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Abstract— This work presents KMVO, a ground plane based
visual odometry that utilizes the vehicle’s kinematic model
to improve accuracy and robustness. Instead of solving a
generic image alignment problem, the motion parameters of a
differential drive vehicle can be directly estimated from RGB-
D image data. In addition, a method for outlier rejection is
presented that can deal with large percentages of outliers. The
system is designed to run in real time on a single thread of a
mobile CPU.

The results of the proposed method are compared to other
publicly available visual odometry and SLAM methods on a
set of nine real world image sequences of different indoor
environments.

I. INTRODUCTION

A precise and robust self localization is a crucial com-
ponent for many robotic tasks. Although a variety of dif-
ferent approaches exist, most publicly available methods
are designed to work with a forward looking sensor. For
obstacle detection and avoidance, a downward facing camera
is more suitable to perceive obstacles directly in front of
the vehicle, and for reliable detection of negative obstacles.
Having images mostly displaying the ground is not beneficial
for visual odometry for several reasons, especially in indoor
environments: it can have a very low contrast, quickly re-
peating texture, the ground plane does not provide geometric
information and is close to the camera, increasing the effect
of motion blur. Additionally, reflections and overexposure are
more likely to occur. In order to achieve robust and reliable
results with the described setup, an adapted visual odometry
is required.

This work proposes a visual odometry method specifically
designed to work with a downward facing camera, mounted
on a differential drive vehicle. Due to the non-holonomic
constraints of a differential drive, the motion can be de-
scribed by two parameters. It is shown that estimating these
two parameters directly from image data can significantly
improve the accuracy of the estimated motion. Furthermore,
an efficient outlier rejection scheme is presented. It operates
in the model parameter space instead of the data space.
This increases robustness against image noise and allows
removal of large outlier areas. The performance of the
proposed method is evaluated on nine real world datasets
and compared to five state-of-the-art approaches and its
predecessor. KMVO is able to outperform all six methods
used for comparison, while being able to run at 60hz on a
single thread of a mobile CPU.
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The outline of the paper is as follows: Section II gives a
review of related work. In Section III the hardware setup and
the orthogonal projection preprocessing step are described.
Section IV derives the image warping function for the
differential drive model. The image alignment and outlier
rejection are described in Section V. The evaluation method
and evaluation results are presented in Section VI. Finally, a
conclusion is given in Section VII.

The contributions of this paper are:
• A formulation that allows to estimate the motion pa-

rameters of the kinematic model directly from image
data.

• An efficient motion parameter based outlier rejection
scheme.

• Error handling for situations where the kinematic model
cannot describe the actual motion.

• Performance comparison with six existing visual odom-
etry and visual SLAM methods.

a) b)

c) d)
Fig. 1. a) The Bemotec beActive+e electric wheeled walker used in this
work. b) Kobuki Turtlebot. c) Robotnik Summit XL. d) Metralabs Scitos
G5. The proposed method is suitable for all four vehicles, since they are
all based on a differential drive.

II. RELATED WORK

Visual odometry and visual SLAM are important com-
ponents in many mobile robotic applications, from service



robots to autonomous cars. Numerous methods exist employ-
ing different approaches to estimate camera motion. Typi-
cally they can be classified into two categories: feature based
and direct methods. Feature based methods use descriptors
extracted at key points to establish correspondences between
images. This reduction of data to be processed greatly
improves computational performance, but also induces the
loss of potentially useful information. A popular descriptor is
ORB [1], which is used in [2] and [3]. Both methods include
loop closure using Bag-of-Words, pose graph optimization
and RANSAC for outlier rejection. [2] additionally performs
bundle adjustment to refine map point positions. Feature
based methods are especially prone to motion blur: if the
appearance of a key point changes too much, the correspon-
dence fails. If the whole image is affected by motion blur
this may cause loss of tracking.

Direct methods try to minimize the photometric error
between two or more images, mostly employing a Lucas-
Kanade method [4]. Several improvements and extensions
of this method were presented: e.g. [5] or [6]. They can
further be split into sparse methods and dense methods.
Sparse methods select portions of the image, e.g. based on
the amplitude of the gradient as in [7] and [8]. As for feature
based methods, this information selection can discard useful
information, although [8] argues that image data is highly
redundant and the effect of additional pixels decreases fast.
Dense methods like [9] process the whole image, mitigating
the risk of loosing important information, but increasing
computational requirements. For outlier rejection, [7] and
[9] use weights that are based on image residuals. Different
weighting functions are tested: Huber and Tukey in [7]
and t-distribution and Tukey in [9]. Using these weights
for iteratively re-weighted least-squares can decrease the
influence of outliers up to a certain outlier ratio [9].

For wheeled robots it is possible to reduce the degrees
of freedom to three since they should move in an at least
locally planar environment. This constraint allows to perform
scale free monocular odometry [10], [11] and [12]. All
three methods are designed for vehicles with two motion
parameters. But they use a three parameter representation for
image warping. This may lead to image alignment results that
contradict the vehicle’s motion model. While [10] uses non-
holonomic constraints for efficient recalibration, they are not
employed directly in the image alignment process. The non-
holonomic constraints of a wheeled vehicle can be exploited
to improve motion estimates: a feature based approach for
an Ackermann based vehicle is described in [13].

III. SETUP

The locally planar environment in which a wheeled robot
moves in allows to describe the vehicle motion with three
instead of six degrees of freedom. Planarity also allows
the use of a kinematic model of the vehicle, allowing to
decrease the number of parameters required to estimate to
two, if employed on a differential drive vehicle. The vehicle
used in this work is an electric wheeled walker equipped
with additional sensors to make it an intelligent personal

mobility assistant. As such there are limitations in terms of
computational resources, weight and sensor costs. Its main
purpose is to increase the mobility of visual or cognitive
impaired people by helping them avoiding obstacles. This
requires a robust and accurate visual odometry which works
in different environments under challenging conditions.

A. Robotic Platform

The prototype is based on a Bemotec beActive+e electric
wheeled walker shown in Fig. 1. It is further equipped
with a Sick TiM561 LIDAR, a U-Blox GPS Module, a
Razor 9DoF IMU and an Asus Xtion Pro Live, which
is the sensor used for recording the data required by the
proposed method. Although it is a shared control vehicle, its
motion can still be described by the kinematic model of a
differential drive robot with two powered rear wheels and two
caster-like front wheels. The maximum electrically supported
velocity is 0.81m/s, which is the maximum velocity used
for evaluation.

B. Orthogonal Projection

In order to perform 3 degrees of freedom image alignment
the images have to be projected onto the ground plane.
Since the RGB-D sensor provides depth information along
with an RGB image, it is possible to perform an orthogonal
projection of the input data along the z-axis. In addition
to the RGB or intensity image, a mask image is stored
describing which pixels are valid. Invalid pixels are not
included in the optimization process. This allows to perform
visual odometry in environments which are not planar, like
in Fig. 5 b). Only the vehicle motion must follow the
planarity constraint. See [14] for details of this orthogonal
projection. For monocular cameras, the input images can
be projected onto the previously calibrated ground plane
using a homography. However, as described in [11], every
deviation from this ground plane will affect the estimated
result negatively.

Fig. 2. Left: Original RGB image of a low contrast environment, Center:
The orthogonal projection. Right: Mask image.

IV. KINEMATIC MODEL

In general the image alignment process for visual odome-
try consists of three components: (1) an optimization method
for iteratively solving the non-linear problem, commonly
Gauss-Newton or Levenberg-Marquardt are chosen. (2) a
linearisation method e.g. Forward Compositional, Inverse
Compositional or Efficient Second Order Minimization and
(3) a warp parameter representation like se2 for 3DoF or
se3 for 6DoF image alignment. See [5] and [6] for a more



detailed description of different methods for optimization,
linearisation and warping. As a wheeled robot moves in
an at least locally planar environment, the pose can be
described by three parameters: x, y, θ. Given images de-
picting the ground plane, the visual odometry problem can
be solved by finding the warp that minimizes the sum of
squared differences between these images. Therefore the se2
parametrisation is an obvious choice for describing the image
warp, as shown in [11] and [10]. Many wheeled vehicles are
non-holonomic, like differential drive or Ackermann based
vehicles, allowing to describe their motion by only two
parameters while the robot itself moves in a 3DoF world.
This over-parametrisation creates an ambiguity: Due to the
locally linear character of small angle rotations it can be
confused with a translation and vice versa. This problem
increases with the distance from the image position to the
center of rotation. This, especially in scenes with sub optimal
image quality, can result in a motion estimate that minimizes
the photometric error but describes a motion that is not
feasible for the vehicle. Experiments have shown that for
a differential drive vehicle with a camera mounted in the
front and two powered wheels in the back, as depicted in
Fig. 3, a distance from the rotation center to the sensor of
about 1m is already large enough to observe this effect.

Conversely, if the vehicle performs a motion that cannot
be described by the kinematic model, e.g. due to wheel slip,
the proposed method detects this by comparing the values
of the error functions of the se2 with the kinematic model
alignment. If the error ratio exceeds a given threshold, the
se2 alignment, as described in [14], is used.

A. Overview

The proposed method consists of the following processing
steps:

1) Orthogonal projection of the RGB image and conver-
sion to a gray scale image.

2) Full image alignment with se2.
3) If rotation and lateral motion are below a threshold go

to 7).
4) Full image alignment with kinematic model.
5) Outlier rejection with kinematic model.
6) If kinematic model alignment is successful go to 8).
7) Outlier rejection with se2 parametrisation.
8) Update of the vehicle pose.

The full image alignment with se2 parametrisation is also
used to reduce the number of iterations of the model based
alignment by providing an initial estimate for r and ∆θ.

B. Differential Drive Model

A vehicle pose in a 2D world at time t is described by
pt = (pxt, pyt, pθt). The differential drive model describes
the vehicle’s motion with two parameters: The distance of the
rear axis center to the center of rotation r and the rotation
angle ∆θ, see Fig. 3. Since the vehicle body is rigid, all
points on the vehicle perform a rotation around the same
center by the same angle. This includes the position of
the camera and its field of view, allowing to estimate the

parameters m′ = (r,∆θ) directly from the image data. After
estimating m′ the robot pose is updated using:

pt+1 = pt +

 r(sin(pθt + ∆θ)− sin(pθt))
r(− cos(pθt + ∆θ) + cos(pθt))

∆θ

 . (1)
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Fig. 3. Scheme of the differential drive model: B is the base link frame,
Rt is the center of the rear axis at time t, c is the current center of rotation,
C is the camera frame and It is the current image frame. The position of
the rotation center in image coordinates is described by cx and cy . ox is
the known distance along the x-axis between the current image origin and
the current rear axis center Rt.

In Fig. 3 two coordinate representations are used: The base
link frame B is described in world coordinates with units
[m] and radians, all other frames are described in image
coordinates with units pixels and radians. Therefore two
conversion functions are required to convert world to image
coordinates q = fwi(p) and vice versa p = fiw(q). fwi is
used for converting the fixed vehicle model parameters to
image coordinates, q = fwi(p) is required to convert the
image alignment results back to world coordinates.

C. Image Warp

To directly estimate the vehicle’s motion parameters by
minimizing the photometric error between two images, the
image warp used for the optimization process has to be
parametrised accordingly. Since the robot’s motion is de-
scribed by a rotation around a point on the rear axis, the same
must hold for the images. The warping function is therefore
parametrized with the rotation’s center cx = fwi(r)−ox and
angle θ = ∆θ.

The rotation Rc around a point c = (cx, cy) is described
by:

Rc = TcRθT
−1
c

=

cos(θ) − sin(θ) (1− cos(θ))cx − sin(θ)cy
sin(θ) cos(θ) sin(θ)cx + (1− cos(θ))cy

0 0 1

 (2)



where Tc is the translation matrix to the center and Rθ

is the rotation matrix around angle θ. Since the image
coordinate system’s z-axis is flipped, the rotational part is
transposed. While cy is known from the vehicle model, cx
and the rotation angle θ are free parameters. An image can
be interpreted as function I(i) of a point i = (ix, iy) that
returns an intensity value, warping an image is equivalent to
transforming the point positions by a function ω: I(ω(i,m))

From [2] the function for warping an image point i by
parameters m = (cx, θ) is:

ω′(i,m) =(
cos(θ)ix − sin(θ)iy + (1− cos(θ))cx − sin(θ)cy
sin(θ)ix + cos(θ)iy + sin(θ)cx + (1− cos(θ))cy

)
. (3)

Linearisation of ω′(i,m) around θ = 0 using a first order
Taylor expansion gives:

ω(i,m) = ω′(i,m)|θ=0

=

(
ix − iyθ − cyθ
ixθ + iy + cxθ

)
. (4)

V. IMAGE ALIGNMENT

Image alignment is done by minimizing the sum of
squared differences between the previous image It and the
current image It+1 by finding the optimal warp parameters
m. The error function over all pixels is:

E(m) =
∑
i

(It+1(i)− It(ω(i,m)))2 (5)

If the photo-consistency assumption holds, there are pa-
rameters mopt for which E(mopt) = 0. fiw(mopt) then
describes the movement performed by the vehicle. To find
the warp parameters m that minimize E(m) between two
consecutive images It and It+1, an iterative non-linear least
squares method is used, as formulated in [15]:

mn+1 =mn − µn(JTnC
−1
D Jn + C−1M )−1

(JTnC
−1
D (It+1 − I ′t)) + C−1M (mn −mprior)) (6)

where n is the current optimizer iteration, µn is the step
width, Jn is the current Jacobian, CD is the data covariance,
CM is the model covariance and mprior is the model
prior. The previous image It is transformed with the current
parameter estimate I ′t = It(ω(i,mn)) after each iteration for
updating the pixel-wise image differences It+1 − I ′t and the
Jacobian Jn.

Three termination criteria are used for the optimization:
The maximum number of iterations n > nmax, a mini-
mum error value E(mn) < ε and a minimum step size
|mn+1 − mn| < δ. Whenever one of these criteria is met,
the optimizations stops.

In general the Jacobian J is the derivative of the warped
image with regard to the model parameters, this derivative
can be calculated by using the chain rule:

J =
∂I(ω(i,m))

∂m
=
∂I(i)

∂i

∂ω(i,m)

∂m
(7)

The proposed method uses Efficient Second order Minimiza-
tion (ESM) like formulation to calculate the Jacobian, see

[16] and [5] for a detailed derivation of the ESM. ESM uses
a Taylor expansion of the error function and the Jacobian
to approximate the Hessian of the cost function, the ESM
based Jacobian is:

Jn =
1

2

(
∂It+1(i)

∂i
+
∂I ′t(i)

∂i

)
∂ω(i,m)

∂m
(8)

Image gradients can be obtained by using e.g. a Sobel
operator:

∂I ′t(i)

∂i
= ∇I ′t = (∇xI ′t,∇yI ′t)

∂It+1(i)

∂i
= ∇It+1 = (∇xIt+1,∇yIt+1) (9)

where ∇xI and ∇yI is the gradient in x resp. y direction.
Deriving the warping function (4) with regard to the param-
eters m:

∂ω(i,m)

∂m
=

(
0 (−iy − cy)
θ (ix + cx)

)
(10)

Plugging (9) and (10) into (8) results in the Jacobian for one
pixel, which is one row of the Jn matrix:

(∇yθ,∇x(−iy − cy) +∇y(ix + cx)) (11)

with

∇x =

(
1

2
(∇xIt+1 +∇xI ′t

)
(12)

∇y =

(
1

2
(∇yIt+1 +∇yI ′t

)
(13)

The data covariance CD in (6) is set to 1, all pixel
intensities are independent and equally likely. The model
covariance CM has to be set appropriately to achieve fast
and robust convergence of the optimisation. This is necessary
because the ranges of the two model parameters differ by
orders of magnitude: While cx can have huge values, (in
fact for a straight forward driving vehicle it is ± inf , θ has a
typical range of [−0.2, 0.2]. During evaluation CM was set
to:

CM =

(
104 0
0 10−3

)
(14)

For the model prior mprior the previously performed motion
has shown to be a reasonable choice. If available, estimates
from other sensors like wheel odometry or an IMU could
also be used.

A. Outlier Removal

For visual odometry, outliers are image regions that do
not reflect the actual motion of the camera. These must be
excluded from the optimization process.

A popular way for outlier removal is the use of iteratively
re-weighted least squares, as presented in [9] and [7]. After
each optimizer iteration, a residual image is created and,
based on these pixel wise residuals, a weight for each pixel
is calculated. In the next optimizer iterations, these weights
are multiplied with the corresponding Jacobian row to weight
the pixel’s influence on the optimization.



The proposed method uses an approach which takes into
account the fact that outlier pixels usually have a spatial
relation since effects like overexposure, reflections or moving
objects are unlikely to appear only pixel wise.

The outlier rejection is performed after the alignment of
the whole image terminates. The optimized parameters mr

are used as the initial estimate for the outlier rejection.
In order to find outlier regions, the image is split into

blocks B of a fixed size, as shown in Fig. 4. For each block
Bk the Jacobian Jk and the image difference dk = (It+1−I ′t)
of the contained pixels are calculated. With Jk and dk for
each block a single parameter update step mk is estimated

mk = µn(JTk Jk + C−1M )−1(JTk dk) + C−1M (mr)). (15)

Each mk describes the direction in model space for which
the blocks error E(mk) would decrease. Without outliers
and image noise, the values of all mk should be similar.
Blocks that contain a significant amount of outliers have a
different gradient direction compared to blocks that correctly
describe the vehicle’s motion. Based on the estimated model
parameters mk, a clustering in model space is performed
by comparing the model space position of each block to all
other blocks. For clustering a weighting function W (v, ε)
based on the Tukey weighting function [17] is used:

W (v, ε) =

{
0 if |v| > ε

(1− ( vε )2)2 otherwise.
(16)

Each model parameter cx, θ has a separate weighting param-
eter εx, εθ. The cluster weight of each block is:

Φ(mk) =

k∑
j=0

W (mkx −mjx, εx)W (mkθ −mjθ, εθ) (17)

The parameters of the block with the highest Φ(ms) are
selected as mf and used as center for the cluster membership
test. To get the new motion estimate, the weighted sums over
the Jacobians and image differences are given by:

Jf =

k∑
j=0

JjW (mfx −mjx, εx)W (mfθ −mjθ, εx) (18)

and

df =

k∑
j=0

djW (mfx −mjx, εx)W (mfθ −mjθ, εx). (19)

From Jf and df a new estimate for mr is calculated as
described in (15). The process can be repeated several times.
This might be required if the initial estimate was too far from
the optimum.

VI. EVALUATION

A. Compared Methods

The proposed method was compared against five publicly
available visual odometry or SLAM systems and its prede-
cessor:

1) DoF3OR, the predecessor of the proposed method [14]
without kinematic model constraints.

Fig. 4. Left: Visualization of the blocks used for outlier rejection, the
number is φ(mk), green dots mark blocks that contribute to the selected
cluster. Right: Residual image after performing the global image alignment.
The white spots in the upper third of the image are pixels that were removed
due to their proximity to invalid pixels.

2) DVO, a dense 6DoF visual odometry [9].
3) EDVO, a semi-dense 6DoF direct visual odometry

method [7].
4) RTAB, a versatile feature-based SLAM system that

includes loop closure and pose graph optimization [3].
The method was used with 3DoF localisation and non-
holonomic constraints for motion estimation.

5) ORBSLAM2, a feature-based 6DoF SLAM system
[2]. Two modes were tested: The full SLAM system
(ORBSLAM) and the visual odometry mode with
mapping disabled (ORBLOC).

6) DEMO, a feature based 6DoF visual odometry [20].

B. Data Acquisition

To compare the performance of the proposed method
with other approaches, nine sequences in different indoor
environments were recorded. Fig. 8 shows one of these
sequences with ground truth trajectory and the resulting
trajectories of all compared visual odometry systems. The
total length of these nine trajectories is 527m and the total
recorded time 17min. They were selected to cover different
surface materials under different lighting conditions, see Fig.
5.

Fig. 5. Three different surface types were recorded: Tiles, wood and PVC
(shown in Fig. 2). The images depict challenging situations the proposed
method can handle: low light conditions and reflections, shadows and non
planar environment.

The ground truth trajectories were created using a Sick
TiM561 LIDAR for data acquisition and the Hector SLAM
system [18] to integrate the LIDAR data into a global
occupancy map with 0.05m resolution used for localisation.
Every ground truth sequence was checked for map and



trajectory inconsistencies and discarded if any were found,
leaving 9 out of 18 originally recorded sequences.

Each tested method was run on all nine sequences, record-
ing the pose estimate after each frame. This yields a set F
of poses for each method and each sequence.

C. Evaluation Method

For performance evaluation, the visual odometry evalu-
ation method described in [19] was used. This evaluation
method extracts sub paths of different lengths and calculates
two error measures individually for each sub path: the
rotation error and the translation error. Each error measure
is normalized by the path length to be able to compare the
results of sub paths of different lengths. The error measures,
as given in [19], are:

Erot(F) =
1

|F|
∑

(i,j∈F)

∠[(p̂j � p̂i]) � (pj � pi)] (20)

Etrans(F) =
1

|F|
∑

(i,j∈F)

||(p̂j � p̂i]) � (pj � pi)||2 (21)

where i and j are the start and end indices of a subset of F
for a given length lp, p̂ and p are the estimated resp. ground
truth poses, � is the inverse compositional operator and ∠
denotes the rotation angle.

The path lengths for evaluation were lp=(1m, 2m, 5m,
10m, 15m, 20m, 25m, 30m, 35m, 40m). For each path length,
a sub path was extracted at every tenth ground truth frame.

D. Results
The mean translation error per path length over all se-

quences is shown in Fig. 6, the mean rotation error in Fig. 7.
Table I shows the mean error weighted by the number of sub
paths per path length. One major source of error are rotations,
as seen in Fig. 8. Only the proposed method provides a
proper estimate of all rotations contained in this sequence.
Another problem are reflections, causing most methods to
underestimate the distance travelled. This can be observed
when turning to the right after approximately 16m.

Two methods are not suited to work with the provided
data: DEMO has problems establishing correct feature cor-
respondences. For EDVO the reason is not as clear, it may
be caused by the information selection scheme which selects
data with strongest Jacobians. In environments with low
contrast texture, image noise and reflections tend to give
larger gradients than the floor itself. Regardless, as errors in
setting up theses systems cannot entirely be ruled out these
results should be regarded with care.

ORBSLAM provides good results as long as the tracking
remains intact. In cases where loop closure could be applied,
it outperformed most other methods. When the tracking is
lost, no further pose estimates are provided, causing the
translation and rotation error to rise to maximum for the
remaining trajectory. This happened in four out of nine
sequences e.g. Fig. 8 and was caused either by fast rotation
or heavy motion blur. To be comparable, it was required to
use the visual odometry only version ORBLOC. The results
of ORBSLAM are only shown for completeness.

As shown in Fig. 7, DVO provides reasonable rotation
estimates for most sequences, but tends to underestimate the
travelled distance. Several sequences contain reflections that
cover significant parts of the image. As described in [9], this
high outlier ratio can cause a drift.

RTAB was configured to perform 3DoF SLAM and use
non-holonomic constraints, i.e. not allowing strife motions.
Although the approach is lacking some features of ORB-
SLAM, like local bundle adjustment, the 3DoF SLAM
combined with model based constraints results in better
performance on the given data.

DoF3OR without non-holonomic constraints gives results
comparable to RTAB. The basic structure, performing image
alignment on the orthogonal projection of the sensor data
and performing block-wise outlier rejection, is similar to the
proposed method.

KMVO performs best across all tests, especially rotation
estimation accuracy could be improved compared to its
predecessor and it is over two times better than RTAB, which
also uses 3DoF and model based constraints.

Over all evaluated sequences the average processing time
of the proposed method was 15.2ms per frame on a single
thread of an Intel i5 4300U Mobile CPU with 1.9GHz.
This makes the proposed method suitable for real time
applications on a wide range of mobile robot hardware.
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TABLE I
MEAN TRANSLATION AND ROTATION ERROR OVER ALL SUB PATHS.

Method Trans (%) Rot (◦/m)
KMVO 15.48 1.69

DoF3OR 21.44 2.80
DVO 36.00 4.10

EDVO 78.40 15.66
RTab 21.83 3.67

ORBSLAM 71.10 8.97
ORBLOC 49.80 7.20

DEMO 89.39 22.03
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Fig. 8. Example Trajectory recorded in the environment shown as left
image in Fig. 2.

VII. CONCLUSION

This work presented KMVO, a method for estimating
motion parameters of a differential drive vehicle directly
from ground plane images. The reduction from three to
two parameters in the optimization process significantly
improves the localization accuracy, especially with regard to
the rotational part. Furthermore, an outlier rejection scheme
was presented that can handle large outlier areas and is com-
putationally efficient. The complete system was evaluated on
nine real world data sets and compared to six other methods.
In the tested scenarios, it outperformed all six methods it was
compared to. It is also shown that the system is fast enough
to run in real time on a single thread of a mobile CPU. Future
work includes porting the system to monocular cameras and
the inclusion of a pose graph optimization to further improve
the accuracy.

Including the kinematic model into the visual odometry
system is not constrained to differential drive vehicles. It can
be similarly applied to other non-holonomic vehicles with
two degrees of freedom, e.g. Ackermann steered vehicles.
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