

At first we will look at a general dataflow. Let G = (V,E) be a directed
graph of processing nodes vk ∈ V and message connections E. For each process
vk we define a set of inputs Ik and outputs Ok

Ik =
{
kI1, . . . ,

kIik
}
,Ok =

{
kO1, . . . ,

kOok

}
,

as visualized in Fig. 1(a). We add an edge (kO, lI) to E if an output kO of node
vk is sending messages to an input lI of node vl. Inputs and outputs are typed
and can be connected if their types are compatible. An output can be connected
to arbitrarily many inputs, but inputs can only be connected to one output. We
allow for an input to be optional, which means that it is ignored, if it is not
connected to an output. It is treated as a normal input, otherwise.

When the process vk is executed, it will read the message from each I ∈ Ik
and write a message to some of the O ∈ Ok. After the execution of vk, the
messages for O ∈ Ok will be forwarded to all the connected inputs. If there are
no messages to be sent, we propagate a special Nothing token instead.

2.2 Parameters

For each computational node vk ∈ V we define a set of parameters Pk, which
are treated both as inputs, as well as outputs of vk by adding additional inputs
IPk ⊂ Ik and outputs OP

k ⊂ Ok (Fig. 1(a)). Parameters are declared for each
node type and control the internal processing of each instance of that node type.
A node vk can read its parameters at any time and is allowed to change them.

kI1
...

kIik

kP1

...

kPpk

vk

kO1

...

kOok

kP1

...

kPpk

(a) Inputs and outputs of node vk. Pa-
rameters kPi are both inputs and out-
puts, where messages are automatically
forwarded.

kS1 · · · kSsn

kT1 · · · kTtn

vk

(b) Triggers and Slots on a dual graph
structure. Signals sent from Triggers
represent events and do not behave like
flowing data.

Fig. 1. A node consists of inputs and outputs (left), as well as slots and triggers (right).
These entities implement data-driven and control-driven flow respectively.



A parameter’s value can also be changed by other means: An incoming mes-
sage at a parameter input port causes the value of that parameter to be updated.
At every firing of vk, all the parameters’ values are sent as messages on the cor-
responding output ports. Both mechanisms together allow values of different
parameters to be synchronized without their nodes knowing about each other.

Parameters behave the same as regular input or output ports and can be
connected to any other port, making the parameter accessible to the network.
Values computed by a node can be manipulated using further processing nodes
and then assigned to a another node’s parameter, for example. At the same time,
this explicit modelling enables a user interface to present control panels to adjust
the parameter values, giving the user a more direct control over the data flow.

2.3 Event-based message passing

Pure dataflow is ideal for processing indefinite streams of information. A robot’s
perception can be modelled using multiple subsystems that are based on dataflow.
There are, however, stimuli the system has to respond to, which are more irreg-
ular and often not predictable. These can be both triggered by external means
or detected within the data stream. We call these stimuli events and introduce
means to handle them in a coherent framework with the dataflow itself.

To realize such non-dataflow communication between nodes in G, we define
sets Sk and Tk representing Slots and Triggers of node vk analogously to Ik and
Ok (see Fig. 1(b)). Triggers can be used to signal events to another node by
connecting them to slots, contributing an edge (iT, jS) to the edges E. Triggers
can only be connected to slots and outputs only to inputs. Every node is therefore
a composition of inputs, outputs, signals and slots, as visualized in Fig. 1.

In contrast to the dataflow, events are more irregular and should be handled
asynchronously once they are triggered, so that not all triggers have to receive
a message at the same time. This means that slots can be connected to multi-
ple triggers and vice versa. By not using the dataflow to send events between
nodes, we avoid sending special marker messages. Additionally, disjoint dataflow
subgraphs can run at different frequencies but can still communicate via events.

A useful application of events is to control aspects of the execution and
to send commands between nodes independently of the dataflow, for example
disabling currently unneeded nodes, or resetting internal state of more complex,
stateful nodes. As any subgraph H of G can be represented by a node vH , this
mechanism can be used to easily enable or disable large portions of the dataflow,
depending on the global state.

2.4 Scheduling

Scheduling the execution of G requires a policy to decide, when to execute the
different nodes. Node vk becomes enabled once each of its inputs has received
a message and each of its outputs can send a new message. Nodes without in-
puts, also called sources, are enabled whenever their outputs can send messages.
Sinks, that is nodes without outputs, are enabled when all inputs have received



a message. Enabled nodes can be executed whenever processing resources are
available. Once executed, vk reads messages from the inputs, processes them
and (possibly) generates outputs.

An output can send a new message, once all previously sent messages have
been read down-stream. Messages are read before they are processed, so that
earlier nodes in the network can already be executed again, even if their previ-
ously generated messages are still being processed. This allows the scheduler to
perform pipeline execution of sequentially connected nodes.

There can be multiple enabled nodes at any time, which allows concurrent
execution. The order in which these nodes are executed does not matter, they
can run in a sequence or fully in parallel. To allow dynamic modification of the
dataflow graph at run-time, a static scheduling scheme, as originally developed
for SDF graphs [2], cannot be employed. Any dynamic scheduling algorithm can
be implemented, however.

Events are also managed by the scheduler: If a slot has received an event,
the node will be required to handle the event as soon as possible. The scheduler
can execute event handling routines at any time, if the node is not currently
being executed. If a node is enabled and also has pending events to handle, the
scheduling policy can decide which will happen first.

3 Implementation in CS::APEX

The aim of CS::APEX1 is to be a user-centred platform for developing and ex-
perimenting with flow-based algorithms for robots and other cognitive systems,
encouraging modularity, extensibility and accessibility. We follow a pragmatic
approach to dataflow programming, focused on providing a user-friendly inter-
face, concentrating on speeding up the prototyping experience, providing useful
user feedback and making parameters of the system more easily accessible. Re-
sulting dataflow networks can be directly deployed on a robot (Section 4).

The framework consists of two components: A graphical user interface (see
Fig. 2) based on Qt5 and a computation back end library for scheduling and
maintenance2. We achieve modularity by implementing the flow-based graph
structure presented in Section 2, encouraging users to implement component-
based solutions that only depend on message types and can thus be easily reused.
Extensibility is accomplished by a plug-in system, which makes modification of
the main components unnecessary and simplifies the distribution of implemented
computing nodes among collaborators.

The user interface allows the user to dynamically add and delete computation
nodes at run-time. Nodes can also be disabled and enabled, moved and copied.
Furthermore, the user can add and delete connections between nodes and inspect
the transmitted values in these connections. No scripting or manual configuration
file editing is required. The user interface is used to generate a network and to

1 CS::APEX and its documentation are available for download at
http://www.ra.cs.uni-tuebingen.de/software/apex/

2 An overview video can be seen at http://youtu.be/weFZZrQ1BeE



Fig. 2. Exemplary workflow that imports a ROS bag, converts the camera image to gray
values, performs adaptive thresholding, morphological operations and blob detection.

provide feedback during the prototyping process. Once the configuration is done,
the UI is no longer needed and the graph can be executed in a headless fashion.
In this way, a prototype configuration can be used on a robot, without a screen
attached.

3.1 Nodes and Messages

Adding custom functionality is possible by implementing new node types and
providing parameters to allow fine tuning. Computation nodes are written in
C++11 and dynamically linked once they are needed. We provide multiple ways
to add new processing nodes: Nodes can be derived from a base class Node,
or from specialized base classes, like image filters. Furthermore, we provide a
utility class that can automatically generate nodes from a given C++ function by
analyzing the function signature using template meta programming techniques.

When a new node is needed, three functions have to be implemented: setup
tells the system about the required input and output ports, as well as event
triggers and slots. The function setupParameters declares the parameters of the
new node. Every parameter will automatically be wrapped into an UI widget so
that the user can manipulate it easily (see Fig. 3). Finally, process implements
the new functionality, i. e. messages from inputs are read and processed, before
output messages are generated and published on the outputs.



Packages can also provide custom message types. Other plug-ins can use
these messages without having to worry how to do I/O with them. Authors of
a custom message can provide functions to serialize the message using YAML,
to read them from a file, to visualize them and publish them via ROS. We have
implemented messages for integral types, strings, images, laser scans and more.
We have also implemented support for OpenCV3 and the point cloud library
(PCL)4 via independent libraries.

3.2 Parameters

Parameters are central to our approach, since the direct feedback from changing
parameters can speed up rapid prototyping. As described in Section 2, we create
a pair of one input and one output per parameter. Since this would lead to a lot
of ports for nodes with many parameters, we only add inputs and outputs for
parameters that are marked as interactive by the user.

Fig. 3. A node that performs adaptive thresholding on an image with one image input
and one output. There are five parameters: two floating point ranges (maxValue, C), one
integer range (blockSize) and two sets (adaptiveMethod, thresholdType). maxValue
and blockSize are connected to the data flow. The node has automatically generated
slots to enable and one to disable it and a trigger that fires once the input is processed.

We provide different types of parameters: Boolean, integral and floating point
values, ranges, intervals, pairs and more specialized variants like angles, file paths
and color values. To enable fast changes to parameter values, we wrap each
parameter into a specialized UI widget that allows the user to quickly modify
the parameter’s value. UI elements and the parameters themselves are strictly
separated, so that a graph can be used on a robot completely without a graphical
interface. We render these controls directly into the graphical representation of
the node, as can be seen in Fig. 3. This way, the controls are physically located
where they are used, which makes it easy to find the right parameter to change
and allows us to provide helpful information for parameters via tool-tips.

3 OpenCV is available at http://www.opencv.org/
4 PCL is available at http://www.pointclouds.org/



3.3 Scheduling and concurrency

Executing a node does not have any side effects on other nodes in the graph. For
this reason, concurrency can be achieved without any effort on the client side,
merely the scheduler has to deal with the details of concurrent programming.
This takes away the burden on inexperienced programmers, who can make full
use of parallel architectures with thread-agnostic modules. Parallel execution is
not necessary though, all nodes can be executed sequentially as well.

Even though users should not have to be concerned about matters of concur-
rency, we want to enable them to take control of the scheduling process. For this
reason, we employ a distributed scheduling scheme using thread pools. Every
node is assigned to a thread group and all the nodes in a thread group are man-
aged by one scheduler. By default, every node is managed by a single scheduler,
as to not fully utilize every CPU core, if that is not desired. The interface allows
users to define their own thread groups and assign nodes to them.

4 Applications

Since the development of CS::APEX began in 2012, we have developed more
than 300 plug-ins to solve a variety of perception problems for research projects
and robotics competitions: We achieved the second place in the SICK Robot
Day 2014 [3], which was an object-delivery competition. We also deployed the
framework for the perceptions tasks at the SpaceBot Camp 20155, which was
hosted by the national aeronautics and space research centre of Germany (DLR).

Additionally, we are using the framework in research projects: We devel-
oped a person-recognising autonomous transportation system in the BMBF-
founded project PATSY6, using dataflow graphs to detect obstacles and people
in point clouds. In the project IZST IOC 1047, founded by the state of Baden-
Württemberg, we developed vision algorithms for laparoscopic surgery.

In the remainder of this section we present two use cases in more detail.

4.1 SICK Robot Day 2014

The SICK Robot Day 2014 [3] was an object-delivery competition, in which
robots had to autonomously detect and approach filling stations where they re-
ceived labelled objects. The objects then had to be delivered to delivery stations
determined by the object label. Delivery stations were marked with large num-
ber signs, as shown in Fig. 4(a). We split the detection task into four separate
dataflow graphs: Cross-hair detection, number sign detection, bar code reading,
and environment map analysis. Here we focus on the specific task of number
sign detection and demonstrate the benefits of using our framework.

5 http://www.dlr.de/dlr/desktopdefault.aspx/tabid-10081/151 read-15747
6 http://www.ra.cs.uni-tuebingen.de/forschung/patsy/
7 http://www.ra.cs.uni-tuebingen.de/forschung/Chirurgische Navigation



(a) The robot’s camera image, showing
an occluded bull’s eye target and the
number sign of station 1.

(b) Overlay of the detections of two
dataflow graphs, one detecting numbers
and one detecting bull’s eye targets.

Fig. 4. SICK robot day 2014: Sensor input and visual feedback generated.

Many necessary processing steps had already been implemented as nodes
before and could be reused without modification: First we had to rotate the
image, because the camera was mounted on its side. Then we performed color
conversion from YUV to BGR. Next we applied an adaptive thresholding step
(see Fig. 3) to separate light from dark areas. After that we performed connected
component analysis to find dark image areas.

The only missing component is defined by the following interface: A node
that takes a vector of image components, classifies the components and outputs
the classified result as vector of regions of interest. We implemented a plug-
in to communicate with the Java-based neural network framework JANNLab
developed by Otte et al. [4], using an MLP to perform the classification. By
keeping a generic message passing interface, the resulting node is easily reusable.
For training of the neural network we were able to reuse already existing nodes:
We used the same preparation steps as described above and then employed an
export node to write the training samples to a directory.

We were able to easily split up tasks and improve team work. The interfaces
between the different nodes had to be changed multiple times, so that the initial
interface specification was soon outdated. Being able to clearly see what kind
of data a node consumes and produces, these changes had nearly no impact on
productivity and could be accounted for with minimal or no changes to other
nodes. We also benefited from fast parameter tuning and debugging due to the
immediate visual feedback. This was especially helpful during the final moments
of preparation for the competition.

We were able to use the resulting graphs on our robot without modification.
Running the framework without a user interface entailed minimal overhead com-
pared to a hand crafted program, since feedback and debug information (as seen
in Fig. 4(b)) are not computed without a UI. Experiments show an average of
k× 1.2 ms overhead, where k is the longest distance from a source to a sink.



4.2 Evolutionary optimization of a ROS node

The second use case we want to share is the application of evolutionary algo-
rithms to optimize the parameters of a ROS node called laser scan matcher

using the Differential Evolution algorithm (Fig. 5). Using a plug-in to communi-
cate with the optimization framework Eva2 developed by Kronfeld et al. [5], we
were able to find parameters that minimized the trajectory error on our dataset.

Fig. 5. Evolutionary optimization of a ROS node for localization. A node for calculat-
ing a fitness value has to be implemented. For each newly generated population, the
Evaluate trigger is fired. A finish slot is triggered when the current population of
parameters is fully evaluated and the fitness is finalized. Eva2’s and ROS parameter
setter’s parameters are connected. (To simplify we only show one connection. )

The scan matching process was running in a separate ROS node, whose
parameters were set using a generic ROS parameter interface, that can be seen
in Fig. 5. The values of these parameters were determined by the optimization
framework for each iteration and were propagated through the dataflow. Triggers
and slots were used to control the optimization process: A trigger was executed
every time a run of the scan matcher was complete. This trigger was connected
to a slot in the optimizer, which caused a new parameter set to be generated.

The communication with the optimization framework is generic and can be
applied to other problems. The user selects an arbitrary set of parameters using
the user interface, which adds it to the optimization process. This is possible
due to the generic integration of the parameters into the dataflow and can be
implemented purely on a plug-in basis, since it does not require any modifications
to the framework. The only additional functionality, that has to be implemented,
is a node to calculate a fitness value for the current parameter set. This value is
needed by the optimizer to assess different parameter combinations.

Furthermore, this example demonstrates the usefulness of the additional
event-based mechanism. Events can be used to control the execution of different
dataflow subgraphs. This way, processes like these can be automated and con-
trolled based on the dataflow. To the best of our knowledge, such an approach
to parameter optimization is not possible in related frameworks.



5 Comparison to Related Work

Many tools and frameworks utilizing flow-based programming have been pub-
lished in related domains, such as Ptolemy II by Eker et al. [6] and the Ptolemy-
based Kepler by Ludätscher et al. [7]. Special purpose frameworks include the
Robot Task Commander by Hart et al. [8], the Konstanz Information Miner
(Knime) [9] for data mining, the Waikato Environment for Knowledge Analy-
sis (WEKA [10]) and Orange [11] for machine learning and MeVisLab [12] for
medical image processing. There are also commercial products based on data
flow processing, for example LabVIEW and MATLAB Simulink. A cognitive
architecture for artificial vision is described by Chella et al. [13] using a more
symbolic approach than the one presented here, whereas the approach presented
by Hochgeschwender et al. in [14] is purely declarative.

Biggs et al. [15] provide a pipeline based approach, and show its potential with
an example for point cloud processing. They impose requirements similar to the
ones presented in Section 2, yet focus more on inter-node communication aspects
and less on interaction. Their framework implements asynchronous dataflow,
meaning that there is a need for message queues between components. They
provide a user interface with which the graph can be modified at run-time and
parameters can be adjusted, but they do not model parameters in the dataflow
and don’t seem to feature event-based functionality in their user interface.

Although our implementation can be used independently from ROS [1], we
support ROS interaction, such as data import and export. We provide our user
interface as a single ROS node, in which ROS topics can be subscribed and pub-
lished to. ROS itself can be seen as a flow-based framework, where different nodes
are separate processes and can run on different machines in a local network. ROS
is implemented using the publish-subscribe pattern, where each node is publish-
ing messages onto topics that are subscribed to by other nodes, which is another
case of asynchronous dataflow. Our visual programming approach allows users
to construct processing graphs on the fly via a graphical user interface instead
of using text based configuration files. Our implementation can be compared to
ROS nodelets, in that all processing nodes are running in the same process, yet
ROS nodelets do not allow any interaction or scheduling control.

More relevant for our work is ecto [16], which grew out of the ROS scene
and also represents computer vision and perception tasks as a directed acyclic
graph. In contrast to ecto, our approach explicitly handles node parameters,
allowing them to be used as data sources or sinks. Ecto also provides some
form of event-handling, yet these are not part of the interface of a processing
node as in our proposed solution. Graphs in ecto are meant to be specified
and configured using python programs. There exists a web-based graphical user
interface for ecto which allows users to create nodes and connect them. This
approach has the advantage that the graph is accessible via the network, yet the
implementation does not allow for a high level of interactivity. In our approach,
the user interface is the key part of the framework and we focus on interactive
graph manipulation and immediate feedback.



6 Discussion and Conclusions

We describe a graphical model based on synchronous dataflow and event-based
message passing, as well as an implementation of this model in the form of a vi-
sual programming language framework called CS::APEX. Extensions to the well
known SDF model are motivated by the application to prototyping perception
algorithms in a scientific setting: We model program parameters directly in the
dataflow, which we can use to perform automatic parameter optimization. Fur-
thermore, we use signal-based mechanisms to model irregular events and allow
users to manipulate both data flow and event handling in a coherent interface.

In other fields, graphical prototyping tools have become commonplace, yet
in robotics there do not exist such standard tools. We think this is partly due to
the fact, that robotics is a broad and multidisciplinary field. We aim to provide
a user-friendly graphical interface that lowers the barrier to entry into robotics,
especially robotic perception. The interface provides immediate feedback, allow-
ing to visually construct new dataflow graphs at run-time, to get insight into
the dataflow in real-time and to learn the effects of different parameters on the
behaviour of the algorithm. Although we provide a library of reusable nodes, cus-
tom algorithms have to be implemented eventually. In contrast to fine-grained
visual programming, where individual instructions are composed in a graphical
interface, we rely on a plug-in based system which allows users to program cus-
tom processing nodes in C++ and then compose them visually. This approach
simplifies using unknown modules, since inputs, outputs and parameters are
directly displayed and can be connected visually.

On its own, homogeneous synchronous data flow seems to be a limiting factor,
due to a uniform execution of the individual nodes, whereas robotic systems are
composed of many subsystems requiring different update rates. Our approach,
however, is meant to implement individual subsystems, such as perception mod-
ules. Many perception problems naturally show synchronous characteristics: If
an online image classifying algorithm, for example, cannot operate in real-time,
images have to be dropped, synchronizing the update rate of the pipeline.

Our framework can be fully applied to problems that can be separated into
modules. Highly optimized algorithms that cannot be subdivided, however, have
to be implemented as single nodes. This is not unusual in a coarse-grain data
flow framework such as the presented approach. Even though large nodes are less
reusable, they can still profit from the parameter system and other UI features
such as execution profiling and data visualization.

Acknowledgement

This work is funded by the German Federal Ministry of Education and Research
(BMBF Grant 01IM12005B). The authors would like to thank Sebastian Otte
and Fabian Becker for providing their implementations of artificial neural net-
works and evolutionary optimization algorithms. Additionally, we want to thank
all the students and colleagues, who have been using CS::APEX in their research,
for providing constructive feedback.



References

1. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. Volume 3. (2009) 5

2. Lee, E., Messerschmitt, D.G., et al.: Synchronous data flow. Proceedings of the
IEEE 75(9) (1987) 1235–1245

3. Buck, S., Hanten, R., Huskić, G., Rauscher, G., Kloss, A., Leininger, J., Ruff,
E., Widmaier, F., Zell, A.: Conclusions from an object-delivery robotic competi-
tion: Sick robot day 2014. In: Advanced Robotics (ICAR), The 17th International
Conference on, Istanbul, TR (July 2015) 1–7

4. Otte, S., Krechel, D., Liwicki, M.: Jannlab neural network framework for java. In
Perner, P., ed.: MLDM Posters, IBaI Publishing (2013) 39–46

5. Kronfeld, M., Planatscher, H., Zell, A.: The eva2 optimization framework. In:
Learning and Intelligent Optimization. Springer (2010) 247–250

6. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity-the ptolemy approach. Proceedings of
the IEEE 91(1) (2003) 127–144

7. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system.
Concurrency and Computation: Practice and Experience 18(10) (2006) 1039–1065

8. Hart, S., Dinh, P., Yamokoski, J., Wightman, B., Radford, N.: Robot task com-
mander: A framework and ide for robot application development. In: Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on.
(Sept 2014) 1547–1554

9. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl,
P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner.
In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL
2007), Springer (2007)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explor. Newsl. 11(1) (November
2009) 10–18

11. Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M.,
Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar,
L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: Data mining toolbox in python.
Journal of Machine Learning Research 14 (2013) 2349–2353

12. Bitter, I., Van Uitert, R., Wolf, I., Ibanez, L., Kuhnigk, J.M.: Comparison of
four freely available frameworks for image processing and visualization that use
itk. Visualization and Computer Graphics, IEEE Transactions on 13(3) (2007)
483–493

13. Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for artificial vision.
Artificial Intelligence 89(1) (1997) 73–111

14. Hochgeschwender, N., Schneider, S., Voos, H., Kraetzschmar, G.K.: Declarative
specification of robot perception architectures. In: Simulation, Modeling, and Pro-
gramming for Autonomous Robots. Springer (2014) 291–302

15. Biggs, G., Ando, N., Kotoku, T.: Rapid data processing pipeline development
using openrtm-aist. In: System Integration (SII), 2011 IEEE/SICE International
Symposium on. (Dec 2011) 312–317

16. Ethan Rublee, V.R., et al.: Ecto - A C++/Python Computation Graph Framework
(2 2015)


