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Abstract— We address the problem of on-line volumetric
map creation of unknown environments and planning of safe
trajectories. The sensor used for this purpose is a stereo camera.
Our system is designed to work in GPS denied areas. We design
a keyframe based hybrid SLAM algorithm which combines
feature-based stereo SLAM and direct stereo SLAM. We use
it to grow the map while keeping track of the camera pose in
the map. The SLAM system builds a sparse map. For the path
planning we build a dense volumetric map by computing dense
stereo matching at keyframes and inserting the point clouds
in an Octomap. The computed disparity maps are reused on
the direct tracking refinement step of our hybrid SLAM. Safe
trajectories are then estimated using the RRT* algorithm in
the SE(3) state space. In our experiments, we show that we can
map large environments with hundreds of keyframes. We also
conducted autonomous outdoor flights using a quadcopter to
validate our approach for obstacle avoidance.

I. INTRODUCTION

Quadcopters are mobile robots which are suited for many
robotic applications. Building inspection, agricultural fields
surveillance and package delivery are some applications of
quadcopters, just to name a few examples. Unlike fixed
wing flying robots, quadcopters can achieve high manoeu-
vrability about all three axes and in all directions and they
have the ability to hold the position (hovering). To achieve
full autonomous flights, a quadcopter should rely only on
its on-board sensors. Limited by the payload it can carry
and by the real-time requirements for safe navigation of a
quadcopter, many sensors are not suitable for autonomous
quadcopters. Laser scanners which have sufficient frame rates
and scan-lines are usually too heavy to be carried by a
small quadcopter and they have high power consumption
as well. The requirement to work in outdoor environments
excludes the choice of using IR pattern based RGBD sensors
as main sensors since, with substantial infra-red light from
the sun, these sensors fail to estimate the depth images.
Stereo cameras can provide data at high frame rates, they
are lightweight, passive (do not illuminate the scene), energy
efficient and customizable. Given enough data to build dense
volumetric maps, the quadcopter can safely navigate in
cluttered environments by avoiding obstacles. However, we
need to run dense stereo matching on the on-board CPU
to estimate the disparity map and use this disparity map to
estimate the depth. To allow real time operation, the over-
head, which is introduced by the on-board computation of the
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Fig. 1. (a) Our outdoor environment. The red line shows the straight
line between the start and destination positions going through two obstacles
(trees). (b) the 3D reconstruction using our stereo camera and a set of
collision-free 3D paths generated by our system.

disparity, can be minimized by computing the disparity only
at keyframes and by reducing the resolution. The volumetric
mapping of large unknown space requires usage of SLAM
(simultaneous localization and mapping) designed to operate
at large scale and a memory efficient representation of the
dense volumetric map. In this work, we design a hybrid
SLAM that works in large scale environments based on the
open-source ORB-SLAM2 [1] and for the memory efficient
volumetric map we use Octomap [2] [3]. For efficient 3D
path planning, we use the RRT* [4] algorithm. The output
of the 3D planner is then set as desired way-points for our
quadcopter micro aerial vehicle (MAV).
In this work, we propose a system for 3D outdoor obstacle

avoidance using stereo. This system was tested on a quad-
copter MAV and the quadcopter was able to run all software
packages, shown in Fig. 2, in real-time. In addition to the
module for 3D obstacle avoidance, we propose a hybrid
visual stereo SLAM algorithm which combines a feature-
based method and a direct image alignment method. Our
choice is motivated by three reasons: first, we want to use
more information from the images and not only abstract them
to a set of features. Second, since we compute the relatively
costly dense stereo matching for the keyframes, we want
to benefit from that not only for building volumetric maps
but also for refining the tracking poses. Third and finally, in
some aspects feature-based methods and direct methods are
complementary. So by combining them they compensate for
each other’s drawbacks. For example, when the stereo camera
has moved over large distances between two frames the
direct methods might diverge, since they need a good initial
guess. In the best case they might need considerably more
iterations to converge. This might make real time operation
difficult to achieve. Using a coarse-to-fine approach and/or a



motion model might help in some cases. On the other hand,
the feature based approach can deal very efficiently with
large camera movements. Having to deal with very sparse
features, we can afford to enlarge the search domain for
correspondences, while still keeping real-time capabilities.
The benefit of using direct methods rather than feature based
methods is in cases of degraded image quality due to camera
defocus and motion blur. In these cases, feature extraction
might fail, causing tracking loss while the image alignment
would give a reasonably good motion estimation.

II. RELATED WORK

A basic capability that a mobile MAV should fulfill for
safe navigation is obstacle avoidance. Heng et al. [5] have
proposed a stereo approach for obstacle avoidance. They
build an Octomap and use the anytime dynamic A* planner
[6] to achieve collision-free path planning in 2D. For pose
estimation they use either artificial landmarks or a Vicon
tracking system. In our approach, we plan paths in full 3D-
space using the efficient RRT* [4] algorithm and we run
a hybrid SLAM on-board. The feature based part of our
hybrid visual stereo SLAM system uses the popular ORB-
SLAM2 [1] algorithm. The ORB-SLAM2 algorithm splits
the tracking from the local mapping using two separate CPU
threads. This architecture was initially proposed by Klein et
al. [7] in their popular parallel tracking and mapping (PTAM)
algorithm. The PTAM algorithm was then successfully used
by many mobile robotic researchers [8] [9]. The ORB-
SLAM2 algorithm starts by extracting a (sparse) set of ORB
[10] features on both left and right images of the current
stereo frame. The features are then matched on the previous
stereo frame to establish 2D-2D correspondences. Using the
map we get 2D-3D correspondences. A PnP solver is then
used to optimize the initial pose. Using the co-visibility graph
(a graph which connects keyframes which share enough
map points) a local map is extracted and the pose gets
refined by using more map points. The local map contains
the keyframes and the map points observed by these local
keyframes. The final pose we get from ORB-SLAM2 is
estimated using only sparse features. Valuable information
might be missed by abstracting the images to a set of ORB
features. We propose to further refine the pose by using direct
image alignment and use more data from the image. We do
not use all of the pixels but only those which have valid depth
(from dense stereo matching) and have an image gradient
larger than a given threshold. Direct methods for SLAM
are becoming popular, and efficient implementations exist
[11] [12] [13]. The afore-mentioned implementations use the
forward additive or forward compositional [14] variants of
the Lucas Kanade [15] [14] algorithm. We use the more effi-
cient inverse compositional alignment algorithm [16], which
allows the pre-computation of the Jacobian (and Hessian).
Forster et al. [17] introduced sparse direct image alignment
where they use the inverse compositional algorithm to align
a set of sparse features. They extend their approach for
multiple cameras in the recent work [18]. Unlike [17] and

Fig. 2. System overview. The system includes a hybrid SLAM algorithm
and a path planner. The tracking thread of the SLAM algorithm provides
an estimate of the current pose to the controller. The path planner provides
intermediate destinations to the controller. The Pixhawk position controller
manages to fly smoothly through the intermediate way-points.

[18] we build a hybrid SLAM and not only a visual odometry
system.

III. OVERVIEW

A. Block diagram of the proposed system

Fig. 2 shows an overview of our system. The hybrid
stereo SLAM algorithm is in charge of keeping track of
the quadcopter pose in real time while at the same time
building a sparse map of the environment. At keyframes we
compute dense stereo matching. The resulting disparity map
is then used to create a 3D point cloud which is inserted
in the occupancy grid map. The disparity map is also used
by the tracking thread to refine the poses using direct image
alignment. The planner gets an up to date binary occupancy
grid map and the start (current) pose and destination pose and
then plans a safe path for obstacle avoidance. The planner
outputs smooth trajectory of way-points. The poses from the
localization thread of the SLAM system are fused with the
measurements from the on-board IMU using an Extended
Kalman Filter (EKF) to estimate the quadcopter state. The
controller gets the desired pose and the current pose and
controls the motor speeds to fly to the desired position.
The Pixhawk [19] controller is a cascaded controller which
includes a high level position controller and a low level



attitude controller. The low level controller outputs the motor
speeds.

B. Least squares problems

The least squares (LS) algorithm is used for optimizing
non-linear cost functions in many parts of our system. We
use least squares in the feature based tracking to optimize re-
projection distances. Then, we use least squares in the direct
image alignment to minimize photometric errors (intensity
differences). On the local mapping thread, least squares are
used in local bundle adjustment (LBA) to locally optimize the
SLAM map. On the SLAM back-end, least squares are used
to optimize a pose graph when loops are detected and after-
wards to optimize the whole system (all keyframe poses and
all map points) by global bundle adjustment (GBA). In gen-
eral, given an error function e(x) = [e1(x), ..., em(x)]T ∈
Rm, where the variable x = [x1, ..., xn]T ∈ Rn is a vector
of parameters. We seek to estimate the optimal solution x∗

that minimizes the energy function E(x) (Eq. 1).

x∗ = argmin
x
E(x) (1)

=

m∑
i=0

|ei(x)|2 (2)

= e(x)ᵀe(x) (3)

In general, e is non-linear so we compute an approximation
using the first order Taylor expansion and solve the opti-
mization problem iteratively. Around the initial guess x̆ we
consider a small perturbation δx :
e(x̆ + δx) ≈ e(x̆) + Jδx, here J is the Jacobian of e(x)
computed in δx = 0 (in x = x̆). The elements Ei of the
energy function E(x) can then be approximated such that:

E(x̆+ δx) = e(x̆+ δx)T e(x̆+ δx) (4)

≈ (e(x̆) + Jδx)T (e(x̆) + Jδx) (5)
= E(x̆) + 2e(x̆)ᵀJδx+ δxᵀJᵀJδx (6)
= E(x̆) + 2e(x̆)ᵀJδx+ δxᵀHδx (7)

Where H = JᵀJ is the approximate Hessian. By computing
the derivative with respect to δx and setting it to zero we
can compute the increment δx∗ which minimizes Eq. 7 and
solves the following linear system (Eq. 8):

Hδx∗ = −e(x̆)ᵀJ (8)

This linear system can be written as:

Ax = b (9)

where: A = H , b = −e(x̆)ᵀJ and x = δx∗. In our
implementation we use Cholesky factorization to solve the
linear system in Eq. 8. The increment δx∗ is then added to
the initial guess x̆.

x∗ = x̆+ δx∗ (10)

For the inverse compositional direct alignment step of our
algorithm, the Hessian and its inverse can be pre-computed
(for all iterations). Thus, solving the linear system in Eq. 8

becomes trivial. The parameter update is also different since
it involves inverted composition rather than forward additive
increments (See Eq. 26).
The Gauss Newton solver iterates the following steps: first,
it locally approximates the non-linear cost function with a
linear function according to Eq. 5, then it computes in closed
form the increment δx∗ according to Eq. 8, and finally it
updates the parameter vector according to Eq. 10. While
the intermediate problem (linear approximation) is solved in
closed form, the initial non-linear problem in Eq. 1 needs to
be iteratively solved. In every iteration, we use the current
updated parameter vector as an initial guess (linearization
point). The iterative process continue until some termination
criteria are met, e.g., when the algorithm converges or we
reach a maximum number of iterations.

IV. THE HYBRID SLAM SYSTEM

We propose a hybrid visual stereo SLAM algorithm which
combines a feature-based method and a direct image align-
ment method. As discussed on the introduction, feature-
based approaches are generally fast and can handle large
camera movements. We make use of this characteristic and
design a hybrid visual stereo SLAM which uses the motion
estimation from a feature-based visual SLAM as an initial
guess for a direct image alignment method refinement step.
Our hybrid stereo SLAM is based on the popular ORB-
SLAM2 algorithm [1]. We modify the tracking thread such
that we refine the poses using direct image alignment and
we modify the mapping thread such that we compute dense
binocular stereo matching at keyframes.

A. Notation

We use the following notation in this work:
• {I lcur, Ircur} and {I lref , Irref}: the left and right images

of the current frame and reference keyframe respec-
tively.

• x = (u, v): pixel with the coordinates (u, v).
• p = (X,Y, Z): point in 3D space corresponding to the

image pixel x = (u, v).
• T ∈ SE(3): a 3D rigid body transform. T = {R, t}

where R ∈ SO(3) and t ∈ R3.
• ξ ∈ se(3): minimal parametrization of the 3D rigid

body transform in the Lie algebra.
• Tf : transform estimated by the feature-based approach.
• Td: transform estimated by the direct image alignment

approach using the inverse compositional algorithm.
• W (x, ξ): 3D warp which maps pixels from the reference

keyframe to the current frame.
• ∇I: image intensity gradients (Jacobians).
• π, π−1: pinhole camera projection model and its in-

verse.
• fx, fy, cx, cy: camera intrinsic parameters.
• ρ: Huber robust cost function.
• e: error function.
• J and H: Jacobian and Hessian.
• x̆: initial guess for the parameter x which we use to

initialize the optimization.



• x∗: optimal value of the parameter x, which we get after
the optimization.

B. Lie algebra parametrization for motion estimation

A rigid body transform g transforms as point p ∈ R3 in
the 3D space to a point g(p) ∈ R3 in 3D space:

g : R3 → R3

p→ g(x) (11)

The rigid body transform g can be expressed by a 4 × 4
matrix T ∈ SE(3), which is composed by a rotation matrix
R ∈ SO(3) and a translation vector t = (tx, ty, tz) ∈ R3.

g(p) = g(p, T ) = T.p = Rp+ t (12)

where

T =

[
R t

01×3 1

]
(13)

and

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (14)

We use the Lie group SE(3) and its corresponding Lie
algebra se(3) to get a minimal parametrization of the
3D rigid body transforms. On the associated Lie algebra
se(3), the corresponding transform is a 6-dimentional vector
ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6). These coordinates are called the
twist coordinates, where the first (ξ1, ξ2, ξ3) are the linear
velocities and (ξ4, ξ5, ξ6) are the angular velocities. Here,
we represent the rotation part of the transform with exactly
three parameters (ξ4, ξ5, ξ6) rather than nine parameters as
in the rotation matrices representation. The use of the Lie
group solves the singularities of the compact Euler-angles
representation.
A rigid body transform T can be mapped to its corresponding
ξ using the logarithmic map as follow:

log : SE(3)→ se(3)

g → ξ = log(T ) (15)

The inverse of this operation is the exponential map.

exp : se(3)→ SE(3)

ξ → T = T (ξ) = exp(ξ) (16)

C. Tracking: Minimizing distances and intensity differences

Our system uses ORB-SLAM2 to estimate ξ∗f , the pose of
the current frame based on features. Any other feature-based
stereo SLAM can be used. We compute Tf by minimizing
the re-projection error (see Eq. 18) between predicted pixel
locations and the observed pixels locations ( see Eq. 17).

ef (xi) = xi − π(RXi + t) (17)

T ∗f = argmin
Tf

∑
i∈ℵ

ρ (‖xi − π(RXi + t)‖Ωi
) (18)

Fig. 3. Feature based motion estimation: we try to find the transform (pose
of the current camera) for which the sum of all re-projection distances
ei (shown in red, the unit is Pixel) is minimal. Note that in a 3D-3D
correspondence approach, distances (in Meter unit) between 3D points. Due
to triangulation inaccuracy, these methods are generally less accurate than
approaches based on 2D-3D correspondences.

Fig. 4. Direct image alignment motion estimation: illustration of the inverse
compositional algorithm. Here, we minimize the photometric errors. The
color (gray values) of the squares encode the intensity value [0-255]. The
search for the warp increment (image bottom left) is done in the reference
image (top left) and then this warp is inverted and composed (Eq. 26) with
the current warp of the target image (right image). The result, is a direct
warp from the template image to the target image.

where Ωi is a weighting (inverse covariance matrix) associ-
ated to the scale at which the feature was extracted. And ρ
is the Huber robust cost function. We note that we minimize
distances (in pixels) on the image plane. We illustrate this
case in Fig 3. The final pose ξ∗f we get with the feature
based motion estimation is used as initial guess for our direct
image alignment motion refinement. This is described in the
following equation (Eq. 19):

ξ̆d = ξ∗f (19)

The 3D warp W (xi, ξd) which maps a pixel xi ∈ I lref in the
reference keyframe into its corresponding pixel in the image
I lcur using the pinhole camera projection model π is given
by:

W : R2 × R6 → R2

(x, ξd)→W (x, ξd) = π(π−1(x, Z), g(T (ξd))) (20)



where

π

 X
Y
Z

 =

 fx
X
Z + cx

fy
Y
Z + cy

fx
X−b
Z + cx

 (21)

and its inverse maps a 2D pixel x = (u, v), with known
depth Z, to its corresponding 3D point p = (XY Z):

π−1

 u
v
Z

 =


u−cx
fx

Z
v−cy
fy

Z

Z

 (22)

We compute Td by minimizing the re-projection photometric
error between the predicted intensities of the pixels and the
observed intensities. We illustrate this case in Fig 4. We work
with 8-bit gray-scale images with intensities in the interval
[0-255]. The error is defined as follow (Eq. 23):

ed(xi) = I lref (W (xi, δξd))− I lcur(W (xi, ξd)) (23)

We optimize using pixels xi ∈ Dref where Dref is the set
of pixels xi ∈ I lref such that xi has a valid depth and the
magnitude of the intensity gradient at xi is larger than a
given threshold. In practice we use about 15% of the image
pixels. Note that the domain Dref here is defined in I lref for
the inverse compositional image alignment. For the forward
additive algorithm and the compositional forward algorithm,
the domain is defined on I lcur.
We iteratively optimize the following energy function to align
I lcur with I lref :

ξ∗d = argmin
ξd

∑
x∈Dref

‖I lref (W (xi, δξd))− I lcur(W (xi, ξd))‖2

(24)
= argmin

ξd
Ed(δξd) (25)

Since the increment δξd is computed for the reference
keyframe image (the template image not the target image)
we need to invert it and and compose it with the current
parameter estimate. The warp update at iteration k + 1 is
given by Eq. 26.

T k+1
d = T kd ∗ exp(−δξ∗d) (26)

In the iterative optimization process, we linearize around
δξ = 0 at every iteration using Eq. 5 applied to the cost
function in Eq. 24.

Ed ≈
∑

x∈Dref

‖I lref (W (x, 0))− I lcur(W (x, ξd)) + Jdδξd‖2

(27)

The derivation of the Jacobians for our inverse compositional
algorithm is similar to the forward compositional algorithm
in [20]. However, Jacobians in our case are computed for the
I lref image and not for Icur as in [20].

Jd(x, ξd) =
∂Ed
∂ξd

(28)

The Jacobian can be computed using the chain rule.

Jd(x, ξd) =JIJπJgJT (29)

=
∂I lref (W (x, δξd))

∂π

∣∣∣
x=π(g(pi,T (0))=xi

.

∂π(p)

∂g

∣∣∣
p=g(pi,T (0))=pi

.

∂g(p, T )

∂T

∣∣∣
T=T (0)=Ilcur,

p=pi

.

∂T (ξd)

∂ξd

∣∣∣
ξd=0

(30)

The individual Jacobians in Eq. 28 can be derived as follow.
The intensity Jacobian JI is evaluated at x = π(g(pi, T (0)),
where T (0) = I4x4.

JI =
∂I lref (W (x, δξd))

∂π

∣∣∣
x=π(g(pi,T (0))=xi

(31)

=(∇I lref,u∇I lref,v) (32)

The camera projection Jacobian is:

Jπ =
∂π(p)

∂g

∣∣∣
p=g(pi,T (0))=pi

(33)

=

[
fx

1
z 0 −fx x

z2

0 fy
1
z −fy yz2

]
(34)

The Jacobian of the function g is:

Jg =
∂g(p, T )

∂T

∣∣∣
T=T (0)=Ilcur,

p=pi

=
[
x.I3×3 y.I3×3 z.I3×3 I3×3

]
(35)

The Jacobian of T is:

JT =
∂T (ξd)

∂ξd

∣∣∣
ξd=0

(36)

=



0 0 0
03×3 0 0 1

0 −1 0
0 0 −1

03×3 0 0 0
1 0 0
0 1 0

03×3 −1 0 0
0 0 0

I3×3 03×3



(37)

Finally, we get the expression for our per-pixel Jacobian:

Jd =JIJπJgJT (38)

=(∇I lref,ufx,∇I lref,vfy).[
1
z 0 − x

z2 −xyz2 (1 + x2

z2 ) −yz
0 1

z − y
z2 −(1 + y2

z2 ) xy
z2

x
z

]
(39)

Note that the per-pixel Jacobian Jd is a 6-dimensional vector.
By checking the dimensions of the different matrices which



Fig. 5. This figure shows the features tracked on the current frame, the
disparity map of the last keyframe (the color encode the disparity value)
and a view of the volumetric reconstruction. The current point cloud which
overlaps with the map is also drawn.

compose Jd, we get:

Jd︸︷︷︸
1×6

= JI︸︷︷︸
1×2

. Jπ︸︷︷︸
2×3

. Jg︸︷︷︸
3×12

. JT︸︷︷︸
12×6

(40)

V. OUTDOOR 3D OBSTACLE AVOIDANCE USING STEREO

In this section we describe our stereo-based 3D path
planning system. A volumetric map (Octomap) is maintained
by the system. Stereo dense disparity maps are projected to
3D to create point clouds (Octomap scans). These measure-
ments are then used to update the octree [21]. Collision-free
trajectories can then be planned for safe navigation in 3D.

A. Occupancy grid map and dense stereo matching

The map built by ORB-SLAM2 is too sparse to be used for
path planning. Thus, we build a dense volumetric occupancy
grid map. For real-time purposes we update the occupancy
grid map only at keyframes. When the tracking thread of
the SLAM system decides to create a new keyframe we also
store (with the keyframe) the intensity images (left and right
at half resolution). At the mapping thread we estimate the
disparity map by using the popular semi-global matching
(SGM) dense stereo matching [22]. While there exist more
efficient local stereo matching algorithms [23] [24], the need
to estimate the disparity maps only at keyframes motivates
us to use the globally more accurate stereo algorithm SGM.

B. Path planning in 3D occupancy grid map

The 3D path planner gets a binary version of the up-to-
date octree and updates its bounds using the current octree
bounding boxes. The planning in 3D is more challenging
than in 2D and efficient methods need to be used. Standard
path planners such as A∗ are not efficient for usage on-board
a quadcopter. We choose to use a variant of the efficient
rapidly-exploring random trees RRT [25]. We use the open-
source library OMPL, which implements a set of planning
algorithms. One of the algorithms used for path planning in
this setup is RRT* [26]. It is a variant of the original RRT. In
the following the choice of this algorithm is illustrated. RRT

is a sampling-based algorithm and provides probabilistic
completeness [26]. That means that the probability that the
planner fails to find a solution, if there is one, goes to zero as
the number of samples approaches infinity. Such a sampling-
based planner requires a collision checking module as it does
not represent obstacles explicitly [26]. A problem of RRT is
that it doesn’t provide any guarantees to an optimal solution.
If we use RRT in this setup we get a valid solution very
fast but as stated it is not necessarily optimal. Experiments
show that it is very often not even close to optimal. But as
we are planning paths for a Quadrotor optimal paths (or at
least short paths) are important to not waste battery power.
To achieve an optimization of the planned path RRT* is
used. Basically the tree is constructed in the same manner
as in normal RRT but not all feasible connections will be
inserted. Normal RRT just inserts a connection between the
new node and its nearest neighbor (considering the euclidean
distance). The RRT* algorithm will check all nodes in the
surrounding of a new node and only insert the shortest
path to the new node, considering a cost function, into the
tree. This cost function differs from the euclidean distance,
because on the path from the root to the node, which
will be connected to the new node, there might be some
obstacle that increases the cost in comparison to a straight
line connection. Therefore the nearest neighbor of the new
node does not have to be on the shortest path to the new
node. After that all the surrounding nodes are checked again
whether there is a new shortest path to each of them using
the newly inserted node. If that is the case the tree gets
rewired to maintain it a tree structure. As stated in [26],
RRT* is probabilistically complete, like the normal RRT, but
moreover it is asymptotically optimal. That means that the
returned solution converges almost surely to the optimal path
[26]. This property made the RRT* algorithm a good choice
for this path planning scenario. Moreover the algorithm
is not limited to finding geometric shortest paths but can
also optimize towards a mixed optimization objective taking
different costs (e.g. avoiding power extensive maneuvers)
into account. In the quadcopter online planning scenario
it has to be considered that one has to make a trade-off
between spending energy and time flying a non-optimal path
vs. spending energy and time hovering too long to compute
the optimal path plus flying this path. Once a path is planned
the way-points are sent to the Pixhawk controller via a serial
connection. The Pixhawk controller takes care of flying the
quadcopter to the desired destination. The desired destination
includes the position (XYZ) and the yaw angle.

VI. RESULTS
A. Platform description

In our real experiments we used a custom-made quad-
copter. It is shown in Fig. 7. The components of the
quadcopter are as follows: a stereo camera with a pair of
Point-Grey Firefly monochrome cameras with a resolution
of 640x480 pixels. The baseline between the two camera is
22cm. The stereo camera delivers synchronized stereo pairs
at 30Hz. The flight control is from the open-source project



(a) (b) (c)
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Fig. 6. Thanks to the volumetric global map maintained by our algorithm, we can plan collision-free paths between any two positions on the global map.
(a) a view of the outdoor environment in which we did the experiment. (d) a Google Maps view of this area. The yellow rectangle shows the mapped area
and the red line inside it shows the straight line between the start and goal position for the planner. (b) the sparse map built by the SLAM algorithm. This
map which is used for pose estimation and re-localization. (c) the 3D volumetric map (Octomap) which is used by the planner. The green dots show the
robot trajectory. (e) and (f) show two views of a set of 3D paths between the start and destination positions. These views correspond to the black rectangle
region of the map in (c).

Fig. 7. Quadcopter used for our outdoor real experiments with the forward
looking stereo camera.

Pixhawk [19]. The on-board computer is an Intel NUC mini-
pc. It has an Intel core i7-5557U CPU with 2x3.1GHz, 4MB
cache, 28 Watts thermal design power (TDP) and 8GB RAM.

B. Obstacle avoidance in outdoor environment

We performed outdoor experiments in an environment
with vegetation (grass), trees, walls and asphalt. Some pic-
tures of this environment can be seen in Fig. 1(a), 6(a) and
6(d). Fig. 6 shows the details of an outdoor experiment.
It shows the sparse map and the volumetric map. A set
of collision-free paths between two points are also shown.
Table I shows some statics from the outdoor experiment. The
running times are reported for the case where all software

#Stereo pairs 9040
#Keyframes 1128
#Map points 30616
Feature based tracking (time) 52 ms
Direct alignment refinement (time) 21 ms
Dense stereo 320 × 240 pixels (time) 55 ms
Dense stereo 640 × 480 pixels (time) 183 ms
Octree update 320 × 240 pixels (time) 62 ms
Octree update 640 × 480 pixels (time) 191 ms
Octree memory (size) 360 MB
Binary Octree (size) 1.1 MB
Planning RRT* (time) 10 s
Average #WPs 86

TABLE I
SOME STATISTICS FROM THE OUTDOOR OBSTACLE AVOIDANCE

EXPERIMENT.

packages of our system (see Fig. 2) are running at the
same time. The running times for performing dense stereo
matching and octree update are given for two different
resolutions (640×480 and 320×240). The planning time is
set to 10 seconds. WPs means the number of intermediate
way-points.

C. Results of the Hybrid SLAM on the Kitti Dataset

We evaluated our hybrid SLAM method on the Kitti
odometry benchmark [27]. The Kitti datasets are recorded
using a car with a stereo camera mounted on the top of
the vehicle. The recorded trajectories have a total length
of about 39 Km divided into 22 sequences. Ground truth
trajectories are provided for the first 11 sequences. Some
sequences include loop closures and dynamic objects (cars
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Fig. 8. Results on the Kitti odometry benchmark. Our algorithm (blue)
is compared with the ORB-SLAM2 [1] (green). The ground truth is also
drawn (red). Top: sequence 12. We achieve a considerable improvement. Our
method accumulates less drift. Middle: for a better visualization we zoom in
the last part of the trajectories of the previous image. Bottom: sequence 00
which has many loops. No significant improvement. The trajectories almost
overlap.

driving around). Our results show that the refinement step
(using the direct image alignment) improves the accuracy
for sequences (e.g. sequence 12) with no loop closures.
Fig. 8 shows the results obtained for the Kitti sequences 12
and 00. For the sequence 12 of the Kitti benchmark which
has no loop closure the drift becomes larger with the travelled
distance. Our refinement step helped to keep the drift very
low. For sequences with many loop closures (e.g. sequence
00), we get almost the same results as the original algorithm.
A loop closure detection and correction contribute to reduce
the drift for the feature-based SLAM more than it does for
our hybrid method. This can be confirmed by disabling the
loop closure thread of the SLAM system.
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