
LS-ELAS: Line Segment based Efficient Large Scale Stereo Matching

Radouane Ait-Jellal, Manuel Lange, Benjamin Wassermann, Andreas Schilling and Andreas Zell

Abstract— We present LS-ELAS, a line segment extension
to the ELAS algorithm, which increases the performance and
robustness. LS-ELAS is a binocular dense stereo matching
algorithm, which computes the disparities in constant time
for most of the pixels in the image and in linear time for a
small subset of the pixels (support points). Our approach is
based on line segments to determine the support points instead
of uniformly selecting them over the image range. This way
we find very informative support points which preserve the
depth discontinuity. The prior of our Bayesian stereo matching
method is based on a set of line segments and a set of support
points. Both sets are plugged into a constrained Delaunay
triangulation to generate a triangulation mesh which is aware
of possible depth discontinuities. We further increased the
accuracy by using an adaptive method to sample candidate
points along edge segments.

I. INTRODUCTION

In this paper we address the problem of estimating dis-
parity maps at high frame rates and using low computational
resources. Depth estimation is an important task in mobile
robotics. It is essential for many high level and medium
level tasks such as 3D reconstruction, obstacle avoidance,
navigation, recognition and object grasping. The introduction
of RGBD sensors1 with their sufficiently accurate depth map
and their real time capability has accelerated the research
on indoor mobile robotics. Since these Kinect-style RGBD
sensors are based on the projection and capture of structured
infra-red light, they are not designed for outdoor usage with
substantial sunlight. There is a need for more adequate sen-
sors. Stereo cameras are the most adequate depth estimation
sensors to be used for a wide range of outdoor and indoor
applications. They provide data at a high frame rates, they are
lightweight, passive, energy efficient and customizable. This
makes the hardware side of a stereo system very convenient.
The software side is still problematic because of the trade-
off between accuracy and efficiency. In this work we propose
an efficient and accurate dense stereo algorithm which can
facilitate the migration of systems initially designed to work
in indoor environments using Kinect-style RGBD sensors, to
operate outdoors. The need for high resolution depth maps
involves considering large disparity ranges. In this case, even
stereo algorithms with linear time O(d) complexity (such
as block matching) become inefficient. Here we drop the

R. Ait-Jellal is with the Chair of Cognitive Systems,headed by
Prof. A. Zell, M. Lange and B. Wassermann are with the Chair of
Visual Computing, headed by Prof. A. Schilling, Computer Science
Department, University of Tübingen, Sand 13, D-72076 Tübingen,
Germany {radouane.ait-jellal, manuel.lange,
benjamin.wassermann, andreas.zell,
schilling@uni-tuebingen.de}

1e.g. Microsoft Kinect, Asus Xtion Pro or Intel RealSense

Fig. 1. Illustration of the difference between LS-ELAS (black triangles)
and ELAS (dashed triangles) triangle meshes.

number of the pixels (width × height) in the complexity
and we analyse the complexity only with respect to the
disparity d. We present four contributions in this work: (1)
An efficient method for edge extraction, which provides the
connectivity of the edges components as well. (2) A new
method based on edge features for computing the support
matches. This method is selective and does find support
points which are more informative and allows to preserve
the depth discontinuity (See Fig. 1). It is more efficient as
well since the candidate support points that we use are more
likely to have robust correspondences. (3) A new prior for the
Bayesian inference approach proposed by ELAS. Our prior
better represents the probability distribution of the disparity
given the set of support points, the set of line segments
and the observations. (4) An adaptive method for sampling
support points along the edge segments.

II. RELATED WORK

Dense stereo matching algorithms can be divided into
two categories [1]: local stereo matching and global stereo
matching. This classification is based on the way the dis-
parity optimization is done. Since we are interested in real-
time algorithms, we focus on the classification based on the
computational time complexity. Most local stereo algorithms
have a linear time with respect to the disparity O(d) and
most global stereo algorithms have a quadratic time with
respect to the disparity O(d2). Algorithms with higher order
complexities are usually impractical for robotics applications.
Algorithms, which smartly restrict the search domain to a
small interval, such as [2] [3] [4], are becoming more popular
and more, because these algorithms deal efficiently with
large scale images. While [2] involves a global optimization
stage, ELAS [4] is a near constant time local stereo matching
algorithm. ELAS starts by finding robust matches for some
pixels called support points and generates from them a 2D

mesh by triangulation. The matching of these triangles corner
is done in linear time O(d). Afterwards the algorithm uses
Bayesian inference with the assumption that the disparity of
a pixel is independent of all other pixels on the reference
image given the disparities of the triangle corners it belongs
to. For the pixels inside the triangles the matching is done
in constant time O(1).

In local stereo matching [5] [6] [7] [8], the disparities are
computed for each pixel individually, with the cost aggre-
gated over a local correlation window. The choice of the size
and the shape of the correlation window is both crucial and
challenging. A correlation window with a large size can lead
to edge blurring at the depth discontinuities. A correlation
window with a small size, on the other hand, can significantly
decrease the signal to noise ratio. This problem increases
the ambiguity of the candidate disparities and as a result
it increases the amount of outliers. A customized shape and
size of the correlation window [7] for each pixel individually
comes at the cost of increasing the computational time. In
this case it is not surprising that some adaptive window
local stereo matching algorithms are even slower than some
efficient global stereo matching algorithms. [3] proposed
slanted support windows. They compute 3D planes at the
level of pixels and projects the support region onto the local
3D plane. In global stereo matching [9] [10] [11] [12], the
whole pixels of the image contribute to the computation
of the disparity of a given pixel. In addition to the data
term the energy function does include a smoothness term
which penalizes the disparities which do not agree with
the disparities of the neighbors. The complexity of these
algorithms is usually O(dc), where d is the disparity range
and c is the size of the maximum clique potential. c is usually
set to c = 2 for speed-up the global stereo algorithms. Never-
theless, global stereo algorithm remain very slow for mobile
robotics applications. An efficient global stereo algorithm is
proposed by Felzenszwalb et al. [13]. They come up with a
method for updating the messages in linear time O(d) for
the three models of smoothness term: the potts model, the
linear model and the quadratic model. However, the huge
memory requirement needed for storing the messages and
the fact that there is no guarantee for convergence for loopy
graphs are two major drawbacks of this method. Another
efficient algorithm is the semi-global stereo matching (SGM)
firstly proposed by Hirschmüller et al. [14]. In SGM the costs
are first computed using local stereo matching in linear time
O(d). Then, a smoothness step is applied for updating the
costs by penalizing the disparities that disagree with those of
the neighbours. It considers interactions that are potentially
very long range along image rows, columns and diagonals to
minimize a cost function. The semi-global characteristic is
due to the fact that only a small subset of possible interaction
paths is considered.

III. LINE SEGMENT BASED EFFICIENT LARGE SCALE
STEREO MATCHING

In this section we describe our algorithm in detail. We start
by describing our method for extracting the edge segments

(a) (b)

(c) (d)

Fig. 2. Intermediate steps of our edge segments extraction method. (b)
shows the dirMap (gradient directions). (c) shows the edgeMap. The color
encodes the gradient direction (same as in dirMap). (d) shows the final edge
segments list. Each edge segment is drawn by a random color individually.

↖ 1 ↑ 2 3 ↗
← 0 x 4 →
↙ 7 ↓ 6 5 ↘

5 6 7
4 x 0
3 2 1

Fig. 3. The left table contains the direction labels for the 8 adjacent pixels
around the pixel x. The table on the right contains the inverse direction
labels that are used for an inverse search.

and the way we compute the set of support points and the set
of line segments. Then, we show the mathematical derivation
of our Bayesian approach for the stereo problem.

A. Fast Edge Segment Detection

In ELAS [4] the support point candidates are sampled
uniformly over the image (See Fig. 5(e)). This method is
motivated by the need for an efficient way to compute the
support points. In this paper we present a new method for
extracting support point candidates based on edge features.
Our approach is motivated by our efficient edge extraction
method. We show that our method for computing the support
matches is both, robust and efficient. Furthermore, it allows
us to use the line segments between two consecutive support
points to generate a better triangulation (see Sec. III-C.2).

Algorithm 1: Main loop for extracting edge segments.
Data: seedList, edgeMap, dirMap, dir2Index
Result: edgeSegmentList
foreach seed in seedList do

Check if seed is valid?
segForward = extractSeg(seed);
reverse(dir2Index);
segReverse = reverse(extractSeg(seed));
edgeSegmentList.push(segReverse + segForward);

Algorithm 2: adjacentIndex: Find adjacent edge pixel.
Input: index, direction
Data: edgeMap, dir2Index
Result: adjIndex
for each adjIndex pixel do

if edgeMap[adjIndex] > 0 then
// Invalidates the pixel from seedList
edgeMap[adjIndex] = -1;
return adjIndex;

return -1;

Algorithm 3: extractSeg: Extract single edge segment.
Input: index
Data: edgeMap, dirMap
Result: edgeSegment
while index >= 0 do

edgeSegment.push(index) ;
index = adjacentIndex(index, dirMap[index]) ;

return edgeSegment;

Our fast edge segment extraction method is similar to the
Canny edge detector approach [15]:

1) The input image is smoothed by a Gaussian filter to
reduce noise.

2) The intensity gradients of the image are computed.
3) Non-maximum suppression is applied for thinning the

spread edge responses to the maximum responses.
4) Two thresholds are applied to determine potential

strong and weak edge pixels.
5) The edges are tracked by hysteresis to suppress weak

edges that are not connected to strong edges.
The result of the classical Canny method only provides an
edge pixel map without the connected edge components. We
want to have a data structure which holds all pixels which
belong to the same edge segment (See Fig. 2(d)). We need
to split the edge map to individually determine the edge
segments. So, we extended the Canny method as follows:

1) Within the third step of Canny the gradient orientation
for each pixel has to be known. Fast algorithms com-
pute a rough approximation for the 8 possible neigh-
bouring pixels. In our method we store this information
in a map for later use.

2) In our approach all edge responses over the lower
threshold are marked in an edge map (see Fig. 2(c)).
The indices of the edge responses over the higher
threshold are stored in a seed list.

3) The hysteresis step is replaced by the connected edge
components search (See Fig. 3).

Starting from a seed point and its initial direction (Canny
modification 2 and 1), a connected edge component is ex-
tracted by traversing the adjacent edge points (see Algorithm
3). Instead of testing all 8 adjacent pixels, we use the stored
direction to predict the next adjacent edge point as shown in

Fig. 4. Locations of the 32 elements of the feature vector on the X-Sobel
(left) and Y-Sobel (right) gradient images. The candidate support point is
at the center. The Sobel responses are normalized and shifted to have the
size of 8 Bits and values between 0 and 255.

Algorithm 2. The seed point could be the start point or the
end point of a segment. For an end point the search direction
has to be reversed. It is also possible that the seed is a point in
between the segment, which requires a reverse and a forward
search. The ordered connected edge points are stored in an
edge segment list. For more details see Algorithm 1.

B. Fast Support Points Matching

The process of computing the support points is illustrated
in Fig. 5. We start by sampling candidate support points
along the edge segments. A candidate support point includes
the pixel coordinates (u, v) and the disparity d (d is initially
set as invalid). The set of support points is S. We set a
feature vector for each candidate support point based on
the gradients in X and Y direction around it. Our feature
descriptor is shown in Fig. 4. To match the support points
candidate we use the sum of absolute differences to compute
the cost. We perform a left-right consistency check to filter
the outliers. Since the feature vector is 32 elements of 8
bits each, the 256 bits feature vector does fit in the AVX2
(Advanced Vector Extensions 2 SIMD instructions) CPU
registers and the computation is accelerated using the AVX2
intrinsics. Table IV shows a comparison of the percentage of
successfully matched support points. The AVX2 is used only
for support points matching. For pixels inside triangles we
use a 128 Bits feature vector and SSE2 SIMD instructions
as in ELAS.

We present two different methods for sampling candidate
support points. In our first method, we uniformly sample
candidate support points along the edges. A constant step
separates two consecutive candidate support points. This
constant step is calculated from the image diagonal length.
We present also a more elegant method for sampling the
support point candidates. This sampling method is an adap-
tive method. Here we sample more points on curved parts
of edges than on straight parts. We use an iterative process
where we walk along the edge and consider the straight line
between the last recently sampled support point candidate
(start) and the current point (end). When the ”curvature” (the
projection distance, of any of the points from the currently
checked part, onto the straight line which lies between the
current start and the current point) is over a certain threshold,
then a new support point candidate is set. This point is the
new start for the next steps of the walk. In case the curvature

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) shows the left image of the Middleburry 2014 Pipes dataset from which we select the region defined by the red rectangle. (d) shows this area.
(b) shows the edges (in light blue) detected with our method. (c) (e) (f) shows the support point candidates cij (red and green) and the valid support
point sij (green). (c) shows the set S we get using our algorithm. (e) (f) using ELAS method with a step of 10 and 5 pixels respectively.

Fig. 6. Illustration of the adaptive sampling. The points Vi are sampled
along the (black) edge segment. We sample a candidate support point
when the distance exceeds the threshold T1 for curved edge regions or
the threshold T2 for relatively flat regions.

is low, we also set a new support point candidate with a
constant step. This process is illustrated in Fig. 6.

C. Bayesian inference of the disparity map

1) Notation: We use the following notation in this work:
• dn: Disparity of the pixel n.
• E = {ej}: List of edge segments.
• C = {cij}: List of candidate support points sampled

along the edges. cij candidate support point i sampled
on edge segment ej .

• S = {sij}: List of support points. These are elements of
C which are successfully matched on the target image.

• sij = (uij , vij , dn): Include the pixel coordinates
(uij , vij) and its disparity dn.

• L = {li1j−i2j}: List of straight line segments between
two consecutive support points si1j and si2j which
belong to the same edge ej .

• O = {on}: Image observations. on = (un, vn, fn).
Observations on the left image (reference image) are
denoted by o(l)n and o(r)n for the right image.

• fn: 16-dimensional feature vector around the pixel n
computed base on the image gradients. It is used to
compute the likelihood. It is similar to the one in Fig.
4 but has smaller size. It has 128 Bits (16x8) instead of
256 Bits (32x8). SSE2 SIMD instructions are used to
make parallel operations (addition, subtraction, etc) on
these feature vectors.

• σ, γ, β: Constant parameters.
• Ns =

⋃
i=1,2,3

{dpi−1, dpi, dpi+1}: Where p1,p2 and p3

are the vertices of the triangle to which the pixel belongs
to. dpi are the disparities of the triangle vertices.

• µ(S,L, o
(l)
n): The mean disparity (the prior). We get it

by interpolating the disparities of the triangle corners.

2) Prior based on constrained Delaunay triangulation:
We extend the Bayesian approach introduced by Geiger et
al. in ELAS [4] by including a list L = {li1j−i2j} of straight
line segments in the probability model. li1j−i2j approximate
curved edges between two consecutive (matched) support
points si1j and si2j . The set of (matched) support points S
and the set of line segments L are plugged into a constrained
Delaunay triangulation algorithm to compute a mesh of
triangles. In other words the input to our triangulation is
the set of all support points that have valid matches (this
includes the isolated edge support points whose predecessors
and successors on the edge have been deleted) and the set
of line segments L. The constrained Delaunay triangulation
is a triangulation, which is forced to include the input edges
(our line segments list L). This way we nicely preserve the
object boundaries. Fig. 7(a) shows the 2D mesh created by
our method LS-ELAS. The line segments are represented
with the green color. Equation 1 shows the mathematical

(a) (b) (c)

Fig. 7. (a) shows the 2D mesh generated using our method for the example in Fig. 5. The discontinuity edges are nicely preserved. (b) shows the disparity
map estimated using our algorithm (LS-ELAS). No hole filling post processing is done and most black regions corresponds to occluded regions (and they
should be black). We refer to the occlusion map for the Pipes dataset which is available at the website of the Middlebury stereo benchmark.

formulation of our prior:

p(dn | S,L, o(l)n) =

γ + exp

(
− (dn−µ(S,L,o(l)n))2

2σ2

)
,

if |dn − µ| < 3σ ∨ dn ∈ NS

0, otherwise
(1)

It includes a Gaussian part and a uniform part. The mean
µ(S,L, o

(l)
n)) in the Gaussian part depends on the set of line

segments L. Using the constrained Delanay triangulation to
generate the mesh might result in a mesh which does violate
the Delaunay property locally for some triangles. This is a
result of enforcing the constrained Delaunay triangulation
to include the set L of line segments. Remember that the
Delaunay property means that no point is contained inside
the circumcircle of any triangle in the mesh. This means
avoiding skinny triangles with large height to base ratio.
We prefer to have a mesh which preserves the discontinuity
rather than a mesh which conforms to Delaunay. The search
domain is restricted to a small set (radius of 3σ pixels) of
candidates disparities around the mean µ(S,L, o

(l)
n)). For

example we can restrict the search domain to 7 disparities
(σ = 1) instead of a full range of 800 disparities. To account
for depth discontinuity, the search domain is extended to
include the disparities of the corners Ns.

3) Maximum A-Posteriori Estimation: The Maximum A-
Posteriori estimate of the depth map dMAP

n is then given by
the Equation 2.

dMAP
n = argmax p(dn | o(l)n , o

(r)
1 , ..., o

(r)
N , S, L) (2)

It depends on the set of support points S, the set of
line segments L and the observations on the target image
o
(r)
1 , ..., o

(r)
N . Note that we consider only the observations

along the epipolar line. We model the likelihood using
a constrained Laplace distribution (See Equation 3). The
Laplace distribution is robust against outliers. We can safely

ignore the outliers on the data.

p(o(r)n | dn, o(l)n) =

exp(−β
∥∥∥f (l)n − f (r)n

∥∥∥
1
),

if

(
u
(l)
n

v
(l)
n

)
=

(
u
(r)
n + dn

v
(r)
n

)

0, otherwise

(3)

We see in this equation that for a given disparity candidate dn
only one observation is non-zero. The posterior in Equation
2 can be simplified as shown in Equation 4.

dMAP
n = argmax p(dn | S,L, o(l)n)p(o

(r)
1 , ..., o

(r)
N | o

(l)
n , dn)

= argmax p(dn | S,L, o(l)n)

N∑
i=1

p(o
(r)
i | o

(l)
n , dn)

(4)

Maximizing the posterior probability is equivalent to mini-
mizing the negative logarithmic energy. To find the winning
disparity, we minimize the energy given by Equation 5.

E(d) = β
∥∥∥f (l)n − f (r)n (d)

∥∥∥
1

− log

[
γ + exp

(
− (dn − µ(S,L, o(l)n))2

2σ2

)]
,

if |dn − µ| < 3σ ∨ dn ∈ NS

+∞, otherwise
(5)

where f (r)n (d) is the feature vector at (u(l) − d, v(l)) on the
right (target) image.

IV. RESULTS

A. Evaluation on the Middlebury Benchmark

We performed experiments on the Middlebury Stereo
Evaluation Dataset - Version 3 from 2014 [16] to evaluate
our adaptive LS-ELAS algorithm. We have submitted our
results to this benchmark, they are listed as ”LS-ELAS”
for broader comparison with other algorithms2. Our results
are particularly good in the sparse datasets, because we did

2http://vision.middlebury.edu/stereo/eval3/

TABLE I
PERFORMANCE EVALUATION ON THE MIDDLEBURY STEREO EVALUATION DATASET - VERSION 3, BAD 2.0, TEST SPARSE

Algorithm Avg Bad 2.0
Aust AustP Bic2 Clas ClasE Comp Crus CrusP Djem DjemL Hoop Livgr Nkub Plant Stair

SGM (F) 3.33 11.7 1.64 2.04 2.01 3.04 3.56 6.15 3.41 2.45 2.19 4.10 3.39 2.35 3.61 1.01
SNCC (H) 6.24 17.3 3.32 3.61 4.45 5.48 7.39 13.3 9.40 3.49 3.40 6.46 4.10 3.99 7.07 3.32
LS-ELAS (F) 8.82 14.9 4.43 7.94 4.89 2.92 7.20 10.9 6.50 5.27 4.97 10.5 9.78 8.55 20.3 15.7
SGBM1 (F) 9.44 24.0 5.55 5.63 7.17 8.85 7.65 14.7 9.97 3.82 10.9 16.0 9.93 8.25 9.55 11.9
Cens5 (H) 9.48 23.7 4.44 4.60 6.21 9.23 9.21 20.3 18.1 4.77 6.50 8.87 6.55 6.02 11.9 4.57
ELAS (F) 16.4 24.9 5.44 7.55 10.7 15.5 9.85 21.1 17.2 7.07 11.5 19.9 15.6 16.6 42.2 30.7
LPS (F) 20.3 6.72 6.06 9.72 9.87 94.3 14.1 11.2 11.2 5.88 89.3 36.0 20.5 23.8 16.0 25.4
TSGO (F) 39.1 34.1 16.9 20.0 43.3 55.4 14.3 54.1 49.2 33.9 66.2 45.9 39.8 42.6 47.2 52.6

TABLE II
PERFORMANCE EVALUATION ON THE MIDDLEBURY STEREO EVALUATION DATASET - VERSION 3, TIME IN SECONDS / MP, TEST SPARSE

Algorithm Avg Time per Megapixel
Aust AustP Bic2 Clas ClasE Comp Crus CrusP Djem DjemL Hoop Livgr Nkub Plant Stair

LS-ELAS (F) 0.50 0.49 0.51 0.61 0.49 0.46 0.48 0.50 0.50 0.50 0.49 0.47 0.48 0.50 0.47 0.45
ELAS (F) 0.56 0.57 0.56 0.54 0.59 0.52 0.48 0.65 0.65 0.56 0.54 0.56 0.53 0.59 0.53 0.53
SNCC (H) 1.02 0.73 0.69 0.68 1.25 1.23 0.68 1.57 1.62 0.77 0.80 0.95 1.16 1.24 0.77 1.01
Cens5 (H) 1.35 1.03 1.01 0.85 1.83 1.84 0.82 2.21 2.20 1.00 1.02 1.24 1.02 1.64 1.01 1.42
SGBM1 (F) 3.69 2.44 2.45 2.31 4.67 4.61 1.84 6.27 6.28 3.01 2.95 3.56 2.99 4.80 2.97 3.51
LPS (F) 5.28 5.97 4.30 4.42 4.22 4.17 11.4 4.90 4.91 4.83 4.37 5.85 4.24 4.38 5.79 4.96
TSGO (F) 8.26 11.6 11.5 9.94 6.53 6.98 22.4 8.34 8.63 4.21 4.45 4.88 4.95 6.09 4.12 5.27
SGM (F) 13.4 10.0 9.32 8.20 16.1 18.4 8.03 23.0 22.6 9.83 10.4 12.7 10.2 16.8 10.4 13.9

TABLE III
PERFORMANCE EVALUATION ON THE MIDDLEBURY STEREO EVALUATION DATASET - VERSION 3, LS-ELAS VS ELAS

Algorithm LS-ELAS vs ELAS: Percentage of wrong matches averaged for all images. Set: test sparse, Mask: nonocc
bad 0.5 bad 1.0 bad 2.0 bad 4.0 avgerr rms A50 A90 A95 A99 time time/MP time/GD

LS-ELAS (F) 30.9 15.8 8.82 5.97 7.36 22.8 0.74 19.7 32.0 98.0 2.63 0.50 1.33
ELAS (F) 45.2 26.4 16.4 11.5 8.53 24.6 1.55 20.1 34.5 102 3.00 0.56 1.45

not implement a good post-processing method for correcting
invalid matches (hole filling). In the rest of this section, we
focus on the sparse evaluation. Remember that in Middlebury
benchmark, sparse disparity map means a ”dense” disparity
map for which the hole filling step is not performed. Most
of the holes (filtered pixels) occur at occlusions, in that case
the stereo matching is an ill-posed problem. The Middlebury
Stereo Evaluation Dataset contains a variety of different
kinds of scenes. This new Middlebury dataset is more chal-
lenging compared to the previous datasets. It includes images
taken in industrial environments, such as the Pipes dataset
and images taken in indoor environments. We attached a
video showing intermediate results of our algorithm when
applied on Middlebury dataset. Also the disparity range of
up to 800 disparities for the full (F) size images and up
to 400 for half (H) size images is higher than in previous
datasets. The Resolution is up to 3000×2000 pixels on the
full resolution images. We conducted all our experiments on
a notebook computer equipped with 16 GB RAM and an
Intel Core i7 4700MQ, 2.4 GHz 6 MB cache. All results are
single core performance. We selected the most popular stereo
algorithms in the Middlebury Stereo Evaluation Dataset to
compare them to our method. The training and test datasets
contain 15 images each. The average is calculated by weight-
ing the images. The weighting differs and the weights are set

by Middlebury. Table I shows an excerpt of the Middlebury
Evaluation table for the test sparse dataset. We chose test
sparse as set and nonocc as mask. A significantly lower error
value of our method compared to ELAS is clearly visible.
LS-ELAS is also more accurate than SGBM1 [17], Cens5
[18], LPS [2] and TSGO [19]. While Semi-Global Matching
[14] yields a lower error value, it is a much slower method.
The same applies to SNCC [20]. Table II shows a speed
comparison of the algorithms. Our algorithm is the fastest.

B. Comparing LS-ELAS with ELAS
In this subsection we compare the sub-part of the algo-

rithm concerning support point matching, then we compare
the whole algorithms for all different metrics of the Middle-
bury Benchmark. In Fig. 8 the time for the support point
calculation and matching is drawn for the images of the
training (H) dataset. As ELAS places the support points on a
uniform grid (5× 5) over the image, calculating the position
of the support point candidates is done immediately. We first
have to detect the edge segments in the image, then sample
our support point candidates along them. This detection takes
some time, which is visualized as Edge detection. After
having placed our support point candidates along the edge
segments, their matches in the corresponding stereo image
are calculated. That time is plotted as Match candidates. The
sum of both our steps is drawn as LS-ELAS to compare

Adiron
ArtL

Jadepl
Motor

MotorE
Piano

PianoL
Pipes

Playrm
Playt

PlaytP
Recyc

Shelvs
Teddy

Vintge
0

50

100

150
ELAS

LS-ELAS
Edge detection

Match candidates

Fig. 8. X-axis: the different dataset images. Y-axis: the time in ms for
computing the support matches. ELAS (blue) and LS-ELAS (red). For LS-
ELAS the time is the sum of the edge detection (brown) and the support
candidate matching (black). The results are reported for the training data set
at half resolution. Our algorithm is even more efficient compared to ELAS
on the full resolution. See Fig. 9.

Quarter Half Full

0

200

400

600

800 ELAS
LS-ELAS

Fig. 9. Evolution of the average time (in ms) for computing the support
matches with respect to the image resolution. Time averaged for 15 stereo-
pairs of the training H dataset. X-axis: image resolution (Full = 2888×1920
pixels). Y-axis: disparity range in pixels.

against the time ELAS takes in its corresponding steps. We
can see that our method is faster, even though it performs
the additional edge detection. This is because our candidate
support points are much likely to successfully match and
the size of the candidate support points set is considerably
smaller see Table IV. Fig. 9 shows the running time compar-
ison, of the support point matching step, between LS-ELAS
and ELAS. The y-axis is the average time in ms of the images
of the Middlebury Stereo Evaluation Dataset. The image size
is on the x-axis. Q stands for quarter resolution, H and F for
half and full resolution correspondingly. The average time
for the quarter resolution images is 15.7ms for our method
and 17, 9ms for ELAS. While the 2.2ms difference is not
significant, it takes 64% more time on the half resolution
images. This increases to three times the calculation time on
the full size images for the corresponding steps in ELAS. We
can see that increasing the picture size affects ELAS much
more than LS-ELAS. With a tendency to larger images, this
difference becomes more relevant. The Table III shows the
comparison results for all the Middlebury metrics on the test
sparse dataset in full resolution. Our algorithm outperforms
ELAS on all metrics. All the results above are from the
adaptive sampling version of our algorithm. The version with
uniform sampling is less accurate but slightly faster. The

TABLE IV
PERCENTAGE OF VALID SUPPORT POINTS

Dataset Algorithm Candidates Matched Percent

Pipes F LS-ELAS 23311 15845 68%
ELAS 228144 20834 9%

ArtL F LS-ELAS 10797 6064 56%
ELAS 61716 6529 10%

evaluation on the training sparse dataset showed that it is still
more accurate than ELAS and most competing algorithms
listed on Table I. For example: ”bad 0.5” = 37.3, ”bad 2.0”
= 11.2 and ”avgerr” = 3.56.

REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” IJCV, vol. 47, no. 1-3,
pp. 7–42, 2002.

[2] S. Sinha, D. Scharstein, and R. Szeliski, “Efficient high-resolution
stereo matching using local plane sweeps,” In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition CVPR, 2014.

[3] M. Bleyer, C. Rhemann, and C. Rother, “Patchmatch stereo - stereo
matching with slanted support windows,” 2011, pp. 14.1–14.11.

[4] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Proceedings of the 10th Asian Conference on Computer
Vision - Volume Part I, ser. ACCV’10. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 25–38.

[5] K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for
correspondence search,” IEEE TPAMI, vol. 28, no. 4, pp. 650–656,
2006.

[6] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu, “Constant time weighted
median filtering for stereo matching and beyond,” ICCV, 2013.

[7] T. Kanade and M. Okutomi, “A stereo matching algorithm with an
adaptive window: Theory and experiment,” TPAMI, vol. 16, no. 9, pp.
920–932, 1994.

[8] R. Ait Jellal and A. Zell, “A fast dense stereo matching algorithm with
an application to 3d occupancy mapping using quadrocopters,” 17th
International Conference on Advanced Robotics, 2015.

[9] M. Mozerov and J. van Weijer, “Accurate stereo matching by two step
global optimization,” TIP, 2014.

[10] R. Boykov, Veksler, and Zabih, “Graph cuts using alpha-beta swaps,”
PAMI, 2001.

[11] Q. Yang, W. L., and N. Ahuja, “A constant-space belief propagation
algorithm for stereo matching,” CVPR, 2010.

[12] A. Klaus, M. Sormann, and K. K., “Segment-based stereo matching
using belief propagation and a self-adapting dissimilarity measure,”
ICPR, pp. 15–18, 2006.

[13] P. Felzenszwalb and H. D., “Efficient belief propagation for early
vision,” International Journal of Computer Vision, vol. 70, no. 1, pp.
41–54, 2006.

[14] H. Hirschmüller, “Stereo processing by semiglobal matching and
mutual information,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 30, no. 2, pp. 328–341, 2008.

[15] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, June 1986.

[16] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić,
X. Wang, and P. Westling, “High-resolution stereo datasets with
subpixel-accurate ground truth,” in Pattern Recognition. Springer,
2014, pp. 31–42.

[17] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[18] H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-time
correlation-based stereo vision with reduced border errors,” Interna-
tional Journal of Computer Vision, pp. 229–246, 2002.

[19] M. G. Mozerov and J. van de Weijer, “Accurate stereo matching by
two-step energy minimization,” Image Processing, IEEE Transactions
on, vol. 24, no. 3, pp. 1153–1163, 2015.

[20] N. Einecke and J. Eggert, “A two-stage correlation method for stereo-
scopic depth estimation,” in Digital Image Computing: Techniques
and Applications (DICTA), 2010 International Conference on. IEEE,
2010, pp. 227–234.

